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1. Introduction 
 

Reinforced concrete (RC) shear walls are widely used 

either alone or in connection with moment resisting frames 

to meet lateral strength and ductility requirements for 

structures in zones of moderate or high seismic risk. Several 

studies, such as those by Leonhardt and Mönnig (1975), 

Bazant et al. (1980), Aktan and Bertero (1980), Eberhard 

and Sozen (1993) among many others, expanded the 

knowledge of the shear resisting mechanisms and 

developed methods for determining the shear strength and 

detailing guidelines for ensuring adequate ductility. For a 

better understanding of the inelastic post-peak response of 

these structural elements several experiments on isolated 

panels under monotonic loading were conducted by Vecchio 

and Collins (1986), Bhide and Collins (1987), Pang and 

Hsu (1995). These were complemented by experiments on 

shear panels and shear walls under cyclic loading with 

significant inelastic strains by Stevens et al. (1987), 

Ohomori et al. (1989), Salonikios et al. (1999), Hidalgo et 

al. (2002), Thomsen and Wallace (2004), Mansour and Hsu 

(2005a), Greifenhagen and Lestuzzi (2005), Lowes et al. 

(2011), Turgeon et al. (2013), Ruggiero et al. (2016) among 

others. 

In parallel with the experimental investigations, several 

finite element models have been proposed for describing the 

cyclic inelastic response of RC shear walls. These models 

fall roughly into two categories: (a) special purpose models 

of enhanced beam elements, and (b) general models based 

on plane stress or membrane finite elements. 

Models of the first category refer, among others, to the fiber  
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beam elements for slender RC members by Martinelli and 

Filippou (2009), Mazars et al. (2006), Massone et al. 

(2006), Fischinger et al. (2004), Saritas and Filippou 

(2009), Jiang and Kurama (2010), Fischinger et al. (2012), 

Saritas and Filippou (2013), Beiraghi et al. (2015). These 

models are suitable for the simulation of large scale 

structures but are limited to cases of moderate shear 

demand, since they do not address all the shear resisting 

mechanisms of walls. Further studies are necessary for this 

type of models to enhance their performance in representing 

shear walls with complicated shear behavior Wu et al. 

(2016). The models of the second category usually follow 

the continuum approach where the effect of cracks (i.e., the 

discontinuity of the displacement field) is smeared within 

the element and the reinforcement bars are embedded in the 

element. According to such approaches a crack strain is 

defined in order to represent the crack opening. These 

models can be profitably used for complex plane stress 

conditions and thus they aim to be suitable for several types 

of RC structural elements, including shear panels. Thus the 

proposed model stands among this category. According to 

such an approach an appropriate constitutive law for 

concrete and reinforcement needs to be considered. 

The concrete constitutive models of the second category 

often pursue the proposal of the equivalent uniaxial stress-

strain relation by Darwin and Pecknold (1976) and its 

subsequent extensions with the modified compression field 

theory by Vecchio (1989, 1990), the non-linear elasticity 

Okamura and Maekawa (1991) the disturbed stress field 

model by Vecchio (2000) and the softened membrane model 

by Hsu and Zhu (2002), Mansour and Hsu (2005a). 

Moreover, general concrete constitutive models are 

sometimes used for the analysis of shear walls even if the 

authors did not define nor validate a RC membrane element 

Hofstetter and Mang (1995), FIB (2008). 

Palermo and Vecchio (2007), Mo et al. (2008) have 
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validated the smeared crack models with experimental 

results from RC panels and RC shear walls. These studies 

find relatively good ultimate strength agreement but suggest 

that further investigations on energy dissipation and 

deformation ductility are required. A limitation of these 

models is the lack of a multiaxial limit state surface and the 

need for parameter calibration for each type of specimen. 

Three-dimensional constitutive models with scalar 

damage parameters offer a relatively simple and 

computationally efficient formulation for concrete, 

maintaining in the same time sufficient accuracy. Among 

the different options, elastic-damage models that neglect 

plastic deformations are suitable for practical engineering 

purposes because of their computational efficiency, but fail 

to capture the inelastic deformation accumulation under 

cyclic effects Faria et al. (2004). On the other hand, more 

sophisticated plastic-damage models give accurate results 

but often suffer from complexity and lack of computational 

efficiency. Furthermore, the extent of their validation 

against experimental results from RC elements under high 

shear is rather limited as recent investigations by Rhee et al. 

