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1. Introduction 
 

The eco-friendly sustainable concrete, as defined by 

Valipour et al. (2017), is produced through using natural 

and/or recyclable materials with less environmental 

destruction associated with improved sustainability in 

performance, environmental and economic aspects. The 

sustainability movement in the construction industry and 

the shortage of natural resources have driven the research 

and practice of green ecological concrete (Xiao et al. 2015). 

Besides saving natural resources, lower carbon footprint 

and improved structural and thermal performance are also 

considered a sustainability in concrete production (Haque et 

al. 2002, Jin et al. 2015). To achieve the sustainable 

concrete production, alternative or environmentally friendly 

materials such as supplementary cementitious materials 

(SCMs) and recycled aggregate could be added to concrete 

mixture design in addition to the conventional materials  
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(i.e., virgin aggregate, sand, Portland cement or PC, water, 

and chemical admixture).  

Both alternative and conventional materials in concrete 

mixture design could become independent variables that 

would affect concrete properties. Most previous studies in 

predicting mechanical properties of concrete (e.g., Hossain 

and Lachemi 2006, Saridemir et al. 2009, Topçu and Boğa 

2010, Atici 2011, Mastali et al. 2016) have not adopted a 

comprehensive list of mixture-design-based independent 

variables. Other studies (e.g., Yang et al. 2005, Bondar et al. 

2011, Limbachiya et al. 2012), due to limited experimental 

data, were unable to conduct a quantitative analysis on how 

the alternative cementitious or aggregate materials would 

affect the sustainability of concrete, or how to utilize the 

existing data to optimize the mechanical properties of 

concrete. To address this concern, a proper list of input 

parameters, as indicated by Biernacki and Gottapu (2015), 

need to be statistically significant in the estimation of 

concrete properties.   

Based on the earlier market survey by Jin et al. (2015) 

that focused on the U.S. sustainable concrete production, 

Portland limestone cement (PLC), Haydite lightweight 

aggregate (LWA), and fly ash Class F were adopted as 

alternative materials, which were used for the concrete 

mixture design in this study. Incorporating these selected 

alternatives or waste materials in sustainable concrete 

mixture design, and extending the earlier relevant study of 

mixture design for sustainable concrete (i.e., Tapali et al. 

2013), this study aimed to apply the newly developed 

advanced case-based reasoning (A-CBR) approach in 

concrete strength prediction. The A-CBR can be developed 
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in the following three processes (i.e., calculating the case 

similarity; improving the prediction accuracy; and 

optimizing the prediction model). The objectives of this 

study are: (i) to build the comprehensive case database from 

a holistic list of mixture-design-based independent input 

variables; (ii) to establish the A-CBR approach by 

integrating the CBR, MRA, ANN, SVM, and generic 

algorithm; (iii) to obtain the prediction results using an A-

CBR approach for both compressive and tensile strength of 

sustainable concrete; and (iv) to compare the prediction 

accuracy using an A-CBR to other existing approach (i.e., 

basic CBR, MRA, ANN, and SVM). This study contributes 

to previous research in concrete sustainability and property 

analysis by: (i) introducing the alternative A-CBR approach 

in the concrete property studies starting from strength 

prediction work based on sustainable concrete mixture; (ii) 

initiating future research directions in durability of 

sustainable concrete by using an A-CBR; and (iii) 

optimizing materials usage in mixture design to achieve 

maximum targeted performance of concrete containing 

environmentally friendly materials. 

 

 

2. Background 
 

2.1 Sustainability movement in concrete production 
 

Concrete, as the most widely used construction material 
worldwide, its production and consumption has raised 
environmental concerns (Benhelal et al. 2013, Henry and 
Kato 2014, Yang et al. 2015). Concrete materials, including 
PC and natural aggregate, their manufacturing or processing 
process are either being energy-intensive, emitting 
greenhouse gas, or causing depletion of natural resources 
(Langer and Arbogast 2002, Bentz 2010, Bondar et al. 
2011, Tapali et al. 2013, Shafigh et al. 2016). Researchers 
have been exploring environmentally friendly concrete 
materials as partial replacements to traditional PC or 
aggregate in concrete mixture design, for example, recycled 
mineral admixture applied in lightweight aggregate concrete 
studied by Wang et al. (2012), coarse aggregate made of 
waste streams from oil palm shells joint with high volume 
fly ash in concrete mixture conducted by Shafigh et al. 
(2016), and green concrete composites consisting of waste 
carpet fibres and palm oil fuel ash in the study of 
Mohammadhosseini et al. (2017b). Studying the 
engineering properties of sustainable concrete containing 
environmentally friendly materials has been undergoing 
continuous movement in recent years, such as the 
compressive strength and elastic modulus of recycled 
aggregate concrete studied by Duan and Poon (2014), the 
compressive strength of hydraulic lime-pozzolan concrete 
tested by Grist et al. (2015), and mechanical properties of 
recycled lightweight expanded clay aggregate concrete 
evaluated by Bogas et al. (2015). Similar studies of 
sustainable concrete can be found from various other cases 
(e.g., Guo et al. 2015, Farahani et al. 2017, 
Mohammadhosseini et al. 2017a). 

