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Abstract.  Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles (SiO,) is presented in this paper.
Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering
agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on
the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton’s
principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so
that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration,
boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe.
Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the
structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid
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velocity of the pipe.
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1. Introduction

The pipes conveying fluid can be wused in city
wastewater. The fluid velocity in the pipe can induced the
dynamic load and it is very important for the instability of
the structure. However, improving the stiffness of the
structure is important for the city wastewater pipes. In this
paper, SiO, nanoparticles are used for reinforcement of the
pipes.

With respect to the developed works in pipes conveying
fluid, Paidoussis and Li (1993) studied the dynamic analysis
of pipes conveying fluid. Dynamic analysis of anisotropic
cylindrical shells containing flowing fluid was studied by
Toorani and Lakis (2001). Based on Sanders’ non-linear
theory, Zhang et al. (2002) investigated dynamic analysis of
initially tensioned orthotropic thin-walled cylindrical tubes
conveying fluid flow. Kadoli and Ganesan (2003) studied
vibration and buckling behavior of composite cylindrical
shells conveying fluid. The stability of pipe conveying fluid
was studied by Wang and Ni (2006). Meng et al. (2011)
studied the three-dimensional nonlinear dynamics of a
fluid-conveying pipe. Dai et al. (2012) presented the
vibration analysis of three-dimensional (3D) pipelines
conveying fluid using transfer matrix method (TMM).
Zhang et al. (2016) used nonlinear equations of three-
dimensional motion for fluid-conveying pipes with general
boundary conditions. Based on the Timoshenko beam
model, Gu et al. (2016) studied dynamic response of a
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fluid-conveying pipe.

Mechanical analysis of nanostructures has been reported
by many researchers (Zemri 2015, Larbi Chaht 2015,
Belkorissat 2015, Ahouel 2016, Bounouara 2016, Bouafia
2017, Besseghier 2017, Bellifa 2017, Mouffoki 2017,
Khetir 2017). In the field of nanocomposite structures,
Vodenitcharova and Zhang (2006) studied bending of a
nanocomposite beam using the Airy stress-function method.
Large amplitude vibration behavior of nanocomposite
cylindrical shells was studied by Shen and Xiang (2012).
Rafiee and Moghadam (2012) studied the impact analysis of
nanocomposite plates using 3D finite element model.
Nonlinear buckling analysis of embedded polymeric
temperature-dependent FG-CNTRC microplates resting on
an elastic matrix as orthotropic temperature-dependent
elastomeric medium was investigated by Kolahchi et al.
(2015). Thomas and Roy (2015) studied vibration analysis
of FG- CNT-reinforced composite shell structures. Mehri et
al. (2016) studied the bifurcation and vibration responses of
a composite truncated conical shell with embedded
SWCNTs subjected to an external pressure and axial
compression simultaneously. Bayat et al. (2016) presented
nonlinear analysis of impact response of nanocomposites
cylindrical shells reinforced by SWCNTs as FG in thermal
environments. Safari Bilouei et al. (2016) investigated the
nonlinear buckling of straight concrete columns armed with
single-walled carbon nanotubes (SWCNTS) resting on
foundation. Kolahchi et al. (2016) investigated nonlinear
dynamic stability analysis of embedded temperature-
dependent viscoelastic plates reinforced carbon nanotubes.
Motezaker and Kolahchi et al. (2017) presented dynamic
analysis of a concrete pipes armed with SiO, nanoparticles
subjected to earthquake load. The structure is modeled with
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Fig. 1 Schematic figure of the pipe reinforced by SiO, nanoparticles conveying fluid

first order shear deformation theory (FSDT) of cylindrical
shells.

None of the above works have been studied the
instability of concrete pipes. In the present study, fluid
velocity analysis on the nonlinear instability of pipes
reinforced by SiO, nanoparticles is presented. The Mori-
Tanaka model is used in order to obtain the equivalent
material properties of the pipe considering agglomeration
effects. Based on the Reddy shell theory, the nonlinear
motion equations are obtained based on Hamilton’s
principal. DQM is applied for obtaining the frequency and
critical fluid velocity of the structure. The effects of the
volume percent and agglomeration of SiO, nanoparticles,
boundary conditions and geometrical parameters of the
pipes on the frequency and critical fluid velocity of the pipe
are shown.

2. Formulation

In Fig. 1, a pipe reinforced by SiO, nanoparticles
conveying fluid is shown. Agglomeration effects of SiO,
nanoparticles are considered.

2.1 Reddy theory

There are many new theories for modeling of different
structures. Some of the new theories have been used by
Tounsi and co-authors (Bessaim 2013, Bouderba 2013,
Belabed 2014, Ait Amar Meziane 2014, Zidi 2014, Hamidi
2015, Bourada 2015, Bousahla et al. 2016a, b, Beldjelili
2016, Boukhari 2016, Draiche 2016, Bellifa 2015, Attia
2015, Mahi 2015, Ait Yahia 2015, Bennoun 2016, El-Haina
2017, Menasria 2017, Chikh 2017).