(2004), Krätzig and Pölling (2004), Cicekli et al. (2007) 

show. The few correlation studies for specimens under 

monotonic loading by Faria et al. (1998), Wu et al. (2006), 

Lee and Kuchma (2007) show good agreement with the use 

of two damage parameters, one under tensile and one under 

compressive stress states. The suitability of these 

constitutive models for the cyclic response simulation of 

RC shear walls is still under investigation. 
The purpose of this study is the development of a 

computationally efficient membrane model for the 
simulation of RC structural elements under cyclic loads. 
The model aims to be general and, thus, suitable for several 
types of RC structural elements, while at the same time 
balancing accuracy with computational efficiency so as to 
be convenient for the earthquake analysis of large structural 
models. To meet these objectives the membrane element 
combines an innovative concrete constitutive law based on 
damage-plasticity and the embedded reinforcing bars 
neglecting the dowel action and the bond-slip effect. 

 

 

2. Concrete constitutive relation 
 

The proposed membrane model is based on a concrete 

constitutive relation with energy-based isotropic continuum 

damage. The model takes into account both tensile and 

compressive failure modes of concrete with two 

independent damage parameters, and also accounts for 

micro-crack opening and closing through the spectral 

decomposition of the effective stress tensor. The damage 

and plastic unloading/reloading processes are assumed to be 

elastic. The paper of Ju (1989) gives the detailed description 

of the elasto-plastic damage mechanics framework and the 

adopted notation. The decomposition of the total strain 

tensor into elastic strain 𝜺𝑒  and plastic strain 𝜺𝑝 

contributions is a model basic hypothesis giving 

𝜺 = 𝜺𝑒 + 𝜺𝑝 (1) 

The effective stress 𝝈  is defined as the stress in a 

hypothetical state of deformation free of damage and in 

tensor notation becomes 

𝝈 = 𝑪0: 𝜺𝑒 (2) 

where 𝑪0 is the fourth-order elastic stiffness tensor and : 

indicates the tensor contraction over two indices. The 

locally averaged free energy potential Ψ is assumed as the 

sum of two elastic contributions Ψ0
+ and Ψ0

− related to 

the tensile and the compressive part of the effective stress 

tensor respectively and reduced by two independent damage 

parameters, according to Faria et al. (1998) 

Ψ(𝜺, 𝜺𝑝, 𝑑+, 𝑑−) = 

= (1 − 𝑑+)Ψ0
+(𝜺, 𝜺𝑝) + (1 − 𝑑−)Ψ0

−(𝜺, 𝜺𝑝) = 

= (1 − 𝑑+)
1

2
𝝈

+
: 𝜺𝑒 + (1 − 𝑑−)

1

2
𝝈

−
: 𝜺𝑒 = 

=
1

2
𝝈: (𝑰 − 𝑫): 𝜺𝑒 + (1 − 𝑑−)

1

2
𝝈

−
: 𝜺𝑒 

(3) 

with 𝑑+  representing the positive (tensile), 𝑑−  the 

negative (compressive) damage parameter and 𝑫  the 

fourth-order damage tensor that includes the spectral 

decomposition with the following expression, Wu et al. 

(2006) 

𝑫 = 𝑑+𝑷+ + 𝑑−𝑷− (4) 

With 𝑷+  and 𝑷−  the fourth-order positive and 

negative projection tensors, respectively 

𝑷+ = ∑ 𝐻(𝜎𝑖)(𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖)

𝑖

 (5) 

𝑷− = 𝑰 − 𝑷+ (6) 

where H is the Heaviside step function, 𝜎𝑖  is the i-th 

principal stress of the effective stress tensor 𝝈, 𝒑𝑖 stands 

for the corresponding principal stress direction and ⊗ is 

the outer product symbol. The positive and negative part of 

the effective stress tensor, 𝝈
+

 and 𝝈
−

, respectively, can be 

determined from the projection tensors 𝑷+ and 𝑷−. 

