
Computers and Concrete, Vol. 22, No. 2 (2018) 249-259 

DOI: https://doi.org/10.12989/cac.2018.22.2.249                                                                  249 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                                      ISSN: 1598-8198 (Print), 1598-818X (Online) 

 
1. Introduction 
 

One of the important aspect in the behaviour of RC 

elements is the transfer of forces between concrete and steel 

reinforcement bar interface through bond stresses. There are 

two main situations when bond stresses need to develop. 

Due to anchorage or bar development, where bars are 

terminated, and when there is a change in bending moment 

along the member which results in change of force along 

the bar. However, bond is also needed to keep the steel and 

concrete together in between cracks and that contributes to 

“tension stiffening” of RC. Under monotonic loading, there 

are two types of bond failure modes. One is pullout of the 

bar, which usually occurs in elements with enough 

confinement. This type of failure depends on the pattern and 

geometry of the deformations of the bar and concrete 

strength. Pullout failure occurs due to shearing of concrete 

between the lugs which immediately surrounds the bar. 

When confinement or cover is insufficient to obtain pullout 

failure, then splitting failure occurs. Splitting is due to 

tensile radial stresses, which develop from lug bearing 

forces. When the bar moves with respect to concrete, 

splitting failure initiates due to the wedging action of ribs. 
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Cover and bond is lost when splitting reaches the edges of 

the member. Splitting failure usually occurs in bars having 

cover equal to three bar diameters or less but it may occur 

for bars having cover more than three bar diameter. 

Post earthquake surveys and reports (Naseer et al. 2006, 

Duranni et al. 2005, Nisikawa et al. 2005, Naseer et al. 

2006, Peiris et al. 2005, Bal et al. 2008) have shown that 

the use of inferior quality materials, inadequate detailing 

and poor construction practices are responsible for most of 

the brittle failure modes of Non-Engineered Reinforced 

Concrete (NERC) structures in developing countries. Bond 

failures in NERC elements due to short anchorages or low 

concrete cover result in large slip deformations prevent the 

development of plastic deformations and reduce energy 

dissipation capacity. Low Strength Concrete (LSC) is also 

one of key parameter that governs poor performance of 

detail deficient NERC structures. This is observed 

particularly after the Kashmir earthquake 2005, Pakistan 

and many RC structures were found to have pullout failure 

or large slip deformations. The parameters such as low 

strength concrete, low concrete cover, low development 

length, bar diameter need to be accounted for the evaluation 

of bond strength of different bar types in LSC. This is very 

important for seismic performance evaluation of NERC 

structures and no such study exist so far that describe the 

bond-slip (τ-s) behaviour of various bar types in low 

strength concrete along with typical deficiencies as 

mentioned above.  

Different relationships can be found in the literature for 
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the determination of the bond strength of reinforcing bars 

both in unconfined normal strength concrete (NSC) and in 

the high strength concrete (HSC) (Orangun et al. 1975, Zuo 

and Darwin 2000, Eligehausen et al. 1983). These equations 

are based on either summation or product functions and 

accounts for various important variables as well as bond 

failure modes. Various analysis techniques can be used to 

predict the bond strength for different bar types by 

including multiple parameters. A powerful technique for 

determining multi-parameter influence is known as 

Artificial Neural Network (ANN) and can be used to 

evaluate τmax of different bar types in concrete. ANN 

involves learning of relationship between input and output 

data using mathematical training processes. ANN has been 

implemented recently to solve a variety of civil engineering 

problems. Few studies can be found in literature which uses 

ANN for evaluating maximum bond strength. Dahoua et al. 

(2009) evaluated the bond strength of deformed steel ribbed 

bars by considering the concrete mix constituents as the 

input parameters in one ANN bond model and also using 

concrete strength and bar diameter as input parameters in 

another ANN bond model. Emre (2009) also developed the 

ANN bond strength model for reinforcing bars in light 

weight concrete. Fan and Hu (2007) developed ANN model 

for evaluating bond strength of corroded bars in concrete. 

