
Computers and Concrete, Vol. 21, No. 1 (2018) 31-37 

DOI: https://doi.org/10.12989/cac.2018.21.1.031                                                                   31 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=cac&subpage=8                                      ISSN: 1598-8198 (Print), 1598-818X (Online) 

 

1. Introduction 
 

The circular and reinforced concrete pipe is a highly 

recommended product for construction of drainage systems, 

storm drains, culverts and even irrigation systems. This type 

of pipe shows good strength and performance properties 

and is also cost effective compared to other drainage 

construction materials. There are several reasons why the 

concrete pipe remains the most preferred in major 

applications. These include design life from 70 to 100 

years, cost-effective in the long run, high beam strength, 

lower maintenance requirements and much more affordable 

for very big projects. 

Flexural strength of self-compacting concrete with 

different amount of ZnO2 nanoparticles was investigated by 

Nazari and Riahi (2011). ZnO2 nanoparticles with the 

average particle size of 15 nm were added partially to self-

compacting concrete and flexural strength of the specimens 

has been measured. A new calculation method was 

developed by Zhu et al. (2013) based on these properties 

and an explicit iterative algorithm. The effects of two 

different types of SiO2 nanoparticles (N and M series) with 

different ratios on the workability and compressive strength 

of developed binary blended concretes cured in water and 

lime solution as two different curing media were studied by 

Najigivi et al. (2013). Potapov et al. (2013) used SiO2 

nanoparticles, introducing them as stable aqueous sols from 

hydrothermal solutions, to enhance the mechanical 

properties of concrete. Effects of magnetic water on 

different properties of cement paste including fluidity, 
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compressive strength, time of setting was studied by 

Khorshidi et al. (2014). A 100 mm-diameter split 

Hopkinson pressure bar (SHPB) was applied by Li et al 

(2016) to investigate effects of nanoparticles on the 

dynamic mechanical properties of recycled aggregate 

concrete (RAC) under impact loading. Ismael et al. (2016) 

developed aiming at analyzing the influence on the latter, 

and as a consequence on cracking, of nano-Al2O3 and nano-

SiO2 additions. The nano-SiO2 (NS) and nano-CaCO3 (NC) 

were incorporated to replace cement by mass of 1 and 2% 

in RACs. Palla et al. (2017) studied the effect of silica 

nanoparticles (SNPs) in high volume fly ash (40% 

replacement) cement paste, mortar and concrete. The 

content of SNPs (0.5-3.0%) was added by the weight of 

binder and w/b ratio (0.23, 0.25 & 3.0) was optimized in 

paste and mortar system. Recently, vibration and stability of 

concrete pipes reinforced with carbon nanotubes (CNTs) 

conveying fluid were presented by Zamani Nouri (2017). 

Due to the existence of CNTs, the structure was subjected to 

magnetic field. 

In this paper, the stability analysis of concrete pipes 

conveying fluid is presented for the first time. The concrete 

pipe is reinforced by Fe2O3 nanoparticles where the Mori-

Tanaka model is used for modeling and considering 

agglomeration effects. Based on FSDT, energy method and 

Hamilton's principle, the motion equations are derived and 

solved by an exact solution. The effects of the fluid, volume 

percent and agglomeration of Fe2O3 nanoparticles, magnetic 

field and geometrical parameters on the stability analysis of 

the structure are investigated.  

 

 

2. Mathematical modeling 
 

A fluid-conveying concrete pipe reinforced with Fe2O3  
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Abstract.  This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of 

cement, the Fe2O3 nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for 

obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete 

pipe-Fe2O3 nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is 

used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's 

principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration 

of Fe2O3 nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. 

Results show that considering the agglomeration of Fe2O3 nanoparticles, the critical fluid velocity of the concrete pipe is 

decreased. 
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Fig. 1 A fluid-conveying concrete pipe reinforced with 

Fe2O3 nanoparticles 

 

 

nanoparticles is shown in Fig. 1 where the agglomeration 

effect of Fe2O3 nanoparticles is considered.  