 

2.2 Existing modeling approach in estimating 
concrete properties 
 

Several analytical and modeling approaches to 

predicting the mechanical properties of concrete (e.g., 

compressive and tensile strength) have been developed by 

multiple researchers in the concrete field. These modeling 

methods can be categorized as multiple regression analysis 

(Yeh 1998, Deepa et al. 2010, Kandasamy and Akila 2015, 

Mastali et al. 2016), fuzzy logic or FL (Demir 2005, 

Saridemir et al. 2009), support vector machine or SVM 

(Juncai et al. 2015, Abd and Abd 2017), genetic algorithm 

(Erdogan and Bakir 2013), as well as data mining including 

artificial neural network or ANN (Ni and Wang 2000, Atici 

2011, Duan and Poon 2014), as well as decision tree or DT 

(Chou et al. 2011, Omran et al. 2016). All of these existing 

methods have their own limitations in predicting the 

mechanical properties of concrete. For instance, MRA 

achieves the results through statistical approach. However, 

the results could be too linear for being applied in a 

standardized model (Phaobunjong 2002, Lowe et al. 2006). 

The application of FL in predicting concrete properties 

would be complicated as the number of variables increases 

(Demir 2005). Yan et al. (2003) reported that SVM could 

resolve practical problems such as nonlinearity and high-

dimensional space. However, its prediction accuracy could 

decrease when data structures become complicated because 

it is based on statistical learning theory. ANN, on the other 

hand, can usually achieve higher accuracy in prediction, but 

it is a ‘black box’ that could not explain the model structure 

(Attalla and Hegazy 2003, Rifat 2004). Finally, although 

DT is easy to understand and simple to implement, its 

prediction accuracy could decrease when independent 

variables become complicated (Sheng et al. 2000, Müller 

and Wiederhold 2002). 

 
2.3 Advanced case-based reasoning approach 

 
An A-CBR has the potential of achieving superior 

performance in predicting concrete properties compared to 

the aforementioned existing methods, as indicated by a few 

recent studies conducted in other fields, such as cost 

estimation in Dogan et al. (2006) and Koo et al. (2011), 

building energy management in Koo et al. (2014b), natural 

resource potential in Koo et al. (2013), and infrastructure 

management in Koo et al. (2014a). However, there has been 

limited studies so far in applying an A-CBR approach to the 

prediction of the mechanical properties of concrete. It has 

not been well understood whether an A-CBR approach, as 

the integrated methodology in predicting the mechanical 

properties of concrete, would outperform other existing 

methods. Therefore, it still needs to be explored whether an 

A-CBR approach could serve as an alternative prediction 

method that can complement the current modeling 

approach. In addition, for the first time, this study attempted 

to improve the prediction accuracy by integrating the SVM 

model as well as the MRA and ANN models used in the 

previous studies using an A-CBR approach. 

 

 
3. Materials and methods 

 
3.1 Experimental programme 
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Table 1 Mill test reports of cementitious materials used in 

this study 

Cementitious 

material 
SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO(%) MgO(%) SO3 (%) Alkalis (%) 

PC 20.1 5.0 3.3 63.2 2.4 2.6 0.56 

PLC 18.4 4.6 3.0 59.9 2.9 3.6 0.65 

Fly ash Class F 43.7 21.0 23.8 5.0 1.0 1.7 1.97 

 

Table 2 Dry densities and fineness modulus of aggregates 

used in this study  

Type of aggregate 
*Loose bulk dry 

density(kg/m3) 

*Oven dry 

density(kg/m3) 
Fineness modulus 

Pea gravel 1,600 2,643 6.01 

Haydite LWA at size B 673 1,300 5.39 

Brown sand 1,600 2,611 2.48 

*The Loose bulk dry density: provided by the supplier; 

Oven dry density: defined by ASTM C127-04 and ASTM 

C128-07 

 

 

Fig. 1 Experimental design of 36 concrete batches 

 

 

3.1.1 Experimental materials 
In this study, PLC type general use cement was selected 

as the alternative cementitious material. To achieve lower 

carbon footprint, the PLC was mixed with 12% limestone as 

calculated by the method in ASTM C150-05. The 

conventional PC Type I/II was used as the experimental 

control group. Fly ash Class F was chosen as the SCM to 

partly substitute PC or PLC by weight for further 

improvement of concrete sustainability. Table 1 shows the 

mill test reports provided by suppliers on three types of 

cementitious materials.   

Pea gravel with the maximum size of 10 mm was 

selected as the natural coarse aggregate (CA) in this study. 

Haydite LWA at size B, with the similar size as pea gravel, 

was used as the alternative CA to partly replace pea gravel 

by volume. Haydite LWA was evaluated as sustainable 

concrete material according to Jin et al. (2015) and Omran 

et al. (2016). Brown sand, the locally available natural 

resource, was chosen as the fine aggregate in the concrete 

mixture. Table 2 shows the dry densities and fineness 

modulus of aggregates (e.g., Pea gravel, Haydite LWA at 

size B, and brown sand). 