The main aim of the current study is to develop ANN 
bond strength models for different bar types by considering 
the deficient parameters which have large influence on the 
poor seismic performance of NERC structural components 
during earthquakes which generally fails in brittle manner 
due to bond failures. These deficient parameters are low 

concrete compressive strength, short development length, 
small cover, diameter which are included in developing 
ANN bond strength models in current study. The 
performance of different developed ANN models is 
assessed for each parameter by using experimental data. 
The proposed bond strength models can be used in a 

seismic fragility assessment framework for NERC 
structures for the inelastic analysis of the low strength 
reinforced concrete structures. 

This paper briefly describes initially various 

applications of ANN in civil engineering. Experimental 

programme conducted in different universities to study the 

bond-slip characteristics of different bar types in LSC is 

briefly discussed. The statistical data of the bond strength 

for both pullout and splitting specimens are presented. ANN 

modelling which is more sophisticated approach as compare 

to multi-variable nonlinear regression is adopted and the 

basics of ANN modelling are discussed. ANN models for 

evaluating bond strength of deformed, plain and cold 

formed bars in low strength concrete are developed by 

training the neurons in the hidden layers using the 

experimental data. Experimental bond strength values are 

compared with the outcomes of ANN models. Moreover, 

the ANN model predictions by varying different parameters 

are also presented for all bar types. 

 

 
2. Application of ANN in civil engineering 
 

ANN has been implemented recently to solve a variety 

of civil engineering problems such as evaluating modulus of 

elasticity of concrete (Demir 2008), predicting shear 

capacity (Adhikary and Mutsuyoshi 2004), and assessing 

the seismic induced structural damage (DeLautour and 

Omenzetter 2009). Yeh (1998), Kasperkiewics (1995), Lai 

and Serra (1997) and Lee (2003) used ANN technique for 

predicting properties of conventional concrete and high 

performance concretes. Duan and Poon (2014) studied 

factors affecting the properties of recycled concrete using 

ANN. Dias and Pooliyadda (2001) used ANN back 

propagation approach to predict the slump and strength of 

ready mixed concrete and high strength concrete with 

chemical admixtures and/or mineral additives. Kong et al. 

(2016) studied effect of aggregate on concrete permeability 

by using ANN. Oztas et al. (2006) used ANN model for 

predicting compressive strength of high strength concrete 

(HSC) with suitable workability. Bilgham and Turgut 

(2010), Lingama and Karthikeyan (2014) used ANN for 

predicting the concrete compressive strength. For predicting 

the concrete strength development, Lee (2003) developed 

ANN model. Pala et al. (2005) studied the effects of silica 

fume and fly ash replacement content on the strength of 

concrete cured for a long term period of time by using 

ANN. The developed ANN model consisted of eight input 

parameters and an output parameter that is compressive 

strength. In another study performed as the experimental 

analysis (Sahin and Shenoi 2003), two steel beams with 

eight surface-bonded electrical strain gauges and an 

accelerometer mounted at the tip were used to obtain modal 

parameters. The authors applied the feed-forward back 

propagation ANNs by using the data obtained from the 

experimental damage case. In the study performed by 

Kelesoglu et al. (2005), feed forward and back propagation 

trained ANN was used for analysing the requirement of 

insulation for brick wall and to evaluate minimum required 

thickness of this insulating material. The results obtained 

from the ANN model were compared with the numerical 

results and it was found the results are sensitive enough. 

Joshi et al. (2014) used ANN for dynamic analysis of 

structures, Kao and Yeh (2014) used ANN for structural 

design of RC plane frame. In a study by Ozsoy and Firat 

(2004) conducted the horizontal displacement values were 

estimated from the ANN model. Riza (2017) predicted the 

shear strength of SFRC slender beams without stirrups. 

Similarly there are different studies, which evaluated the 

bond strength considering different parameters and are 

already discussed in introduction. In literature, authors have 

presented ANN as a feasible tool for solving various civil 

engineering problems.  