 

2.1 FSDT 
 

Based on FSDT shell theory, the displacement field can 

be expressed as (Brush and Almroth 1975) 

     , , , , , , , ,xu x z t u x t z x t      (1a) 

     , , , , , , , ,v x z t v x t z x t      (1b) 

   , , , , , ,w x z t w x t   (1c) 

where (u(x,ζ,z,t), v(x,ζ,z,t), w(x,ζ,z,t)) denote the 

displacement components at an arbitrary point (x,ζ,z) in the 

shell, and (u(x,ζ,t), v(x,ζ,t), w(x,ζ,t)) are the displacement of 

a material point at (x,ζ) on the mid-plane (i.e., z=0) of the 

shell along the x-, ζ-, and z-directions, respectively;
 
ϕx 

and 

ϕζ 
are the rotations of the normal to the mid-plane about x- 

and ζ- directions, respectively. Based on above relations, 

the strain-displacement equations may be written as 
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where (εxx, εζζ)
 
are the normal strain components and (γζz, 

γxz, γxζ) are the shear strain components. 

 

2.2 Energy method 
 

The potential energy can be written as 
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Combining of Eqs. (1)-(3) yields 
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(4) 

where the stress resultant-displacement relations can be 

written as 
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(7) 

In which k′ is shear correction coefficient. The kinetic 

energy of system may be written as 
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Defining the moments of inertia as below  
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the kinetic energy may be written as 
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The work done by the magnetic field can be written as 

(Agrawal et al. 2016) 
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where ε and Hx are magnetic permeability and magnetic 

field, respectively.  

The governing equation of the fluid can be described by 

the well-known Navier-Stokes equation as below (Baohui et 

al. 2012) 
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d
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where V≡(vz, vζ, vx) is the flow velocity vector in cylindrical 

coordinate system with components in longitudinal x, 

circumferential ζ and radial z directions. Also, P, μ and ρf 

are the pressure, the viscosity and the density of the fluid, 

respectively and Fbody denotes the body forces. In Navier-

Stokes equation, the total derivative operator with respect to 

tis 

.x z

d
v v v

dt t x R z




   
   
   

 (13) 

At the point of contact between the fluid and the core, 

the relative velocity and acceleration in the radial direction 

are equal. So  
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v

dt
  (14) 

By employing Eqs. (13) and (14) and substituting into 

Eq. (12), the pressure inside the pipe can be computed as 
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(15) 

By multiplying two sides of Eq. (16) in the inside area 

of the pipe (A), the radial force in the pipe is calculated as 

below 
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Finally, the external work due to the pressure of the fluid 

may be obtained as follows 
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Finally, applying Hamilton‟s principal, the motion 

equations can be derived as 
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2.3 Mori-Tanaka model 
 

Using Mori-Tanaka model, the matrix is assumed to be 

isotropic and elastic, with the Young‟s modulus Em and the 

Poisson‟s ratio υm. The experimental results show that the 

assumption of uniform dispersion for nanoparticles in the 

matrix is not correct and the most of nanoparticles are bent 

and centralized in one area of the matrix. These regions 

with concentrated nanoparticles are assumed to have 

spherical shapes, and are considered as „„inclusions‟‟ with 

different elastic properties from the surrounding material. 

The total volume Vr of nanoparticles can be divided into the 

following two parts (Shi and Feng 2004) 
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where inclusion
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rV  are the volumes of nanoparticles 

dispersed in the spherical inclusions and in the matrix, 

respectively. Introduce two parameters ξ and δ describe the 

agglomeration of nanoparticles 
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   

 
 

      

 (31) 

where χr, βr, δr, εr 
may be calculated as 

 

 

3
,

3

m m r r

r
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
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(32) 
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        

(33) 
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(35) 

where kr, lr, nr, pr, mr are the Hills elastic modulus; Km and 

Gm are the bulk and shear moduli of the matrix which can 

be written as 

 
,

3 1 2

m
m

m

E
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
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
 

(36) 

 
.

2 1

m
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
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(37) 

Furthermore, β, α
 
can be obtained from 
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

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 (40) 

Finally, the elastic modulus (E) and poison‟s ratio (υ) 

can be calculated as 

9
,

3

KG
E

K G



 (41) 

3 2
.

