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1. Introduction 
 

As the key components of transportation systems, 

bridges play a vital role in the social and economic 

developments. However, they are always exposed to harsh 

environments and suffered from complex external loadings 

(e.g., highway traffic, railway traffic, wind, wave, 

earthquake, ship collision, etc.). This will induce the 

structural elements of bridges to be damaged and cause 

their mechanical performances to be degraded. As a result, 

structural failures or catastrophic accidents may happen 

when structural damage reaches a critical state. To assure 

the safety of bridge structures, long-term continuous 

monitoring of environmental factors and operational 

loadings is essential to promptly grasp the realistic 

structural conditions and to proactively formulate the early-

warning strategies. 

Recently, long-term structural health monitoring (SHM) 

of bridges has been one of the major attentions for 

researchers and engineers in civil, mechanical, material, and 

computer science fields (Ye et al. 2012, Ye et al. 2013, Yi 

et al. 2013a, b, Li et al. 2014, Ye et al. 2014, Li et al. 2015, 

Ye et al. 2015, Yi et al. 2015, Ye et al. 2016a, b, c, d).  
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Design and implementation of such a system is an 

integration of the instrumentation and information 

technologies with the knowledge and experience of bridge 

design, construction, management, assessment and 

maintenance. An on-line SHM system is able to provide 

reliable information pertaining to the integrity, durability 

and reliability of bridges. The information can then be 

incorporated into bridge maintenance and management 

system for optimizing the maintenance actions and 

improving the design standards, specifications, codes and 

guidelines. 

It has been a hot research issue to assess safety 

condition of bridges based on massive long-term and real-

time monitoring data, while the prerequisite for fulfilling 

this task is that the monitoring data are complete and 

precise enough to represent the real condition 

characteristics of the bridge (Chen 2007). In other words, 

the accuracy and integrity of different types of data 

acquired from the bridge heath monitoring system is of 

significant importance for bridge safety assessment. 

However, a bridge health monitoring system under long-

term harsh environment tends to include a large number of 

missing data or obvious preternatural signals due to aging, 

damage and replacement of sensors and monitoring 

instruments. In some cases, these missing data will easily 

lead to false alarming because the data are very similar to 

those when the bridge is in danger. Therefore, it is of great 

importance to find an effective data reconstruction approach 

for bridge heath monitoring system. 

The most simple and practical missing data process 

approach for bridge health monitoring system is an 
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elimination method, but it is well known that the 

elimination method will inevitably eliminate some valid 

data. Researchers also have proposed several alternative 

data imputation methods such as single imputation, multiple 

imputation, liner regression-based data reconstruction 

method (Thissen et al. 2003, Soares et al. 2004, Wu et al. 

2004, Wu et al. 2008), while these methods have been 

proven to be relative impractical in some cases. As the rapid 

development of machine learning, more attentions have 

been paid to neural networks-based data reconstruction 

method due to the powerful computation capacity via 

advanced computers. However, it is reported by researchers 

that this method has some inherent drawbacks such as slow 

learning speed, difficulty in model structure selection, over-

fitting and under-fitting (Dong et al. 2005, Fan et al. 2016). 

To solve this problem, some investigators have proposed a 

data forecasting method by use of support vector machine 

(SVM) because of its unique characteristic of small sample 

and nonlinear, which has been applied to missing data 

prediction in several areas (Song et al. 2002, Smola and 

Scholkopf 2004, Lin et al. 2006, Chen 2007, Lu et al. 2009, 

Qiu and Lane, 2009, Salcedo-Sanz et al. 2011, Kazem et al. 

2013, Zhang et al. 2013, Chen and Yu 2014, Cheng et al. 

2017). For the data prediction of bridge health monitoring 

system, the properties of the monitoring data should be 

taken into account. For instance, the stress time histories 

acquired from bridge heath monitoring system usually have 

a periodic variation characteristic with a period of one day. 

These multi-component stress time histories are composed 

by low-frequency signals and high-frequency signals which 

may be caused by different kinds of factors. Therefore, it is 

necessary to find an effective solution in data imputation of 

bridge health monitoring system by considering the 

characteristic of each data component. 