 

 

3. Experimental programme 
 

In the experimental programme (Ahmad 2011), an 
investigation was undertaken to study τ-s characteristics of 
different types of steel reinforcing bars typically used in 
past and in recent years for the construction of RC 
structures (especially in Pakistan). This includes three 
different types of steel bars which vary in their 

deformations and diameter. These bars are 1-deformed 
(def.), 2-cold twisted (Tor) and 3-plain. The main focus was  
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(a) 

 
(b) 

Fig. 1 Typical bond-slip curves from tests at UoS (a) 12 mm 

deformed (pullout) (b) 12 mm deformed (splitting) 

 

 

to study pullout and splitting bond failure modes in LSC 

under monotonic loading. All the tested specimens were 

unconfined and made from plain concrete. The main 

parameters included LSC (~15 MPa), bar development 

length (Ld), concrete cover (c), rebar type and diameter (db). 

This experimental work has been done at three different 

Universities including the University of Sheffield (UoS), 

and at two universities in Pakistan; UET, (Taxila) and NED, 

Karachi which included 138 pullout and 108 splitting tests. 

Using the statistical data from these experiments, the bond 

strength models were developed. The bond-slip curves of 

deformed cold formed, and plain bar specimens are used in 

current study to develop ANN bond strength model for LSC. 

 

3.1 Representative experimental bond-slip curves 
 

Representative results for the deformed and plain bars 

pullout and splitting specimens tested at UoS, having db=12 

mm, Ld=5db are shown in Figs. 1 and 2, respectively. Cold 

formed (Tor) bars pullout specimens tested at NED, having 

db=12 mm, Ld=5db are shown in Figs. 3(a) and 3(b), 

respectively. The U.L.E. and L.E. in these figures represents 

the un-loaded and loaded end bond-slip curves, 

respectively.  

The bond-slip curves of deformed bars pullout 

specimens having concrete compressive strength <10 MPa 

in general showed low bond strength as shown in Fig. 1(a). 

A plataeu in the bond-slip curve can be seen prior to decay.  

 
(a) 

 
(b) 

Fig. 2 Typical bond-slip curves from tests at UoS (a) 12 mm 

plain (pullout) (b) 12 mm plain (splitting) 

 

 

The slip value at maximum bond strength is close to 1mm. 

As expected plain bars pullout specimens showed lower 

bond strength than deformed bar specimens and the slip 

corresponding to bond strength in plain bars is very low as 

shown in Fig. 2(a). The load-slip curve decay is not as 

gradually as deformed bars. The bond slip behavior of cold 

formed pullout specimens in Fig. 3(a) is almost similar to 

deformed bars.  

Deformed bars splitting specimens (db=12 mm, Ld= 5db 

and c=0-2db) in Fig. 1(b) showed abrupt failure of all 

deformed bar splitting specimens. The value of c=0 

represents extremely small concrete cover and practically 

represents exposed reinforcement condition in beams or 

columns typically observed in developing countries due to 

poor construction practices. Deformed bar split specimens 

with extremely small cover showed a very low τmax at a 

small slip value. The bond strength increased by almost four 

times for curves c=1 and 2db (Fig. 1(b)). In plain bar split 

specimens (db=12 mm, Ld=5db and c=0-2db)) in Fig. 2(b), 

splitting did not occur in all cases. A few specimens with 

c=0 and c=1db showed brittle behavior, but most of the 

specimens especially with cover 1db and 2db showed a 

gradual decay of the load-slip curve, as shown in Fig.2(b). 

In cold formed bars splitting specimens (db=12 mm, Ld= 

5db) in Fig. 3(b), abrupt failure was observed in all 

specimens similar to deformed bar splitting specimens. The 

splitting bond strength of cold formed bars in low strength 

concrete can be observed to be lower than deformed bars. 
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3.2 Direct comparison and statistical analysis (pullout 
specimen) 

 
A summary of results of pullout tests conducted at each 

University along with the average results for each set of 
variables is presented in Table 1. 