6 2

K G

K G






 (42) 

 

2.4 Final motion equations 
 

Substituting stress-strain relations from Hook‟s law into 

Eqs. (5)-(7), the stress resultant-displacement relations can 

be obtained as follow 

110 111 120 121 ,
yx

xx

u v
N A A A A

x x y y

   
   

   
 (43) 

120 121 220 221 ,
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yy

u v
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x x y y
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   

   
 (44) 

'

44 ,y y
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Q k A

y

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 (45) 

'

55 ,x x
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
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 (46) 
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where 
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
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(56) 

Substituting Eqs. (43)-(50) into Eqs. (17)-(21) yields the 

motion equations in terms of displacement.  

 

 

3. Solution 
 

Steady state solutions to the governing equations of the 

system motion and the electric potential distribution which 

relate to the simply supported boundary conditions and zero 

electric potential along the edges of the surface electrodes 

can be assumed as 

   
0( , , ) cos( )sin( ) ,i tn x m y

u x y t u e
L b

 
  (57) 
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Table 1 Validation of present work 

n Qu et al. (2013) Tang et al. (2016) Present 

1 0.016103 0.016101 0.016234 

2 0.009382 0.011225 0.011714 

3 0.022105 0.022310 0.024903 

4 0.042095 0.042139 0.044935 

5 0.068008 0.068024 0.070857 

6 0.099730 0.099738 0.102591 

7 0.137239 0.137240 0.140108 

8 0.180528 0.180530 0.183402 

9 0.229594 0.229596 0.232472 

10 0.284436 0.284439 0.287318 

 

 

0( , , ) sin( )cos( ) ,i tn x m y
v x y t v e

L b

 


 
(58) 

0( , y, ) sin( )sin( ) ,i tn x m y
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L b

 


 
(59) 

0( , , ) cos( )sin( ) ,i t

x x

n x m y
x y t e

L b

 
 

 
(60) 

0( , , ) sin( )cos( ) .i t

y y

n x m y
x y t e

L b

 
 

 
(61) 

 Substituting Eqs. (57)-(61) into motion equations 

yields 

011 12 13 14 15 16

021 22 23 24 25 26

031 32 33 34 35 36

041 42 43 44 45 46

051 52 53 54 55 56

61 62 63 64 65 66 0

0,
x

y
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vK K K K K K
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





  
  
  
  

  
  
  
  
    

 
(62) 

where Kij
 

are constants. Finally, for calculating the 

frequency of the system (ω), the determinant of matrix in 

Eq. (62) should be equal to zero. 

 

 

4. Result and dissection 
 

A computer program is prepared for the stability 

solution of concrete pipe reinforced with Fe2O3 

nanoparticles. The Fe2O3 nanoparticles have Yong's 

modulus of Er=160 GPa and Poisson‟s ratio of vr=0.3. In 

addition, the concrete pipe have Yong‟s modulus of Em=20 

GPa
 
and Poisson‟s ratio of vm=0.3. 

To the best author‟s knowledge, no similar publications 

for vibration and instability of FG-CNTRC pipes cannot 

found directly. However, the present work could be partially 

validated based on a simplified analysis suggested by Qu et 

al. (2013), Tang et al. (2016). However, vibration of simply 

supported classical cylindrical shells is investigated where 

the nonlinear terms in motion equations, fluid, elastomeric 

foundation, thermal gradient and SWCNTs as reinforcer are 

ignored. The structure parameters of the classical shell 

assumed as h/R=0.01, L/R=20, E=210 GPa, v=0.3, ρ=7850 

Kg/m
3
. A non-dimensional frequency is defined as. Table 3  

 

Fig. 2 The effect of Fe2O3 nanoparticles volume percent on 

the frequency of structure 

 

 

Fig. 3 The effect of Fe2O3 nanoparticles volume percent on 

the damping of structure 

 

 

illustrates the frequency of pipe for classical theory. As can 

be seen, the obtained results are close to those expressed in 

Qu et al. (2013), Tang et al. (2016), indicating validation of 

our work. It should be noted that a little difference between 

the results of other works and present work is due to the fact 

that in this study, Donnel classical shell theory is considered 

for validation while in other mentioned works, the Sanders 

classical shell theory is applied.  