Haydite LWA has internal voids with much lower 

density compared to the pea gravel. To prevent the slump 

loss of concrete containing Haydite LWA, all Haydite LWA 

were pre-saturated with water and then drained by strictly 

following the guideline provided by the supplier. The 

internally absorbed moisture within Haydite LWA was not 

included in the calculation of water-to-cementitious 

material (w/c) ratio. Instead, the absorbed moisture in the 

internal voids of Haydite LWA could contribute to the 

cement secondary hydration after concrete initial set  

Table 3 Tasks involved in the concrete mixing and strength 

tests  

Tasks Equipment/tools Guideline 

Making, pouring and curing 

concrete 

102 mm×204 mm (or 4”×8”) 

single-use cylinder plastic molds, 

tamping rod 

ASTM C31/C31M–06 (34) 

Compressive strength test Testing machine (Humboldt) ASTM C39/C39–05 (35) 

Tensile strength test  

(split cylinder) 
Testing machine (Humboldt) ASTM C496 (36) 

 

Table 4 Factors affecting the concrete compressive strength 

and tensile strength 

Variables Attributes Units 

Independent 

variable 

Concrete age X1 ( ) days 

Water X2 ( ) kg/m3 

Portland cement X3 ( ) kg/m3 

Portland limestone cement X4 ( ) kg/m3 

Fly ash X5 ( ) kg/m3 

Sand X6 ( ) kg/m3 

Coarse aggregate X7 ( ) kg/m3 

Haydite Lightweight aggregate X8 ( ) kg/m3 

Air entraining-admixture X9 ( ) ml/m3 

Dependent variable 

Compressive strength Y1 ( ) Mpa 

Tensile strength Y2 ( ) Mpa 

 

 

through internal curing. 
Micro Air® , the air-entraining admixture (AEA), was 

used in this study to provide air bubbles and increase air 
content to 6-7% for concrete containing Haydite LWA, as 
suggested by the Haydite supplier. Air content equal to 6% 
or 7.5% was suggested by ACI 318-0843 for concrete with 
a nominal maximum aggregate size of 10 mm and exposed 
to freezing and thawing. 
 

3.1.2 Experimental design 
The absolute volume method was adopted in this study 

to design the mixture of concrete following ACI 211.2.44. 

To study the joint effects of PLC, fly ash Class F, and 

Haydite LWA on concrete properties, totally 36 batches of 

concrete mixture were designed as illustrated in Fig. 1. 

As displayed in Fig. 1, two different types of w/c ratios 

were defined in the experimental trial for both PC and PLC 

concrete. Fly ash was used to substitute PC or PLC at rates 

from 0% to as high as 40%. Similarly, Haydite LWA was 

added to replace pea gravel at substitution rates of 0%, 

33%, and 67%. Tasks involved in this experimental study 

including making, pouring and curing of concrete, as well 

as strength tests of specimen are listed in Table 3. 

All casted cylinders were air-cured at a constant 

temperature of 23 °C in the laboratory and the compressive 

and split tensile strength were tested at four different curing 

ages (i.e., Day 3, Day 7, Day 28, and Day 90).  
 

3.1.3 Design variables in the mixture of concrete 
Continuing from previous studies, including those of 

Saridemir et al. (2009), Chou et al. (2011), Erdal et al. 
(2013), and Omran et al. (2016), where the numerical 
values of materials within concrete mixture design were 

Batch

w/c=0.40

w/c=0.65

PC

PLC

0% Fly Ash

20% Fly Ash

30% or 40% Fly Ash

0% Haydite

33% Haydite

67% Haydite
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chosen as independent variables for the prediction of 
concrete strength, this research adopted a comprehensive 
list of concrete materials plus the concrete curing age as 
independent variables. All the nine independent variables 
are listed in Table 4. 

Except the curing age, which was measured by days, all 

other independent variables listed in Table 4 were based on 

the amount of each material consumed per m3 of concrete 

produced. For example, the unit of Haydite LWA is based 

on the weight of Haydite of (kg/m3) used in concrete 

mixture design, and AEA is measured by the amount of air 

entrainment measured in millilitre. 

 

3.2 Development of an advanced case-based 
reasoning model 
 

This study attempted to apply the newly developed A-

CBR approach in predicting the compressive and tensile 

strength of sustainable concrete. The A-CBR model could 

not only be superior to the existing methodologies (e.g., 

ANN and SVM) in terms of prediction accuracy, but also 

provide the retrieved historical-cases as references, which is 

the advantage of the basic CBR model displayed in studies 

from Koo et al. (2011), Koo et al. (2013), Koo et al. 

(2014a), and Koo et al. (2014b). The A-CBR model can be 

developed in three steps: (i) Step 1: selecting the similar 

cases; (ii) Step 2: filtering the selected cases; and (iii) Step 

3: improving the prediction accuracy. 