During a physical process the energy dissipation is non-

negative in agreement with the first thermodynamic 

principle so that an admissible load-deformation process 

respects the following Clausius-Duhem inequality 

(𝝈 −
𝜕Ψ

𝜕𝜺
) : �̇� − (

𝜕Ψ

𝜕𝑑+
𝑑+ +

𝜕Ψ

𝜕𝑑−
𝑑−) −

𝜕Ψ

𝜕𝜺𝑝

: �̇�𝑝 ≥ 0 (7) 

With the total strain as free variable the term in the first 

bracket should be always zero. This gives the relation 

between the Cauchy stress tensor 𝝈 and the effective stress 

tensor 𝝈 that can be written as 

𝝈 =
𝜕Ψ

𝜕𝜺
=

𝜕Ψ

𝜕𝜺𝑒

= (1 − 𝑑+)
𝜕Ψ0

+

𝜕𝜺𝑒

+ (1 − 𝑑−)
𝜕Ψ0

−

𝜕𝜺𝑒

= 

= (1 − 𝑑+)𝝈
+

+ (1 − 𝑑−)𝝈
−

= (𝑰 − 𝑫): 𝝈 

(8) 

The second and third term of Eq. (7) provide the damage 

and the plastic dissipation inequalities, respectively. It can 

be proven that these quantities are always non-negative, 

e.g., Faria et al. (1998). The thermodynamic forces 𝑌+/− 

conjugate to the damage variables, also called damage 
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energy release rates, are expressed as 

𝑌+ = −
𝜕Ψ

𝜕𝑑+
= Ψ0

+ 

𝑌− = −
𝜕Ψ

𝜕𝑑−
= Ψ0

− 

(9) 

The damage energy release rates are used for the 

definition of the loading and unloading conditions of 

damage. The state of material damage is defined by a single 

damage criterion with the following quadratic functional 

form, Scotta et al. (2014) 

𝑔[𝜉+(𝑌+), 𝜉−(𝑌−), 𝑟+, 𝑟−] = (
𝜉+

𝑟+
)

2

+ (
𝜉−

𝑟−
)

2

− 1 ≤ 0 (10) 

where 𝜉+  and 𝜉−  are monotonically increasing scalar 

functions, and 𝑟+  and 𝑟−  are the scalar damage 

thresholds monitoring the size of the damage surface in 

tension and compression, respectively. The inequality of Eq. 

(10) defines the elastic unloading/reloading domain and its 

closure is the damage surface at the incipient damage 

condition. 

Furthermore, the expansion of the damage surface is 

determined by the evolution of the damage thresholds with 

the following flow rules 

�̇�+ = �̇�
𝜕g

𝜕𝜉+
 

�̇�− = �̇�
𝜕g

𝜕𝜉−
 

(11) 

where 𝜇 is the damage consistency parameter. The Kuhn-

Tucker conditions give 

𝑔 ≤ 0        �̇� ≥ 0        �̇�𝑔 = 0 (12) 

while the consistency condition is 

�̇��̇� = 0 (13) 

The initial elastic domain for the virgin material is 

determined by the damage thresholds under uniaxial tension 

and compression, 𝑟0
+ and 𝑟0

−, respectively. 

The evolution of the damage thresholds is computed 

with a predictor-corrector numerical scheme ensuring the 

computational efficiency of the material state determination 

process. 

The quadratic form of the damage criterion ensures the 

independent evolution of the positive and negative damage 

thresholds for uniaxial tensile and compressive conditions, 

respectively. In fact, the partial derivatives of Eq. (11) are 

alternately zero when either 𝜉+ or 𝜉− is zero. 

To characterize the damage criterion in Eq. (10), the 

monotonic functions 𝜉+  and 𝜉−  are defined with the 

following equations according to previous studies, e.g., 

Berto et al. (2014) 

𝜉+ = √𝐸0(𝝈
+

: 𝑪0
−1: 𝝈

+
) (14) 

𝜉− = √3 (𝐾𝐼1

−
+ √𝐽2

−
) (15) 

where 𝐼1

−
 is the first invariant of 𝝈

−
 and 𝐽2

−
 is the second  

 

Fig. 1 Initial damage surface and failure envelope for plane 

stress conditions 

 

 

invariant of the deviatoric part of 𝝈
−

. 𝐸0 is Young’s 

concrete modulus and 𝐾  a material parameter that 

accounts for the uniaxial compressive strength increase due 

to biaxial compression, Faria et al. (1998). Hence, the four 

parameters for determining the initial elastic domain are: 

𝑟0
+ , 𝑟0

− , 𝐾, and the Poisson ratio 𝜈 . As discussed in 

detail in Faria et al. (1998), three common experimental 

tests are sufficient to establish the value of these 

parameters: a uniaxial tension test, a uniaxial and a biaxial 

compression test. 