Figs. 2 and 3 show the Fe2O3 nanoparticles volume 

percent on the frequency (Im(Ω)) and damping (Re(Ω)) of 

structure (  fC /11 ) versus flow velocity (

,/ 11 xf vCV  ) in the dimensionless form, respectively. As 

can be seen, Im(Ω)
 
decreases with increasing V, while the 

Re(Ω) remains zero. These imply that the system is stable. 

When the natural frequency becomes zero, critical velocity 

is reached, which the system loses its stability due to the 

divergence via a pitchfork bifurcation. Hence, the Eigen 

frequencies have the positive real parts, which the system 

becomes unstable. In this state, both real and imaginary 

parts of frequency become zero at the same point. 

Therefore, with increasing flow velocity, system stability 

decreases and became susceptible to buckling. Furthermore, 

increasing Fe2O3 nanoparticles yields to increases in the 

Im(Ω). This is because increasing the Fe2O3 nanoparticles 

volume percent implies stiffer structure. 
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Fig. 4 The effect of Fe2O3 nanoparticles agglomeration on 

the frequency of structure 

 

 

Fig. 5 The effect of Fe2O3 nanoparticles agglomeration on 

the damping of structure 

 

 

Fig. 6 The effect of magnetic field on the frequency of 

structure 

 

 

The agglomeration effects of Fe2O3 nanoparticles are 

shown in Figs. 4 and 5 on the dimensionless frequency and 

damping of concrete pipe. It can be seen that considering 

agglomeration effects, the frequency and critical fluid 

velocity are decreased. It is because with considering 

agglomeration effects, the stability of the structure 

decreases.  

In realizing the influence of magnetic field, Figs. 6 and 

7 show how dimensionless frequency and damping of 

 

Fig. 7 The effect of magnetic field on the damping of 

structure 

 

 

Fig. 8 The effect of length to thickness ratio on the 

frequency of structure 

 

 

Fig. 9 The effect of length to thickness ratio on the damping 

of structure 

 

 

concrete pipe changes with respect to dimensionless fluid 

velocity. It is found that from Fig. 4, the Im(Ω) and critical 

flow velocity for the structure increase with the increase of 

magnetic field. It is due to the fact that with increasing the 

magnetic field, the stiffness of structure increases. 

Figs. 8 and 9 illustrate the effect of length to thickness 

ratio (a/h) on the Im(Ω) and Re(Ω)
 
versus V, respectively. 

The results indicate that with increasing length to thickness 

ratio, the frequency and critical flow velocity of concrete 
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pipe are decreased. It is because with increasing length to 

thickness ratio, the stiffness of structure is decreased. 

 

 

5. Conclusions 
 

Stability analysis of a concrete pipe conveying fluid was 

studied in this work. Instead % of cement, the Fe2O3 

nanoparticles was used. The Mori-Tanaka model was 

applied for calculating the effective material properties of 

the structure considering agglomeration effects. Based on 

FSDT, energy method and Hamilton's principle, the motion 

equations were derived. Based on an exact solution, the 

frequency and critical fluid velocity of the structure were 

obtained. The effects of different parameters such as Fe2O3 

nanoparticles volume percent and agglomeration, magnetic 

field and length to thickness ration of the pipe were shown 

on the frequency and critical fluid velocity of the structure. 

The important findings of this work were: 

√ Increasing volume percent of Fe2O3 nanoparticles, 

increased frequency and critical fluid velocity. 

√ Considering agglomeration effects, the frequency and 

critical fluid velocity were decreased. 

√ With increasing flow velocity, system stability 

decreases and became susceptible to buckling. 

√ Applying the magnetic field to the structure leads to 

higher frequency and critical fluid velocity. 

√ With increasing length to thickness ratio, the 

frequency and critical fluid velocity of structure were 

decreased. 
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