This paper presents a data reconstruction approach for 

bridge heath monitoring system based on wavelet multi-

resolution analysis and SVM. The proposed method has 

been applied to reconstruct the abnormal data recorded by 

the SHM system instrumented on a prestressed concrete 

cable-stayed bridge. The accuracy of the proposed method 

is first examined by comparing the predicted data with the 

raw data in accordance with prediction errors. Then, the 

continuous stress data with obvious preternatural signals are 

divided into two parts (temperature-induced stresses and 

traffic-induced stresses) according to wavelet multi-

resolution analysis. The preternatural signals are replaced 

by the predicted values obtained by SVM regression 

prediction models. Finally, the reconstructed temperature-

induced stresses and traffic-induced stresses are combined 

into an entire stress history. The results indicate that the 

proposed data reconstruction approach for bridge heath 

monitoring system based on wavelet multi-resolution 

analysis and SVM is an effective tool in missing data 

imputation or preternatural signal replacement. The data 

reconstruction approach can serve as a solid foundation for 

the purpose of accurately evaluating the structural safety of 

bridges. 
 

 

2. Wavelet multi-resolution analysis and support 
vector machine 

2.1 Wavelet multi-resolution analysis 
 
In a bridge health monitoring system, the recorded 

structural responses are caused by multiple external 

excitation sources. For instance, the in-service strain 

monitoring data acquired from the sensors deployed on key 

structural components are mainly induced from three 

effects: highway and/or railway traffic, wind and 

temperature. Strain components due to different effects play 

different roles in shaping strain quantities. There are trend 

ingredients (low-frequency components) in all the strain 

time histories which can be attributed to be the daily cycle 

effect of temperature variation (Ni et al. 2012). Under the 

temperature effect, the bridge girder mainly behaves by 

expanding or contracting along the longitudinal direction. In 

contrast, under highway/railway traffic load, the bridge 

deck undergoes flexural bending. These two types of 

distinct responses are mixed in the strain monitoring data. 

This mixture phenomenon implies that one of the effects 

may be contaminated or distorted by the others. It is 

desirable to characterize them separately when each effect 

on the structural behavior is required to be quantified. The 

extraction of a specific effect is not easy when the measured 

signals are non-stationary and non-Gaussian in nature. In 

this connection, a wavelet-based nonparametric approach is 

proposed to decompose the strain ingredients by multi-

resolution analysis. 

Transform-domain processing of a signal involves 

mapping it from the signal space to the transform space 

using a set of basis functions. For a wavelet transform, a 

particular function is chosen as the mother wavelet and a 

family of daughter wavelets is defined by scaling and 

shifting, serving as a complete set of basis functions. In 

wavelet-based multi-resolution analysis, the same function 

can be adopted and repeated with different scale and shift 

parameters. Multi-resolution analysis is a process of 

choosing a set of basis functions originated from the same 

mother wavelet. From a practical point of view, wavelet 

multi-resolution analysis allows a decomposition of the 

signal into various resolution scales: the data with coarse 

resolution contain the information about low-frequency 

components, and the data with fine resolution contain the 

information about high-frequency components (Ni et al. 

2012). 

Using a selected mother wavelet function, Ψ(t), the 

continuous wavelet transform of a signal is defined as 
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where Ψ(t) is the mother wavelet, a is a scale parameter, 

and b is a time parameter. The overbar represents complex 

conjugation. It is known that the function f(t) can be 

reconstructed from WΨf(a,b) by the double-integral 

representation as represented by 
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In practical signal processing, a discrete version of the 

wavelet transform is often employed by discretizing the 
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scale parameter, a and the time parameter, b. In general, the 

procedure becomes much more efficient if dyadic values of 

a and b are used. That is 

Zkjkba jj  ,,2,2  (3) 

where Z is a set of positive integers. With some special 

choices of Ψ(t), the corresponding discretized wavelets, 

{Ψj,k} are expressed by 

   ktt jj

kj  22 2/

,
 (4) 

It constitutes an orthonormal basis. With this 

orthonormal basis, the wavelet expansion of a function f(t) 

can be obtained as 
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In the discrete wavelet analysis, a signal can be 

represented by its approximations and details. The detail at 

level j is defined as 
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and the approximation at level J is defined as 





Jj

jJ DA

 
(8) 

It follows that 

  



Jj

jJ DAtf

 
(9) 

Eq. (9) provides a tree-structure decomposition of a 

signal and a reconstruction procedure as well. By selecting 

different dyadic scales, a signal can be broken down into 

numerous low-resolution components. 
 