With Eq. (14) the initial positive damage threshold is 

equal to the concrete tensile strength, which describes the 

limit of the elastic domain for the constitutive stress-strain 

relation 

𝑟0
+ = 𝑓0

+ = 𝑓𝑐𝑡 (16) 

Since the compressive constitutive relation becomes 

nonlinear before reaching the peak strength, the uniaxial 

initial elastic limit 𝑓0
−  needs to be evaluated from the 

uniaxial compression test leading to the negative damage 

threshold from Eq. (15) 

𝑟0
− =

√3

3
(𝐾 − √2)𝑓0

− (17) 

The results of a biaxial compression test permit the 

determination of the elastic limit 𝑓0,2𝐷
−  under biaxial 

compression. Thus, the parameter 𝐾 which accounts for 

the increase of the compressive strength under a biaxial 

compression state can be determined from 

𝐾 = √2
𝑓0,2𝐷

− − 𝑓0
−

2𝑓0,2𝐷
− − 𝑓0

− (18) 

Fig. 1 shows the new initial damage surface in the space 

of normalized principal stresses for plane stress states. 

A special feature of the proposed damage surface is the 

differentiation of the contribution of tensile and 

compressive damage processes in the description of the 

biaxial stress-strain response. This proves to be important  
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Table 1 Model parameters for compression tests 

Parameter Karsan and Jirsa (1969) Kupfer et al. (1969) 

𝑓𝑐𝑐 (MPa) 23.5 32.5 

𝐸0 (MPa) 31230 32500 

𝜀𝑐𝑐 1.56e-3 1.56e-3 

𝑓0
−/𝑓𝑐𝑐 0.55 0.45 

𝛽 0.50 0.50 

𝐾 0.20 0.20 

 

 

Fig. 2 1d cyclic compression experiment, Karsan and Jirsa 

(1969) 

 

 

for the analysis of RC shear walls. 

It can be readily verified that under pure compression 

(𝑌+ = 0) the elastic domain simplifies to the modified 

Drucker-Prager criterion whose suitability in representing 

the biaxial stress response of concrete was confirmed in the 

studies by Lee and Fenves (1998), Faria et al. (1998), Wu et 

al. (2006). 

The proposed constitutive model assumes that the 

damage criterion also describes the plastic surface so that 

the development of material damage is simultaneous with 

the accumulation of irreversible strains for all stress states. 

Motivated by the proposal of Faria et al. (1998) for 

compressive stress states the following plastic evolution law 

is proposed for all stress states 

�̇�𝑝 = 𝛽𝐸0

〈𝝈: �̇�〉

〈𝝈: 𝝈〉
(𝑪0

−1: 𝝈) (19) 

where 𝛽 is the plastic strain coefficient. This choice leads 

to the direction of the plastic strain rate being parallel to the 

direction of the total strain rate. 

It is clear that the proposed plastic strain evolution 

involves several simplifications relative to the “effective 

stress space plasticity” model used to couple the damage 

evolution with the plastic flow Ju (1989). In fact the plastic 

strain evolution law uses a constant plastic coefficient in 

place of the classical consistency parameter, and it assumes 

the coincidence of the “direction” of the plastic strain 

increment with the “direction” of the elastic strain. These 

simplifications are in the spirit of obtaining an efficient 

model for large scale seismic analyses without undue 

sacrifice of accuracy, as the correlation studies show. With 

this assumption the coupling between damage and plasticity 

is simplified, eliminating additional iterations during the 

material state determination process. A consequent 

limitation of the model is the inaccurate representation of 

concrete dilatancy. In cases in which dilatancy plays an 

important role in the response of the structural element a 

different plastic potential should be used with the proposed 

constitutive model. 

The evolution laws of the damage parameter 𝑑+ and 

𝑑− of Eq. (3) identify the concrete constitutive behaviour. 

The following laws, inspired by the ones proposed by Faria 

et al. (1998), and modified by Berto et al. (2014), are used 

in this paper 

𝑑+ = 1 −
𝑟0

+

𝑟+
exp [𝐴+ (1 −

𝑟+

𝑟0
+)] (20) 

𝑑− = 1 − √
𝑟0

−

𝑟−
(1 − 𝐴−) − 𝐴− exp [𝐵− (1 − √

𝑟−

𝑟0
−)] (21) 

where 𝐴+, 𝐴− and 𝐵− are positive parameters that can be 

set by specifying the fracture energy, the concrete 

compressive strength and the localized crushing energy 

according to Krätzig and Pölling (2004). Fig. 1 shows the 

resulting failure envelope in the space of normalized 

principal stresses for plane stress states. 