 

3.2.1 Step 1: Selecting the similar cases 
As the first step of the basic CBR approach, the case 

similarity should be calculated by summing up the weighted 

attribute similarity, which can be expressed with the basic 

matrix operation (refer to Eq. (1)). 

(

𝑓𝐴𝑆11 ⋯ 𝑓𝐴𝑆1𝑛
⋮ ∙ ⋮

𝑓𝐴𝑆𝑚1
⋯ 𝑓𝐴𝑆𝑚𝑛

)(

𝑓𝐴𝑊1
⋮

𝑓𝐴𝑊𝑛

) = (

𝑓𝐶𝑆
⋮

𝑓𝐶𝑆𝑚

) (1) 

where, fAS stands for the function for calculating the 

attribute similarity; fAW stands for the function for 

calculating the attribute weight; fCS stands for the function 

for calculating the case similarity; m stands for the number 

of cases; and n stands for the number of attributes. 

For the consistency of the attribute weight in the basic 

CBR model, the actual values of independent and 

dependent variables should be converted to the standardized 

values within the range of 0 to 1 (refer to Eq. (2)). 

minmax

min

AVAV

AVAV
SV




  (1) 

where, SV stands for the standardized value for the actual 

value (AV) (which is dimensionless); AVmin stands for the 

minimum value of the AV; and AVmax stands for the 

maximum value of the AV. 

Similar cases can be retrieved based on the case 

similarity, which can be determined using attribute 

similarity and attribute weight (refer to Eq. (3)). First, if the 

scale of a given attribute is defined as a continuous scale, 

the attribute similarity can be calculated using Eq. (4). If the 

attribute similarity is determined to be higher than the 

minimum criterion for scoring the attribute similarity 

(MCAS), it can be valid; otherwise, it should be set at zero. 

In this way, as the MCAS has an effect on the attribute 

similarity, the case similarity, and the prediction accuracy of 

the basic CBR model, it should be determined through the 

optimization process using a genetic algorithm (GA). Thus, 

the MCAS was determined to be set as adjustable parameter 

in the optimization process. For example, in the case of the 

air entraining-admixture (one of the design variables in 

Table 4), the attribute similarity between the case No.127 

(137 ml/m3) and the case No.120 (148 ml/m3) can be 

determined at 91.97% (refer to Eq. (4)). As shown in 

Section 4.1.2, if the MCAS of the air entraining-admixture 

would be set at 33.09% through the optimization process 

(refer to Table 6), the attribute similarity score can be 

accepted. Conversely, if the MCAS would be set at more 

than 91.97% (e.g., 92%), the attribute similarity score could 

be set at zero. 

Second, as the attribute weight can not only affect the 

case similarity, but also the prediction accuracy of the basic 

CBR model, it should be determined via the optimization 

process using a GA. Thus, the range of the attribute weight 

(RAW) was determined to be set as adjustable parameter in 

the optimization process. For example, the procedure for 

calculating the case similarity between the case No.127 and 

the case No.120 is as follows. As shown in Section 4.1.2, if 

the RAW of the air entraining-admixture would be set at 

1.53% through the optimization process (refer to Table 6), 

the weighted attribute similarity can be determined at 

1.407% (=91.97% of attribute similarity×1.53% of attribute 

weight) (refer to Eq. (3)). Similarly, all of the weighted 

attribute similarity can be calculated. Finally, the case 

similarity between the case No.127 and the case No.120 can 

be determined at 91.39% (refer to Table 9). 
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(4) 

where, fCS stands for the function for calculating the case 

similarity; fAW stands for the function for calculating the 

attribute weight; fAS stands for the function for calculating 

the attribute similarity; m stands for the number of cases; n 

stands for the number of attributes; SVTC stands for the 

standardized value of a certain attribute in a test case; SVRC 

stands for the standardized value of a certain attribute in a 

retrieved case; and fMCAS stands for the function for 

calculating the MCAS. 

 

3.2.2 Step 2: Filtering the selected cases 
For improving the prediction accuracy of the basic CBR 
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model established in Section 3.2.1, the selected cases 

should be thoroughly reviewed once again with the filtering 

engine, which can be developed by integrating the predicted 

values from the MRA, ANN, and SVM models. As the first 

attempt, this study investigates how the SVM model affects 

the improvement of the prediction accuracy in an A-CBR 

approach. First, based on the predicted values by model, the 

mean absolute percentage error (MAPE) and prediction 

accuracy by model (i.e., MRA, ANN, and SVM) can be 

calculated using Eqs. (5) and (6), respectively. 

100
1

1














 
 

 mSV

PVSV
f

m

i i

i

MAPE

 
(5) 

MAPEPA ff 100  (6) 

where, fMAPE stands for the function for calculating the 

MAPE; SV stands for the standardized value of dependent 

variable; PV stands for the predicted value of dependent 

variable; m stands for the number of cases; and fPA stands 

for the function for calculating the prediction accuracy. 