 

3.3 Direct comparison and satistical analysis (Splitting 
specimen) 

 
Table 2 presents a summary of results of splitting tests 

conducted at the three universities. 
 

 

4. Artificial Neural Network (ANN) for evaluating 
bond strength in LSC 
 

4.1 Introduction 
 

Artificial Neural Network (ANN) involves learning of 

 

 

relationship between input and output data using 
mathematical training processes. The basic functionality of 
ANN is described in the following flow chart in Fig. 4.  

The ANN function is based on the human brain 
biological function and consist of networks of many parallel 
operating processors. These processing components in a 

network are highly inter-linked and are termed as artificial 
neurons which are the basic elements of this method and are 
also termed as perceptrons and represent the mathematical 
model of the biological neuron. The main functionality of 
the perceptron is to evaluate the output by doing weighted 
sum of all the inputs. In order to solve a problem, a single 

neuron with multiple inputs may not be sufficient. Multiple 
neurons can be interlinked to develop an ANN which is also 
called Multi layer perceptron (MLP). The use of MLP 
increases the accuracy of the model. Typically the structure 
of ANN (MLP) contains an input layer with input 
parameters, a hidden layer with neurons and an output layer 

with a single or multiple parameters as shown in Fig. 5. An 
optimisation of the model parameters occur which reduces  

Table 1 Summary of the pullout tests using averages for each set of variables
 

db Bar type Ld n 
'

cf  τmax 
'

max cf  '

max cf  '

max cf  

     µ µ σ COV 

mm  mm  MPa MPa MPa MPa  

UoS 

12.75 Def. 64 5 14.7 14.3 3.72 0.324 0.087 

12.75 Def. 64 3 9.2 7.8 2.55 0.397 0.155 

12.75 Def. 64 3 12.5 9.9 2.79 0.247 0.088 

12.75 Def. 128 4 15.0 7.7 1.99 0.667 0.335 

12.75 Def. 128 3 10.0 6.3 1.98 0.283 0.142 

12.75 Def. 191 3 15.0 7.8 2.01 0.009 0.004 

17 Def. 85 3 15.0 11.3 2.91 0.480 0.160 

17 Def. 170 3 15.0 11.9 3.08 0.072 0.023 

17 Def. 255 3 15.0 8.9 2.30 0.106 0.046 

12 plain 60 4 15.5 6.0 1.52 0.147 0.097 

12 plain 120 5 16.2 6.4 1.59 0.143 0.090 

12 plain 180 3 15.0 4.7 1.22 0.192 0.157 

16 plain 80 5 14.8 6.7 1.74 0.166 0.095 

16 plain 160 3 15.0 5.9 1.52 0.013 0.009 

16 plain 240 3 15.0 5.1 1.33 0.027 0.020 

UET 

13 Def. 65 3 15.0 15.5 4.00 0.267 0.067 

13 Def. 130 3 15.0 11.4 2.94 0.207 0.071 

13 Def. 195 3 15.0 8.0 2.07 0.018 0.009 

13 Cold-formed 65 3 15.0 12.1 3.13 0.346 0.111 

13 Cold-formed 130 3 15.0 11.2 2.90 0.028 0.010 

13 Cold-formed 195 3 15.0 6.5 1.67 0.068 0.041 

19 Def. 95 2 15.0 12.8 3.30 0.365 0.110 

19 Def. 190 3 15.0 7.9 2.04 0.243 0.119 

19 Def. 285 3 15.0 4.9 1.26 0.093 0.074 

NED University 

13 Def.-3 65 4 16.4 12.4 3.07 0.577 0.188 

16 Def.-3 80 6 16.2 10.6 2.63 0.388 0.147 

20 Def.-3 100 4 15.4 12.7 3.24 0.327 0.101 

13 Tor-1 65 6 12.6 11.4 3.20 0.608 0.190 

16 cold-1 80 6 12.7 12.6 3.10 0.610 0.200 

20 cold-1 100 4 12.7 11.5 3.22 0.680 0.211 

13 cold-2 65 6 15.0 12.9 3.34 0.569 0.170 

16 cold-2 80 6 15.7 13.9 3.50 0.369 0.106 

20 cold-2 100 6 16.1 13.1 3.28 0.343 0.105 

Where db= bar diameter; Ld=development length; n=number of tested specimens , f’c =concrete compressive strength; τmax= 

bond strength; µ=mean; σ=standard deviation; COV= covariance
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 (a) (b)  