 

 
3. Correlation studies of concrete material behavior 
 

The following correlation of analytical with 

experimental results investigates the ability of the proposed 

concrete constitutive model to simulate the 1d and 2d 

behavior of plain concrete under tensile and compressive 

cyclic loading. The correlation studies also serve for the 

calibration of the plastic strain coefficient that is the only 

parameter that cannot be directly derived from common 

experimental tests on concrete specimens. Finally these 

studies validate the relation between the damage parameter 

and the progressive degradation of mechanical properties, 

Scotta et al. (2009), a subject that is beyond the scope of the 

present study but will be pursued in the future. 

 
3.1 Uniaxial cyclic compression test 

 
The correlation study for the cyclic uniaxial stress-strain 

response uses the specimen AC2-09 by Karsan and Jirsa 

(1969). The concrete compressive cylinder strength is 𝑓𝑐𝑐 

= 23.5 MPa. The model parameters are listed in Table 1 

where the symbol 𝜀𝑐𝑐 stands for the concrete strain at the 

compressive cylinder strength. 
Fig. 2 compares the numerical stress-strain response 

with the experimental measurements. The overall nonlinear 
behavior of the specimen is represented very well. The 
numerical envelope describes a linear elastic path followed 
by hardening and then softening response. The unloading 
and reloading branches show the progressive stiffness 
damage and the evolution of the plastic strain with the 
stiffness reduction related to the value of compressive 
damage and the residual strain depending on the plastic  
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Fig. 3 1d cyclic tension experiment, Gopalaratnam and 

Shah (1985) 
 

Table 2 Model parameters for tension test by Gopalaratnam 

and Shah (1985) 

Parameter Gopalaratnam and Shah (1985) 

𝑓𝑐𝑡 (MPa) 3.5 

𝐸0 (MPa) 32000 

𝜀𝑐𝑡 1.56e-3 

𝑓0
+/𝑓𝑐𝑡 1.00 

𝛽 0.50 

 
 

strain accumulation for each cycle. 

The hysteresis of the reloading loop cannot be 

represented by the model because of the rate-independent 

elastic unloading/reloading assumption, but the progressive 

stiffness deterioration fits the experimental results well. The 

observed agreement proves sufficiently accurate for the 

simulation of concrete elements. 

 

3.2 Uniaxial cyclic tension test 
 

Fig. 3 compares the tensile response of the model with 

the experimental data by Gopalaratnam and Shah (1985). 

The tensile strength of concrete is 𝑓𝑐𝑡 = 3:5 MPa at the 

strain 𝜀𝑐𝑡. The material parameters are listed in Table 2. 

The stiffness deterioration and the residual strain at each 

unloading/reloading cycle agree well with the experimental 

results confirming the ability of the damage parameter and 

the plastic strain variable to capture the physical behavior. 

The residual strains in tension are very important for the 

simulation of the cyclic local and global response of 

reinforced concrete membranes under shear, because they 

influence the crack closure at loading reversals. The exact 

representation of the post-peak tensile response of the plain 

concrete specimen is of secondary importance for the 

simulation of the average response of a reinforced concrete 

member over several cracks, particularly under the large 

inelastic deformations arising in earthquake engineering 

applications. 

 

3.3 Uniaxial tension-compression with load reversal 
 

Because the proposed concrete model is intended for  

 

Fig. 4 1d cyclic tension experiment, Gopalaratnam and 

Shah (1985) 

 

 

Fig. 5 Biaxial tension-compression with different stress 

ratios, Kupfer et al. (1969) 

 

 

seismic response applications, its response in a uniaxial test 

with a more complex loading path consisting of two cycles 

in tension followed by two cycles in compression and 

concluding with a residual tensile stress is of interest. The 

concrete damage parameters are the same as for the uniaxial 

cyclic compression test. Fig. 4 shows that the model is able 

to account for crack opening, crack closing with stiffness 

recovery, and crack reopening. The evolution of the plastic 

strain and of the two damage variables determines the 

residual strain after unloading and the progressive stiffness 

deterioration in tension and in compression, respectively, as 

the stress-strain response in Fig. 4 shows. 

 

3.4 Biaxial tension-compression tests 
 

Four concrete cube specimens were subjected to 

different load conditions to failure by Kupfer et al. (1969). 