Second, using the MAPE by a model (i.e., MRA, ANN, 

and SVM), the predicted range for a given model (i.e., 

PRMRA, PRANN, and PRSVM) can be established (refer 

to Eqs. (7)-(9)). Thereafter, the filtering engine can be 

determined by considering the predicted ranges of models 

(refer to Eqs. (10)-(15)). That is, the predicted ranges of 

models can be used to determine the cross-range between 

the predicted values of the models (e.g., the cross-range 

between the predicted values of the SVM and ANN models 

(CRSA), refer to Eq. (14)). In addition, the tolerance range 

of CRSA (TRCRSA) can be used to find the filtering engine 

(refer to Eq. (15)). In this way, as the TRCRSA can affect 

the filtering engine that is closely related to the prediction 

accuracy of the basic CBR model, it should be determined 

via the optimization process using a GA. Thus, the 

TRCRSA was determined to be set as adjustable parameter 

in the optimization process. 
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(9) 

where, PRMRA stands for the predicted range of the MRA 

model; PVMRA stands for the predicted value of the MRA 

model; MAPEMRA stands for the MAPE of the MRA model; 

PRANN stands for the predicted range of the ANN model; 

PVANN stands for the predicted value of the ANN model; 

MAPEANN stands for the MAPE of the ANN model; PRSVM 

stands for the predicted range of the SVM model; PVSVM 

stands for the predicted value of the SVM model; and 

MAPESVM stands for the MAPE of the SVM model. 
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where, CRMA stands for the cross-range between the 

predicted values of the MRA and ANN models; TRCRMA 

stands for the tolerance range of CRMA; CRMA* stands for 

the filtering range in which TRCRMA is applied to CRMA; 

CRMS stands for the cross-range between the predicted 

values of the MRA and SVM models; TRCRMS stands for 

the tolerance range of CRMS; CRMS* stands for the 

filtering range in which TRCRMS is applied to CRMS; 

CRSA stands for the cross-range between the predicted 

values of the SVM and ANN models; TRCRSA stands for 

the tolerance range of CRSA; and CRSA* stands for the 

filtering range in which TRCRSA is applied to CRSA. 

For example, the procedure for calculating the CRSA* 

for the case No.127 is as follows. 

• First, using the ANN model, the predicted compressive 

strength of the case No.127 (PVANN) would be determined at 

58.085. The MAPE of the ANN model (MAPEANN) would 

be determined at 4.02% (refer to Table 5). Thus, the 

predicted range of the ANN model (PRANN) would be 

determined within the range of 55.753 (=58.085×(1-

0.0402)) to 60.417 (=58.085×(1+0.0402)) (refer to Eq. (8)). 

• Second, using the SVM model, the predicted 

compressive strength of the case No.127 (PVSVM) would be 

determined at 59.645. The MAPE of the SVM model 

(MAPESVM) would be determined at 6.89% (refer to Table 

5). Thus, the predicted range of the SVM model (PRSVM) 

would be determined within the range of 55.534 

(=59.645×(1-0.0689)) to 63.756 (=59.645×(1+0.0689)) 

(refer to Eq. (9)). 

• Third, based on the predicted range of the ANN model 

(PRANN) and the predicted range of the SVM model (PRSVM), 

the CRSA would be determined within the range of 

55.753(=Max (55.534, 55.753)) to 60.417(=Min (63.756, 

60.417)) (refer to Eq. (14)).  

+optimization process (refer to Table 6); and thus, 

CRSA* would be determined within the range of52.268 

(=55.753×(1-0.0625)) to 64.193 (=60.417×(1+0.0625)) 

(refer to Eq. (15)). 

 
3.2.3 Step 2: Filtering the selected cases 
In developing the A-CBR model, various adjustable 

parameters should be established in the optimization 

process so that the prediction accuracy of the A-CBR model 

can be improved. As mentioned in the previous Sections, 

this study established three kinds of adjustable parameters 

in the optimization process: (i) MCAS; (ii) RAW; and (iii) 

TRCRMA/TRCRMS/TRCRSA. The first two parameters 

should be considered in calculating the case similarity (refer 

to Eqs. (3) and (4)), and the third parameter should be 

considered in establishing the filtering engine (refer to Eqs. 

649



 

Choongwan Koo, Ruoyu Jin, Bo Li, Seung Hyun Cha, and Dariusz Wanatowski 

Table 5 Comparison of the prediction accuracy and standard 

deviation by estimation model 

Classification Type of estimation model 
Prediction 

accuracy 

Standard 

deviation 

Compressive Strength 

Basic *CBR model 79.029 9.581 

*MRA model 88.338 8.331 

*ANN model 95.985 4.056 

*SVM model 93.107 7.300 

*A-CBR model (MRA&ANN) 94.531 3.078 

A-CBR model (MRA&SVM) 93.623 6.513 

A-CBR model (SVM &ANN) 95.214 3.059 

Tensile Strength 

Basic CBR model 83.211 11.565 

MRA model 87.187 
10.805 

 

ANN model 91.384 6.602 

SVM model 87.443 10.509 

A-CBR model (MRA&ANN) 91.427 4.667 

A-CBR model (MRA&SVM) 90.763 6.408 

A-CBR model (SVM &ANN) 92.448 6.083 

*CBR: the case-based reasoning; MRA: the multiple 

regression analysis; SVM: the support vector machine; 