2.2 Support vector machine 
 

Based on the SVM theory, a support vector regression is 

to approximate the given observations in an m-dimensional 

space by a linear function in another feature space 

(Collobert and Bengio 2001, Clarke et al. 2005, 

Sapankvych and Sankar 2009). Firstly, SVMs estimate the 

regression using a set of linear functions defined in a high 

dimensional space. Secondly, SVMs carry out the 

regression estimation by risk minimization where the risk is 

measured using Vapnik’s ε-insensitive loss function 

(Drucher et al. 1997). Thirdly, SVMs use a risk function 

consisting of the empirical error and a regularization term 

which is derived from the structural risk minimization 

principle. Given a set of data points G={(xi, di)}n
i. xi is the 

input vector, di is the desired value, and n is the total 

number of data patterns, SVMs approximate the function by 
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Fig. 1 Deployment sections of FBG-based strain sensors 

 

 

where {ϕi(x)} is called features, b and{wi} are the 

coefficients to be estimated from the data. Thus, a nonlinear 

regression in the low dimensional input space is transferred 

to a linear regression in a high dimensional (feature) space. 

The coefficients {wi} can be determined from the data by 

minimizing the function 
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where λ is a regularization constant and the cost function is 

defined as 
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which is called Vapnik’s ε-insensitive loss function. It is 

shown that the minimizing function has the following form 
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*≥0 i=1,…,N and the kernel function 

k(xi, x) describes the inner product in the D-dimensional 

feature space. 

)()(),( j

1

j yxyxk
D

j




  (14) 

It is important to note that the features ϕj need not be 

computed; rather what is needed is the kernel function that 

is very simple and has a known analytical form (Shin et al. 

2005). The only condition required is that the kernel 

function has to satisfy Mercer’s condition. Some of the 

mostly used kernels include polynomial, Gaussian and 

sigmoidal. Note also that for Vapnik’s ε-insensitive loss 

function, the Lagrange multipliers are sparse, i.e., they 

result in nonzero values after the optimization only if they 

are on the boundary, which means that they satisfy the 

Karush-Kuhn-Tucker conditions. The coefficients are 

obtained by maximizing the following form 
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  dttf kjkj ,,  
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(16) 

Only a number of coefficients αi, αi
*will be different 

from zero, and the data points associated to them are called 

support vectors (Muller et al. 1999, Dibike et al. 2001, das 

Chagas Moura et al. 2011, De Brabanter et al. 2011).  

Parameters C and ε are free and have to be decided by 

the user. Computing b requires a more direct use of the 

Karush-Kuhn-Tucker conditions that lead to the quadratic 

programming problems stated above. The key idea is to 

pick those values αk, αk
* for a point xk on the margin, i.e., αk 

or αk
* in the open interval (0, C). One xk would be sufficient 

but for stability purposes it is recommended that one take 

the average over all points on the margin. 
 

 

3. Data reconstruction of a concrete cable-stayed 
bridge 
 

3.1 Introduction of investigated concrete cable-stayed 

bridge 
 

In the past two decades, China has experienced splendid 

developments in the area of prestressed concrete cable-

stayed bridges. Great achievements have been made in 

terms of design levels and construction technologies. More 

than 50 prestressed concrete cable-stayed bridges with main 

span exceeding 200 m have been built in different regions. 

In this study, the investigated bridge consists of main 

bridge, eastern approach bridge, western approach bridge, 

mountain tunnel, traffic safety facilities and other ancillary 

works, of which the main bridge is a double-cable-plane, 

prestressed concrete and single-tower cable-stayed bridge. 

The full length is 2482 m and the main span is 258 m. The 

span arrangement between two mountains is 74.5 m+258 

m+102 m+83 m+49.5 m with a total length of 567m. There 

are 102 stay cables at the upstream and downstream 

sections with four cable planes at east and west sides. The 

bridge deck is 29.5 m in width. The designed speed is 60 

km/h on the main bridge with six lanes. The navigation 

clear height of the bridge is 32 m. 

After the completion of its construction, the investigated 

bridge has been instrumented with a long-term SHM system 

comprising a strain monitoring subsystem. The real-time 

monitoring data are acquired through fiber Bragg grating 

(FBG) sensors to measure the structural strain, structural 

temperature, and cable force. The huge amounts of field 

monitoring data are collected by data acquisition stations 

and then transferred to the bridge monitoring center for 

further analysis. In the monitoring center, the tasks of data 

storage and analysis are performed by means of specific 

hardware and software. As one of the most important 

parameters, the strain data are measured by the FBG sensors 

deployed on six different sections of the bridge as 

illustrated in Fig. 1. 
 