Fig. 3 Typical load-slip curves from tests at NED (a) 12 mm cold formed (pullout) (b) 12 mm cold formed (splitting) 

Table 2 Summary of the splitting tests using averages for each set of variables
 

db Bar type cover c/db n 
'

cf  τmax 
'

max cf  '

max cf  '

max cf  

  c     µ σ COV 

mm  mm   MPa MPa MPa1/2 MPa1/2  

UoS 

12.75 Def. 26 2.0 3 15.0 6.3 1.64 0.201 0.123 

12.75 Def. 13 1.0 3 15.0 6.3 1.62 0.139 0.086 

12.75 Def. 0 0.0 5 15.0 1.9 0.48 0.118 0.244 

17 Def. 34 2.0 3 15.0 3.9 1.00 0.138 0.138 

17 Def. 17 1.0 3 15.0 3.8 0.98 0.058 0.059 

17 Def. 0 0.0 3 15.0 2.8 0.72 0.044 0.062 

12.75 plain 26 2.0 3 15.0 5.7 1.47 0.077 0.052 

12.75 plain 13 1.0 3 15.0 3.9 1.01 0.105 0.104 

12.75 plain 0 0.0 3 15.0 1.8 0.46 0.081 0.175 

17 plain 34 2.0 3 15.0 4.9 1.26 0.199 0.158 

17 plain 17 1.0 3 15.0 3.2 0.83 0.054 0.066 

17 plain 0 0.0 3 15.0 1.8 0.46 0.055 0.119 

UET 

13 Def. 32 2.5 3 15.0 9.5 2.30 0.310 0.135 

13 Def. 45 3.5 3 15.0 12.8 3.11 0.290 0.092 

13 Cold-formed 32 2.5 3 15.0 8.7 2.10 0.233 0.111 

13 Cold-formed 45 3.5 3 15.0 10.4 2.52 0.178 0.071 

19 Def. 29 1.5 3 15.0 4.7 1.15 0.117 0.102 

19 Def. 41 2.2 3 15.0 8.8 2.14 0.310 0.145 

NED University 

13 Def.-2 26 2.0 3 9.8 4.6 1.49 0.366 0.246 

16 Def.-2 32 2.0 3 9.8 3.4 1.07 0.216 0.202 

20 Def.-2 40 2.0 3 9.8 3.2 1.06 0.466 0.438 

13 Def.-2 13 1.0 3 10.6 4.6 1.41 0.333 0.236 

16 Def.-2 16 1.0 3 10.6 1.7 0.52 0.120 0.231 

20 Def.-2 20 1.0 3 10.6 3.9 1.20 0.146 0.122 

13 Def.-3 26 2.0 3 10.4 2.9 0.91 0.209 0.229 

16 Def.-3 32 2.0 3 10.4 3.5 1.08 0.327 0.303 

20 Def.-3 40 2.0 3 10.4 3.0 0.94 0.281 0.300 

13 Def.-3 13 1.0 3 10.6 2.8 0.86 0.333 0.385 

16 Def.-3 16 1.0 3 10.6 3.2 0.97 0.486 0.499 

20 Def.-3 20 1.0 3 10.6 2.8 0.87 0.194 0.224 

13 Cold-1 26 2.0 3 9.8 3.6 1.15 0.254 0.220 

16 Cold-1 32 2.0 3 9.8 3.7 1.17 0.196 0.168 

20 Cold-1 40 2.0 3 9.8 3.1 1.00 0.287 0.286 

13 Cold-1 13 1.0 3 9.5 4.3 1.38 0.432 0.312 

16 Cold-1 16 1.0 3 12.1 3.4 0.97 0.338 0.350 

20 Cold-1 20 1.0 3 12.1 2.3 0.67 0.235 0.351 

Where db=bar diameter;c=concrete cover; n=number of tested specimens, f’c =concrete compressive strength; 