ANN: the artificial neural network; A-CBR: the advanced 

case-based reasoning 

 

 

(7)-(15)). Furthermore, since the basic CBR model provides 

the predicted results with the retrieved historical-cases as 

references, the number of retrieved cases should be 

determined in the optimization process. Thus, the range of 

case selection (RCS) was also determined to be set as 

adjustable parameter in the optimization process. As a 

result, a total of four adjustable parameters were set in the 

optimization process using a GA. The GA, a representative 

search algorithm, is generally used to find the optimal 

solution from a number of possible combinations of the 

adjustable parameters. The software program ‘Evolver’ was 

adopted to develop the optimization process. 

• Adjustable parameter (i) – MCAS: To calculate the 

attribute similarity, MCAS was set as adjustable parameter 

within the range of 0-100% in a GA (refer to Section 3.2.1). 

• Adjustable parameter (ii) – RAW: To determine the 

attribute weight, RAW was set as adjustable parameter 

within the range of 0-100% in a GA (refer to Section 3.2.1). 

• Adjustable parameter (iii) – 

TRCRMA/TRCRMS/TRCRSA: To determine the filtering 

engine, TRCRMA/TRCRMS/TRCRSA were set as 

adjustable parameter within the range of 0-100% in a GA 

(refer to Section 3.2.2). 

• Adjustable parameter (iv) – RCS: To determine the 

number of retrieved cases, RCS was set as adjustable 

parameter within the range of 0-100% in a GA (refer to 

Section 3.2.3). 

 

 

4. Results and discussion 
 

This study developed an A-CBR modeling approach to 

estimating the compressive and tensile strength of 

sustainable concrete. First, the feasibility of the developed 

A-CBR model was validated. Next, a case study was 

conducted to illustrate the detailed estimation process for 

the strength of sustainable concrete using the developed A-

CBR model, in which the case No.127 was used. 
 

4.1 Validation of the feasibility of the developed A-
CBR model 
 

4.1.1 A comparison of the prediction accuracy by 

estimation model 
To validate the prediction accuracy of the A-CBR 

model, it was compared with those of other methodologies 

often used in the previous studies (i.e., the basic CBR, 

MRA, ANN, and SVM models).  

Table 5 shows the comparison of the prediction accuracy 

and standard deviation by estimation model. 

• For compressive strength: The prediction accuracy and 

standard deviation of the A-CBR (SVM&ANN) model 

were superior to those of other A-CBR models (i.e., A-CBR 

(MRA&ANN) and A-CBR (MRA&SVM) models). 

Namely, the prediction accuracy and standard deviation of 

the A-CBR (SVM&ANN) model were determined to be the 

best (95.214% and 3.059%, 1st), followed by those of the A-

CBR (MRA&ANN) model (94.531% and 3.078%, ranked 

2nd) and the A-CBR (MRA&SVM) model (93.623% and 

6.513%, ranked 3rd). Furthermore, the prediction accuracy 

and standard deviation of the A-CBR (SVM&ANN) model 

were superior to those of other conventional approaches 

(i.e., the basic CBR, MRA, ANN, and SVM). Even if the 

prediction accuracy of the A-CBR (SVM&ANN) model 

appeared to be a little bit lower than that of the ANN model, 

its prediction accuracy was good enough to accurately 

estimate the compressive strength. Furthermore, the 

difference between these two models was extremely small. 
• For tensile strength: The prediction accuracy and 

standard deviation of the A-CBR (SVM&ANN) model 
were superior to those of other A-CBR models (i.e., A-CBR 
(MRA&ANN) and A-CBR (MRA&SVM) models). 
Namely, the prediction accuracy and standard deviation of 
the A-CBR (SVM&ANN) model were determined to be the 
best (92.448% and 6.083%, 1st), followed by those of the A-
CBR (MRA&ANN) model (91.427% and 4.667%, ranked 
2nd) and the A-CBR (MRA&SVM) model (90.763% and 
6.408%, ranked 3rd). Furthermore, the prediction accuracy 
and standard deviation of the A-CBR (SVM&ANN) model 
were superior to those of other conventional approaches 
(i.e., the basic CBR, MRA, ANN, and SVM). 

In conclusion, it was determined that the A-CBR model 
can be properly used for retrieving similar cases from the 
case database. Consequently, the cases retrieved by the A-
CBR model can be used to estimate the compressive and 
tensile strength of sustainable concrete in the early 
construction phase. Meanwhile, the A-CBR (SVM&ANN) 
model was proven to be superior to other A-CBR models 
(i.e., A-CBR (MRA&ANN) and A-CBR (MRA&SVM) 
models. It indicates that the higher prediction accuracy of 
the A-CBR model could be expected if more accurate 
models (i.e., ANN and SVM) were used to develop the 
filtering engine in the A-CBR model. 