3.2 Wavelet-based SVM prediction method 
 

Based on the wavelet multi-resolution analysis and 

SVM regression approach mentioned in the previous  

 

Fig. 2 Flowchart of proposed method 

 

 

section, a data reconstruction method is proposed in this 

study as illustrated in Fig. 2. The stress time history data 

with preternatural signals obtained from the SHM system of 

the investigated bridge are first divided into two parts 

(temperature-induced stress time history and live load-

induced stress time history) according to the wavelet multi-

resolution analysis. The preternatural signals are then 

replaced by the predicted values derived by the SVM 

regression model. Finally, the reconstructed temperature-

induced stresses and live load-induced stresses are 

combined into an entire stress time history. 

The effectiveness and accuracy of the proposed wavelet-

based SVM prediction method is examined by comparing 

the predicted data with the traditional autoregression 

moving average (ARMA) method and the SVM prediction 

method without wavelet multi-resolution analysis in 

accordance with the prediction errors (Dong et al. 2005, 

Fan et al. 2016). The stress data of the investigated bridge 

from 1 October 2015 to 7 October 2015 are selected to 

conduct the comparative study and check the results 

predicted by different prediction methods. Based on the 144 

hourly strain data of six days (1 October 2015 to 6 October 

2015), the 24 data in one day at each hour is predicted by 

the ARMA prediction method, SVM regression prediction 

method, and wavelet-based SVM prediction method, as 

illustrated in Fig. 3. The prediction error of the wavelet-

based SVM prediction method is obviously smaller than 

those of the ARMA prediction method and SVM regression 

prediction method, as shown in Fig. 4. Therefore, it can be 

concluded that the proposed wavelet-based SVM prediction 

method has a better performance for monitoring data 

reconstruction. 

 

3.3 Reconstruction of abnormal strain monitoring data 
 

In the analysis process of strain monitoring data of the 

investigated bridge, a few obvious preternatural signals are 

found as shown in Fig. 5(a). A complete set of stress data is  

Stress time history data obtained by SHM system

Wavelet multi-resolution analysis

Temperature-induced 

stress time history

Live load-induced 

stress time history

Support vector machine 

regression

Combination of predicted data 

Support vector machine 

regression
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Fig. 3 Comparison of prediction results of three different 

methods 

 

 

Fig. 4 Comparison of prediction errors of three different 

methods 

 

 
(a) 5-day stress time histories 

 
(b) Temperature-induced stress time histories 

 
(c) Live load-induced stress time histories 

Fig. 5 5-day stress time histories with preternatural signals 

 

 
(a) Live load-induced stress time histories 

 
(b) Temperature-induced stress time histories 

 
(c) 5-day stress time histories 

Fig. 6 Data reconstruction based on 5-day stress time 

histories 

 
 

of great importance for bridge safety assessment, and thus it 

is a necessity to carry out the data reconstruction. The 

wavelet multi-resolution analysis is used to distinguish 

temperature-induced stresses and live load-induced stresses 

for SVM-based machine learning because these two parts in 

a total stress history have their own characteristics. In a 

wavelet multi-resolution analysis, the measured strain 

signals are decomposed into two parts including high-

frequency and low-frequency components. For each 

wavelet level, the high-frequency part (details) is separated, 

and the remaining low-frequency part (approximations) is 

transferred into the next level of decomposition. Through 

wavelet-based multi-resolution analyses, the strain 

component attributable to the temperature effect is obtained 

from the lowest-frequency part in the wavelet transform 

domain. 
Fig. 5 illustrates the wavelet-based decomposed stress 

time histories for an FBG-based strain sensor deployed on 
the investigated bridge. In these stress time histories, the 
low-frequency parts of 9-level decomposition of stress data  
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(a) 1-day stress time history 