τmax=bond strength; µ=mean; σ=standard deviation; COV=covariance
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Fig. 4 ANN basic functionality for training 

 

 

Fig. 5 A neuron (perceptron) with multiple inputs 

 

 

the error between the predicted outcomes and the target 

values (from experiments) by adjusting the weights of the 

internal links. The detailed description of ANN and the 

processes involved are discussed in section 4.2. The ANN 

application for evaluating the bond strength from the 

experimental data is given in the following section.  

 

4.2 Processes involved in ANN 
 

The ANN function is based on the human brain 

biological function and consist of the network of many 

parallel operating processors. These processing components 

in a network are highly inter-linked and are termed as 

artificial neurons which are the basic elements of this 

method and are also termed as perceptrons which represents 

the mathematical model of the biological neuron. A 

perceptron in the network is shown in Fig. 5. The main 

functionality of the perceptron is to evaluate the output by 

doing weighted sum of all the inputs. 

Inputs are received by neurons from various adjoining 

components but delivers only single output. The above 

figure shows that the input (x1, x2, x3, xn) is weighted by the 

weight elements (w1, w2, w3, wn) along with bias to reach 

the summation operator. The product of inputs and weights 

is added with the bias by the summation operator to 

generate the result „s’ (Eq. (1)) which is further transmitted 

to the transfer function F(s) which processes that results and 

generate the output ‟y‟(Eq. (2)) depending on whether the 

threshold is attained in the computational results. The 

information rate transmitted between input and output is 

also governed by the weight and bias. 

bxws i

n

i

i 
1

               (1) 









 



n

i

ii bxwFsFy
1

)(            (2) 

 

Fig. 6 Sample architecture of Artificial Neural Network 

(ANN) 

 

 

Fig. 7 Weighted assignment to the inputs connected to 

neurons in a hidden layer in processing elements 

 

 

Where; 

xi=input data ; wi=weight corresponding to each input, 

b=bias, s=summation result Y=predicted outcome, 

F=transfer function 

In order to solve a problem, a single neuron with 

multiple inputs may not be sufficient. To resolve this issue 

multiple neurons can be interlinked to develop an ANN 

which is also called as Multi layer perceptron (MLP). The 

use of MLP increases this accuracy of the model. Typically, 

the structure of ANN (MLP) contains an input layer with 

input parameters, Hidden layer with neurons and an output 

layers with a single or multiple parameters as shown in Fig. 

6. An optimisation of the model parameters occur which 

reduces the error between the predicted outcomes and the 

target values (from experiments) by adjusting the weights of 

the internal links. Matrices are formed for the weights 

whose columns are equal to the number of input parameters 

and rows are equal to the number of neurons. The weight 

matrices linking input layer to the hidden layer is 

represented by [w] and the weight matrix [z] links hidden 

layer to the output layer as shown in Fig. 7. The learning 

process continues in ANN even if the data are insufficient 

or inaccurate, which is considered to be one of the strength 

of ANN. 

ANN can be trained using a variety of algorithms but 

back propagation (BP) provides satisfactory results for the 

engineering problems. The network parameters (weights 

and bias) changes in accordance with the negative of error 
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function and BP algorithm is also termed as gradient 

descent algorithm. Eqs. (3)-(4) represents the new weights 

and bias, respectively. This is an iterative process and new 

weights and bias are assigned until the error of network is 

minimized. The network is also tested at each iteration with 

a new dataset which was not used previously in the training 

purpose and is usually 20% of the whole dataset. This is a 

cross validation method and to enhance the generalization 

capacity of the ANN model. 

wiii Eww /1                 (3) 

biii Ebb /1                   (4) 

Where ; 

wi+1 and bi+1 are the new corrected values of weights and 

bias  

wi is the weight at iteration i  

η= learning rate 

i= error gradient computed at iteration i 

i

i
wi

w

E
E




 /

                 (5) 

Ei is the Root Mean Square Error (RSME) for iteration i, 

and is given by 

2

1

1




N

n

ni e
N

E                (6) 

Where en is the error between target and the predicted 

outcome and N is the total number of data in the dataset 

used for training. 