Based on Reddy shell theory, the displacement field can
be expressed as (Reddy 1984)

u,(x,0,z,t)=u (x,6,t) + zy,(x,6,t)

3 (1a)
- %[%(x, o,t)+ % w (X, 9,t)),
u,(x,6,z,t) =v(x,6,t)+ zw,(x,6,t)
_;[V/g(x,e,t)ﬂ_\’ggw (X,@,t)j, (1b)
u,(x,6,z,t) =w(x,6,t), (1c)

where (uy, Uy, U;) denote the displacement components at an
arbitrary point (x,6,z) in the pipe, and (u,v,w) are the
displacement of a material point at (x, ) on the mid-plane
(i.e., z=0) of the pipe along the x-, 8-, and z-directions,
respectively; yy and y, are the rotations of the normal to the
mid-plane about 8- and x- directions, respectively. The von
Karmén strains associated with the above displacement
field can be expressed in the following form
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where (g4, €g9) are the normal strain components and (y,,,
Txas Vxg) are the shear strain components.

2.2 Stress-strain relations

The stress-strain relations based on Mori-Tanak model
can be written as follows (Mori and Tanaka 1973)

o, [k+m | k-m 0 0 O0](e,
Oy I n | 0 0 0]|&y,
O | _ k-=m | k+m 0 0 O0]|e&s, ™
O3 0 0 P 0 0]|rs
Oy, 0 0 0 m Oy,
op,) [ 0 0 0 0 0 pJire

where E, and v, are the Young’s modulus and the Poisson’s
ratio of pipe, respectively. In addition, k,m,n,l,pare the stress
components, the strain components and the stiffness
coefficients. According to the Mori-Tanaka method the
stiffness coefficients are given by
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p:

where the subscripts m and r stand for matrix and
reinforcement respectively. C, and C, are the volume
fractions of the matrix and the nanoparticles respectively
and ki, I, n,, p,, m, are the Hills elastic modulus for the
nanoparticles. Considering agglomeration effects of SiO,
nanoparticles, the elastic modulus (E) and poison’s ratio (v)
can be calculated as (Shi and Feng 2004)

9KG
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where the effective bulk modulus (K) and effective shear
modulus (G) are defiedn in Appendix.

2.3 Energy method

The strain energy can be written as
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where the stress resultant-displacement relations can be
written as
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The kinetic energy of system may be written as
p h/2 2 . \2
k=2 T PPy, s

The external work due to fluid can be written as

O O
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W = [ (Pagq )wdx, (19)

O ey

where (Wang and Ni 2009)
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where pp, and P are fluid mass and flow fluid pressure,
respectively; v, is the mean flow velocity.

The governing equations can be derived by Hamilton’s
principal as follows

(20)

j; (U — W — &K)dt =O. (1)

Substituting Egs. (12)-(19) into Eg. (21) vyields the
following governing equations
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Substituting stress relations into Egs. (13)-(17), the

stress resultant-displacement relations can be obtained as
follow
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3. DQM

These above governing equations are discetized using
DQM, so that they are solved considering the associated
boundary conditions to analyze the vibration and instability
of the viscose-fluid-conveying nano-composite pipe. The
DQM approximates the partial derivative of a function F
(representing u, v, W, vy and ), with respect to two spatial
variables (x and 6) at a given discrete point (x;, &), as a
weighted linear sum of the function values at all discrete
points chosen in the solution domain (0<x<L, 0<6<2z) with
NyxNy grid points along x and 6 axes, respectively. Then,
the n"-order partial derivative of F(x,6) with respect to x,
the m™-order partial derivative of F(x,) with respect to 6
and the (n+m)"-order partial derivative of F(x,) with
respect to both X and 6 is expressed discretely at the point
(%;, &) as (Kolahchi et al. 2016)
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In addition, the grid points are

X, :%{1—005[’\::_11]7:} i=1..N, (46)

0 - 22”{1 cos[Nl ‘_11};} i=1..N, (47)

4

The solution of the motion equations can be assumed as
follows

d(x,6,t) =d, (x, 0)e”, (48)

where [d]=[u v w l//y]T; w and t are the frequency and
time, respectively. Substituting Egs. (41)-(43) into the
governing equations yeilds

[K +Ko]+[Clo+[M]e?[d]=[0],  (49)

where [KL] and [Ky.] are respectively, linear and nonlinear
stiffness matrixes; [C] is damp matrix and [M] is the mass
matrix. For solving the Eqg. (49) and reducing it to the
standard form of eigenvalue problem, it is convenient to
rewrite Eq. (75) as the following first order variable as