 
(b) Temperature-induced stress time history 

 
(c) Live load-induced stress time history 

Fig. 7 1-day stress time history with preternatural signals 
 
 

represent the reconstructed temperature-induced stresses, as 
illustrated in Fig. 5(b). A comparative analysis between the 
initial stress and the temperature-induced stress indicates 
that the temperature-induced stress time history has the 
same variation tendency and periodic characteristic in one 
day. The temperature-induced stress takes a major part of 
the total stress which means that the main stress changes 
during the bridge operational status are caused by the 
temperature effect. Also, Fig. 5(c) shows the high-
frequency parts of 9-level decomposition of stress data 
which consist of live load (highway traffic and wind) 
induced stresses. The purpose of data reconstruction is to 
replace the abnormal signals with the prediction data. The 
preternatural signals are eliminated before the prediction 
analysis of each part. Fig. 6 shows the stress data prediction 
process by wavelet-based multi-resolution analysis and 
SVM regression. The stress history is processed by each 
part (temperature-induced stress and live load-induced 
stress) and then combined into a complete stress time 
history. 

The data reconstruction of two parts of obvious 

preternatural signals, as illustrated in Figs. 5(a) and 5(b), is  

 
(a) Live load-induced stress time history 

 
(b) Temperature-induced stress time history 

 
(c) 1-day stress time history 

Fig. 8 Data reconstruction based on 1-day stress time 

history 

 

 

conducted with the aid of SVM. For details, the 5-day stress 

data are trained and tested with a parameter optimization 

process, and the regression model is determined by optimal 

parameters, which is employed to output the predicted data. 

Then the two parts of imputation data are combined to 

restore or model a realistic stress history, as shown in Fig. 

6(c). All the parameter optimization, regression and 

prediction process is accomplished by software 

Matlab2014a with the toolbox Libsvm-3.1 (Chang and Lin 

2011). 
One of the advantages of SVM data prediction is its 

accuracy and effectiveness when the sample is relatively 
small. In this study, in addition to the data prediction results 
through 5-day data as shown in Fig. 6, the prediction results 
are obtained by the proposed method to verify the 
applicability by use of relatively small sample of 1-day data 
as shown in Figs. 7-8. In each case, as mentioned earlier in 
this paper, the stress time history with abnormal signals is 
first divided into two parts, the temperature-induced stress 
time history and live load-induced stress time history by 
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wavelet-based multi-resolution analysis. Then, the 
abnormal signals are eliminated for further analysis, and the 
missing data of each part is predicted based on different 
time durations by SVM regression. Each parameter of SVM 
regression model is evaluated by the optimization analysis 
of grid search method in the Matlab toolbox Libsvm-3.1. 
Finally, a complete stress time history is obtained by 
combining the two parts of the stress time history with 
prediction data. That is, the abnormal signals are replaced 
by the predicted data. In order to verify the effectiveness of 
the predicted results obtained by 1-day data, the prediction 
error is calculated on the basis of results achieved by 5-day 
data. The prediction error of 1-day is calculated as 0.0533, 
which means that the prediction results by the proposed 
method based on 5-day data and 1-day data are almost the 
same. This is meaningful and significant when the sample 
of measured data is relatively small to achieve acceptable 
results for further analysis in case the continuous stress data 
are required. 

 

 

4. Conclusions 
 

This paper presents a data reconstruction approach for 

bridge heath monitoring system based on wavelet multi-

resolution analysis and SVM. The proposed method has 

been applied for data imputation in accordance with the 

recorded data by the SHM system instrumented on a 

prestressed concrete cable-stayed bridge. The effectiveness 

and accuracy of the proposed method is examined by 

comparing the predicted results with the raw data according 

to the prediction errors. The continuous stress data with 

obvious preternatural signals are divided into two parts 

(temperature-induced stresses and live load-induced 

stresses) by wavelet-based multi-resolution analysis. The 

preternatural signals are replaced by the predicted values 

obtained by SVM regression prediction model. The 

reconstructed temperature-induced stress and live load-

induced stress are combined into an entire stress history. 

The obtained results demonstrate that: (i) the prediction 

error of wavelet-based SVM prediction method is smaller 

than that obtained by the ARMA prediction method; (ii) the 

wavelet-based multi-resolution analysis can reduce the 

prediction error of data reconstruction in combination with 

SVM regression; and (iii) the predicted results by the 

proposed method based on 1-day data and 5-day data are 

almost the same which is meaningful and significant when 

the sample of measured data is relatively small. The 

proposed data reconstruction approach for bridge heath 

monitoring system is an effective tool in missing data 

imputation or preternatural signal replacement, and can 

serve as a solid foundation for the purpose of accurately 

evaluating the structural safety of bridges. 
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