Different transfer function exists which are supported by 

different ANN tools and they can either be linear or 

nonlinear which depends on the dataset. The purpose of the 

transfer function is to induce nonlinearity in ANN model. 

Log-sigmoid and Tan-Sigmoid transfer functions are most 

commonly used in solving the engineering problems. The 

outcome from the summation operator is transformed in to -

1, 0 or 1 by the transfer function.  

The number of neurons in the input layer depends on the 

variables considered in the test data. The training procedure 

can be slowed down significantly if large number of 

variables are considered. A trial and error method is used to 

decide the number of neurons in the hidden layer. The 

learning and the generalization (network response to unseen 

data) capacity of the ANN model is reduced if very few 

neurons are taken into account in the hidden layer. On the 

other hand over-fitting can result if too many neurons are 

considered in the hidden layer. It is suggested by some 

researchers that a single layer with reasonable number of 

neurons are required for a continuous function but for a 

discontinuous functions a second hidden layer is required. 

 

 
5. Application of ANN for bond modelling 
 

In this study an ANN model has been made for 

evaluating the bond strength of three different bar types in 

LSC. The sample architecture of the ANN bond model is 

shown in Fig. 8. The input parameters in the input layers of 

 

Fig. 8 ANN model for predicting bond strength of different 

type of bars in LSC 

 

Table 3 ANN bond models R
2
 value for training, validation 

and testing 

ANN model 
R2 

Training Validation Testing 

Deformed bar 0.96 0.94 0.94 

Tor bar 0.94 0.9 0.82 

Plain bar 0.99 0.98 0.92 

 

 

ANN bond strength model are 
'

cf , Ld, c, db and bar type. 

A trial and error method is used in selecting the number 

of neurons for a hidden layer until best fit results are 

achieved. Using the mentioned input parameters (Fig. 8) 

and the target values the output is calculated. The evaluated 

error between the target and predicted output is propagated 

from the output layer to the preceding layer in a process 

called back propagation. Lavenberg-Marquardt algorithm is 

used in this study to minimise error. From the available 

dataset 80% of the data is used for training the ANN model 

and the remaining 20% dataset is used to carry out 

validation and testing. The R
2 

for the training, validation 

and testing is given in Table 3. The ANN bond model for 

deformed bar consists of a single hidden layer and the 9 

neurons. For Tor bar and plain bars the ANN models consist 

of 5 and 6 neurons and a single hidden layer, respectively. 

The developed ANN models are capable of predicting 

τmax for both bond failure modes. First of all the ANN bond 

models developed for different bar types are assessed and 

τmax predictions from the ANN models using the same 

inputs parameters as used in experiments are plotted against 

the actual experimental τmax and the scatter is shown in Figs. 

9(a)-(c). The three lines are plotted in Figs. 9 (a)-(c) to 

show deviation of bond strength predictions by ANN model 

from experimental bond strength values. If a point lies on or 

close to this line it means there is no or very less error, 

respectively in the finding from the model. The upper and 

lower lines corresponds to ±1σ of error in predicting the 

bond strength using ANN model by using experimental 

parameters. It can be seen that most of the data lies within 

±1σ bounds with little deviation showing good performance 

of model. Moreover, the frequency distribution of the 

predicted τmax normalized to the experimental τmax is shown 

in Fig. 9 (d)-(f) for the test sample data, validation sample 

data and the complete input data. As mentioned in section 5  

τmax 
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that 20% of the experimental dataset was allocated for 

validation and testing while developing ANN bond strength 

models. The validation data set is used to compare the 

performances of the prediction algorithms that were created 

based on the training set and decide to select a model 

among different models (In ANN, comparison of ANN 

models with different number of hidden layers for instance). 