{z}=1Al{zZ}, (50)

in which the state vector Z and state matrix [A] are defined

as
7= (,jd and
dd

[0] [1 1
[A] {—[Ml(KL +Ky)] —[M1Cﬂ’

where [0] and [I] are the zero and unitary matrices,
respectively. However, the frequencies obtained from the
solution of Eq. (49) are complex due to the damping existed
in the presence of the viscous fluid flow. Hence, the results
are containing two real and imaginary parts. The real part is
corresponding to the system damping, and the imaginary
part representing the system natural frequencies.
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4. Numerical results and discussion

In this section, the numerical results of nonlinear
vibration and instability of nanocomposite pipe conveying
fluid are presented. Here, Poly ethylene (PE) is selected for
the matrix which have constant Poisson’s ratios of v,=0.3
and Young moduli of E,=2 GPa. In addition, SiO2
nanoparticles are selected as reinforcements with Poisson’s
ratios of v,=0.2 and Young moduli of E,=66 GPa.

4.1 DQM convergence

The effect of the grid point number in DQM on the
imaginary and real parts of dimensionless frequency (
Q=al?/p/C, ) is demonstrated in Figs. 2 and 3 versus the

dimensionless fluid velocity (V =,/p0;/C,V,). As can be

seen, fast rate of convergence of the method are quite
evident and it is found that 15 DQ grid points can yield
accurate results.

4.2 The effects of different parameters

Figs. 4 and 5 show the effect of SiO, nanoparticles
volume percent on the imaginary and real parts of

6
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Fig. 4 SiO, nanoparticles volume percent effect on the
imaginary part of frequency
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Fig. 5 SiO, nanoparticles volume percent effect on the real
part of frequency

dimensionless eigenvalue. Noted that the imaginary and real
parts of dimensionless eigenvalue are dimensionless natural
frequency (Im(€)) and damping (Re(£2)), respectively. As
can be seen, with increasing the SiO, nanoparticles volume
percent, the frequency and critical fluid velocity will be
increased. It is due to the fact that the stiffness of pipes
increases with increasing the SiO, nanoparticles volume
percent. In addition, Im(Q2) decreases with increasing V,
while the Re(Q2) remains zero. These imply that the system
is stable. When the natural frequency becomes zero, critical
velocity is reached, which the system loses its stability due
to the divergence via a pitchfork bifurcation. Hence, the
Re(Q2) have the positive real parts, which the system
becomes unstable. In this state, both real and imaginary
parts of frequency become zero at the same point.
Therefore, with increasing flow velocity, system stability
decreases and became susceptible to buckling.

The effect of the SiO, nanoparticles agglomeration on
the dimensionless frequency and damping of the pipe with
respect to dimensionless flow velocity is shown in Figs. 6
and 7. It is observed that considering SiO, nanoparticles
agglomeration, decreases the dimensionless frequency and
critical fluid velocity of the pipe. This is due to the fact that
considering SiO, nanoparticles agglomeration leads to non-
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homogeneous structure.

The dimensionless frequency and damping of structure
versus dimensionless flow velocity are shown in Figs. 8 and
9 for different boundary conditions of CC, SC and SS. It
can be seen that the dimensionless frequency and critical
fluid velocity of the pipe for CC boundary condition are
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maximum since the rigidity and stiffness of structure for
this type of boundary condition are higher than those of two
other cases.

Figs. 10 and 11 indicate the dimensionless frequency
and damping of structure versus dimensionless flow
velocity for different pipe lengths. It can be seen that with
increasing the pipe length, the dimensionless frequency and
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damping of the structure are decreased. It is due to the fact
that with increasing the pipe length, the stiffness of system
decreases.

5. Conclusions

Fluid velocity analysis on the nonlinear vibration and
instability of the nanocomposite pipe conveying fluid was
presented in this study. The pipe was reinforced by SiO,
nanoparticles where the effective material properties were
determined by  Mori-Tanaka model  considering
agglomeration effects. Based on Reddy shell theory, the
motion equations were derived using energy method and
Hamilton’s principle. DQM was applied for obtaining the
frequency and critical fluid velocity of the structure so that
the effects of the SiO, nanoparticles volume percent and
agglomeration, boundary conditions and pipe length were
considered. Results indicate that considering SiO,
nanoparticles agglomeration decreases frequency and
critical fluid velocity of the pipe. Furthermore, with
increasing SiO, nanoparticles volume percent, the
frequency and critical fluid velocity of the pipe decrease. In
addition, the natural frequency and critical fluid velocity of
the pipe decrease with increasing pipe length. In addition,
the CC boundary condition lead to higher frequency and
critical fluid velocity with respect to other considered
boundary conditions.
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