 

4.1.2 Optimized values of the adjustable parameters 
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Table 6 The optimized values of the adjustable parameters 

in estimating the compressive strength 

Classification 
A-CBR 

(MRA&ANN) 

A-CBR 

(MRA&SVM) 

A-CBR 

(SVM&ANN) 

MCAS 39.41 62.30 33.09 

RAW 

Concrete age 0.00 0.00 0.00 

Water 58.43 0.00 2.54 

Portland cement (PC) 37.89 98.87 88.84 

Portland limestone cement 

(LC) 
53.78 54.40 89.90 

Fly ash 46.81 74.13 18.35 

Sand 63.50 85.56 99.50 

Coarse aggregate (CA) 40.39 46.03 96.08 

Lightweight aggregate (LWA) 0.00 40.46 30.68 

Air entraining-admixture 

(AEA) 
47.83 7.19 1.53 

RCS 12.00 6.00 19.00 

TRCRMA/TRCRMS/TRCRSA 9.19 9.13 6.25 

 

Table 7 The optimized values of the adjustable parameters 

in estimating the tensile strength 

Classification 
A-CBR 

(MRA&ANN) 

A-CBR 

(MRA&SVM) 

A-CBR 

(SVM&ANN) 

MCAS 37.74 28.38 85.60 

RAW 

Concrete age 1.00 41.37 97.46 

Water 98.91 74.36 0.00 

Portland cement (PC) 64.71 75.51 13.47 

Portland limestone cement 

(LC) 
38.56 87.05 85.93 

Fly ash 0.00 4.63 0.00 

Sand 19.74 1.00 3.81 

Coarse aggregate (CA) 16.88 0.00 0.00 

Lightweight aggregate (LWA) 1.56 0.00 0.00 

Air entraining-admixture 

(AEA) 
1.00 6.44 0.00 

RCS 7.00 3.00 2.00 

TRCRMA/TRCRMS/TRCRSA 6.48 13.43 13.80 

 

 

As mentioned in Section 4.1.1, the prediction accuracy 

of the A-CBR model was superior to the basic CBR model. 

When four kinds of the adjustable parameters (i.e., MCAS, 

RAW, RCS, and TRCRMA/TRCRMS/TRCRSA) were 

applied to the filtering engine through the optimization 

process of the A-CBR model, its prediction accuracy was 

determined to be the highest (i.e., for estimating the 

compressive and tensile strength, 95.214% and 92.448% of 

the A-CBR (SVM&ANN) model, respectively) (refer to 

Table 5). 

Table 6 and Table 7 show the optimized values of the 

adjustable parameters that were determined in the 

optimization process of the A-CBR model for estimating 

the compressive and tensile strength, respectively. It was 

shown that the optimized values of the adjustable 

parameters were determined very differently, which 

indicates that the filtering engine and the optimization 

process in the A-CBR model should be applied to overcome 

the disadvantage of the basic CBR model (i.e., relatively 

lower prediction accuracy than other conventional  

Table 8 Design variables for the mixture of concrete and the 

relevant strength of the case No.127 

Classification Value 

(Independent Variables) Design variables for the mixture of concrete 

Concrete age 90 (days) 

Water 215 (kg/m3) 

Portland cement 520 (kg/m3) 

Portland limestone cement 0 (kg/m3) 

Fly ash 0 (kg/m3) 

Sand 751 (kg/m3) 

Coarse aggregate 246 (kg/m3) 

Lightweight aggregate 243 (kg/m3) 

Air entraining-admixture 137 (ml/m3) 

(Dependent Variables) Strength of concrete 

Compressive strength 59.172 (Mpa) 

Tensile strength 0.049 (Mpa) 

 
Table 9 Summary of the retrieved similar cases using the A-

CBR models for the concrete compressive and tensile 

strength of the case No.127 

Classification Type of model Case 
Case 

No. 

Case similarity 

score (%) 

Strength 

(Mpa) 

Prediction 

accuracy(%) 

Compressive strength 

(CS) 

 

For the case No.127, 

CS: 59.172 (Mpa) 

A-CBR 

(MRA&ANN) 

*RC 1 92 99.99 53.931 91.14 

RC 2 79 86.77 56.552 95.57 

RC 3 120 86.77 63.379 92.89 

RC 4 121 86.02 62.207 94.87 

RC 5 91 86.02 51.448 86.95 

RC 6 115 82.83 54.552 92.19 

A-CBR 

(MRA&SVM) 

RC 1 92 99.99 53.931 91.14 

RC 2 79 78.59 56.552 95.57 

RC 3 120 78.59 63.379 92.89 

A-CBR 

(SVM&ANN) 

RC 1 92 99.99 53.931 91.14 

RC 2 115 99.21 54.552 92.19 

RC 3 134 99.01 52.621 88.93 

RC 4 120 91.33 63.379 92.89 

RC 5 79 91.33 56.552 95.57 

RC 6 119 90.39 54.414 91.96 

RC 7 125 90.11 58.207 98.37 

Tensile 

strength (TS) 

 

For the case No.127, 

TS: 4.069 (Mpa) 