In order to avoid overfitting, it is necessary to have a 

validation set in addition to the training and test sets. 

Finally, the test set is used to obtain the performance 

characteristics such as accuracy (RMSE) of our chosen 

algorithm. The test data set is not used in model building 

process. The validation and testing results of the models in 

 

 

Fig. 9 indicates good performance of model with majority 

of dataset having predicted to experimental bond strength 

ratio range of 0.8 to 1.2. These results show a good 

performance for the ANN predictions, and this is further 

assessed by doing parametric study and by evaluating τmax. 
By varying different parameters (fcmax, Ld and c/db), the 

ANN model predictions are compared with the 

experimental data and is discussed as follow for three bar 

types.  

 

5.1 Deformed bars 
 

τmax versus fcmax, Ld and c/db ratio are given in Fig. 10  

  
(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 9 Comparison between ANN bond model predictions and experimental outcomes. (a) Def. bar (b) Tor bar (c) Plain bar, 

% Frequency distribution of τmax,ANN./τmax,exp
 
(d) Def. bar (e) Tor. bar f) Plain bar 
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(a)-(c) for deformed bars. Despite the variability, the ANN 

predictions for the deformed bars show good overall 

capability in predicting the bond strength corresponding to 

different parameters for both failure modes. The reason for 

this improved performance is due to use of a small number 

of neurons in a single hidden layer to avoid over-fitting.
 

 

5.2 Tor bars 
 

τmax versus fcmax, Ld and c/db ratio are given in Fig. 11(a)- 

(c) for Tor bars. The ANN bond model predictions for Tor 

bars are quite reasonable. 11(b) and (c) shows that the ANN 

model followed the pattern of experimental data at longer 

embedment lengths (>5db) and larger concrete cover (>2d), 

respectively. 

 

 

 

 

5.3 Plain bars 
 

The Variation of τmax with the increase of fcmax, Ld and 

varying c/db ratio is given in Fig. 12 (a)-(c) for plain bars. 

This model has the highest training and validation 

correlation coefficients due to less variability. Prediction of 

bond strength for pullout and splitting modes showed 

satisfactory predictions with slight over fitting of the 16mm 

bar prediction over the development length. 

 

 
6. Conclusions 
 

ANN bond strength models are developed for different 

bar types in this study. 

   
(a) (b) (c) 

Fig. 10 Comparison of ANN model for deformed bar with experimental data for different parameters (a) fcmax (b) Ld (c) c/db 

   
(a) (b) (c) 

Fig. 11 Comparison of ANN model for Tor bar with experimental data for different parameters (a) fcmax (b) Ld (c) c/db 

   
(a) (b) (c) 

Fig. 12 Comparison of ANN model for plain bar with the experimental data for different parameters (a) fcmax (b) Ld (c) c/db 
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• The ANN bond models developed for different bar 

types (i.e., deformed, tor, plain) can be used for 

evaluating bond strength in low strength concrete.  

• Besides the low strength concrete other deficient 

parameters typical of Non Engineered Reinforced 

Concrete structures (NERC), such as low concrete cover 

and short embedment length are also accounted for in 

the ANN model. The effect of bar diameter on bond 

strength is also accounted in ANN models.  

• The developed ANN bond models have higher 

coefficient of determination for training, validation and 

testing with good prediction and generalization capacity. 

• The comparison of the ANN model predictions with 

the experimental data shows good agreement for all bar 

types.  

• The developed ANN models can be used in the seismic 

performance evaluation of sub-standard NERC 

structures by modelling bond-slip behaviour.  

• More sophisticated algorithm such as Bayesian 

updating or other may be used to improve the 

generalization capability of the current ANN models for 

the data having variability. 
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