A-CBR 

(MRA&ANN) 

RC 1 115 94.94 4.759 83.05 

RC 2 121 93.95 4.354 93.22 

RC 3 120 93.43 4.414 91.53 

RC 4 125 92.95 4.138 98.30 

RC 5 119 87.81 4.414 91.53 

A-CBR 

(MRA&SVM) 

RC 1 120 99.25 4.414 91.53 

RC 2 121 97.36 4.354 93.22 

RC 3 125 95.08 4.138 98.30 

A-CBR 

(SVM&ANN) 
RC 1 121 99.71 4.354 93.22 

*RC stands for the retrieved case by using the A-CBR 

model 
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methodologies). As a result, it was determined that the A-

CBR model can not only have the higher prediction 

accuracy that is the advantage of other methodologies (e.g., 

ANN and SVM), but also the higher explanatory power that 

is the advantage of the basic CBR model. 

In conclusion, the A-CBR model was determined to be 

the most suitable approach for estimating the strength of 

sustainable concrete in the early construction phase. 

Furthermore, it is expected that the prediction accuracy of 

the A-CBR model will be further improved with the 

continuous accumulation of the case database. 
 

4.2 Case study for the case No.127 
 

The case No.127 was selected as a case study to 
illustrate the detailed estimation process for the strength of 
sustainable concrete using the developed A-CBR model. 
Table 8 shows the detailed description on the design 
variables for the mixture of concrete and the relevant 
compressive and tensile strength of the case No.127. Based 
on the A-CBR (SVM&ANN) model for estimating the 
compressive strength of the case No.127, the retrieval 
process of the developed A-CBR model can be explained in 
detail. As shown in Table 9, a total of seven similar cases 
(i.e., cases 92, 115, 134, 120, 79, 119, and 125) were finally 
selected for estimating the compressive strength of the case 
No.127. Table 10 shows that the average compressive 
strength of the seven similar cases was determined to be 
56.237 MPa, resulting in 93.01% of the prediction accuracy 
compared to the actual value of the case No.127 (59.172 
MPa). Through the aforementioned three-step processes of 
the developed A-CBR model (i.e., selecting the similar 
cases, filtering the selected cases, and improving the 
prediction accuracy), this study can estimate the 
compressive and tensile strength of the case No.127 (refer 
to Table 9). 

 

 
5. Conclusions 
 

Based on a thorough review of previous studies in 

invest iga ting propert ies  of concre te  containing  

 

 

environmentally friendly materials, as well as modeling 

approaches to predicting sustainable concrete properties, 

this study aimed to develop an estimation methodology for 

the compressive and tensile strength of sustainable concrete 

using the A-CBR approach. Through the experimental 

studies, a total of 144 observations for the concrete strength 

were established, which were then used to develop the 

estimation model. As a result, the prediction accuracy of the 

A-CBR (SVM&ANN) model (i.e., 95.214% for 

compressive strength and 92.448% for tensile strength) was 

determined to be superior to other conventional 

methodologies including basic CBR, MRA, ANN, and 

SVM. In other words, it was proven that the A-CBR model 

can simultaneously provide the advantage of the 

conventional methodologies such as ANN and SVM (i.e., 

excellent prediction accuracy) as well as the advantage of 

the basic CBR model (i.e., provision of the predicted values 

with the retrieved historical-cases as references). In 

addition, considering the basic principal of the A-CBR 

model, the prediction accuracy of the A-CBR model could 

be expected to be further improved with the continuous 

accumulation of the case database. 

The developed A-CBR model can help decision makers 

(e.g., ready-mix concrete supplier and precast concrete 

manufacturer) to easily and accurately establish the optimal 

concrete mixture design in the early construction phase. 

Different environmentally friendly materials can be 

incorporated in the A-CBR approach to estimating 

sustainable concrete properties. The developed 

methodology can be further extended to future research 

areas in sustainable concrete properties such as durability. 
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limestone 

cement 

Fly ash Sand 
Coarse 

aggregate 

Lightweight 

aggregate 

Air entraining-

admixture 

Case 

similarity 

score 

Compressive 

strength 

Prediction 

accuracy 

  (days) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (ml/m3) (%) (Mpa) (%) 

Test Case 127 90 215 520 0 0 751 246 243 137 - 59.172 - 

*RC 1 92 28 215 520 0 0 751 246 243 137 99.99 53.931 91.14 

RC 2 115 90 198 416 0 104 751 247 243 135 99.21 54.552 92.19 

RC 3 134 90 208 312 0 208 751 247 243 113 99.01 52.621 88.93 

RC 4 120 90 208 520 0 0 751 501 120 148 91.33 63.379 92.89 

RC 5 79 28 208 520 0 0 751 501 120 148 91.33 56.552 95.57 

RC 6 119 90 193 312 0 208 751 501 120 137 90.39 54.414 91.96 

RC 7 125 90 216 430 0 107 743 750 0 136 90.11 58.207 98.37 

Average compressive strength (predicted value) 56.237 93.01 

*RC stands for the retrieved case using the A-CBR model 
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