The third principal stress was kept equal to zero (𝜎3= 0) in 

all cases, while the other two principal stresses increased to 

failure with the following stress ratios: (1) 𝜎1/𝜎2 = -1/0, 

(2) 𝜎1/𝜎2 = -1/0.052, (3) 𝜎1/𝜎2 = -1/0.103 and (4) 𝜎1/𝜎2 

= -1/0.204. The cylinder compressive strength is 𝑓𝑐𝑐 = 32:5 

MPa. Fig. 5 compares the numerical response with the 

material parameters listed in Table 1 with the experimental 

results of the four specimens. The compressive strength  
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reduction under different principal tension/compression 

ratios agrees well with the observed response for the 

proposed damage limit surface and its evolution law. 
 

 

4. Membrane model for RC panels 
 

The preceding concrete material model is implemented 

under plane stress states in a 4-node quadrilateral finite 

element. The plane stress implementation of the proposed 

model is straightforward and speeds up the material stress 

state determination in comparison with a 3D material 

formulation constrained for plane stress states. Following 

the embedded approach, the reinforcing bars with the same 

orientation are represented by an orthotropic steel layer that 

is superimposed on the concrete mesh assuming 

equivalence of strains. Thus perfect bond between 

reinforcing steel and concrete is considered in this work. 

Moreover such an approach offers computational efficiency 

for the large scale simulations envisaged for the proposed 

model. The exploration of the bond-slip effect on the panel 

behavior is left for a future study. 

For a steel layer that represents one set of parallel 

reinforcing bars, the state determination starts with the 

projection of the generic total strain tensor 𝜺  in the 

direction of the bars. With the direction cosines m of the bar 

orientation the total strain of the steel bar is 

𝜀ϕ = 𝒎: 𝜺: 𝒎 (22) 

The strain 𝜀ϕ gives the uniaxial steel stress 𝜎ϕ from 
the constitutive relation of the reinforcing steel. The 
proposed model uses the Menegotto-Pinto model with 
isotropic hardening for its ability to represent the hysteretic 
behavior of the reinforcing steel with good accuracy, 
Filippou et al. (1983), as long as reinforcing bar buckling is 
not significant. The material state in terms of the steel stress  

 

Table 3 Model parameters for RC panel simulations 

Parameter 
Bhide and Collins 

(1987) 
Mansour and Hsu (2005) Stevens et al. (1991) 

𝑓𝑐𝑐  (MPa) -23.0 -50.0 -23.0 

𝜀𝑐𝑐 (%) 0.19 0.22 0.22 

𝑓0
−/𝑓𝑐𝑐 0.55 0.55 0.55 

𝛽 0.50 0.50 0.50 

𝐾 0.20 0.20 0.20 

 
 

𝜎ϕ and the tangent modulus 𝐶ϕ is transformed from the 
reinforcement direction to the stress 𝝈s  and tangent 
stiffness 𝑪s in the original element reference frame with 
the following operations 

𝝈𝑠 = 𝜎𝜙(𝒎 ⊗ 𝒎) (23) 

𝑪𝑠 = 𝐶𝜙(𝒎 ⊗ 𝒎 ⊗ 𝒎 ⊗ 𝒎) (24) 

The contributions of the different steel layers are 

summed up and then added to the concrete contribution. 

Fig. 6 illustrates schematically the proposed membrane 

model. The strains obtained from the nodal displacements 

of the finite element. As previously mentioned, assuming 

perfect bond, the same strains are considered for both 

concrete and each steel layer (in figure it is reported the i-th 

layer). The stress for concrete and each steel layer is 

evaluated with the proper constitutive law (the proposed 

plastic-damage model for concrete and Menegotto-Pinto 

model for each steel layer). Finally the average stress for 

the damaged RC membrane element is obtained by 

summing up the contributions of concrete and each steel 

layer as represented by the summation in Fig. 6. 

 

 

5. Correlation studies of RC membrane model 

 

Fig. 6 Schematic representation of the membrane model for RC panels 
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Fig. 7 Uniaxial tensile loading of RC panel by Bhide and 

Collins (1987) 

 

 

In this section, correlation of numerical results with 

experimental data investigates the ability of the proposed 

RC membrane element to simulate monotonic and cyclic 

response of reinforced concrete panels subjected to uniform 

stress states. In particular the analysis of the membrane 

element in axial and shear actions applied in each direction 

independently is presented by using only one membrane 

element for each case. Then the coupling effect is 

investigated through the analysis of one membrane element 

subjected to combined axial and shear actions. The bending 

behavior of the membrane element as well as other 

problems related to non-uniform stress distribution will be 

treated in a future study. 

 

5.1 RC panel under uniaxial tension 
 

The first correlation study concerns the square RC panel 

with specimen number PB2 by Bhide and Collins (1987). 

The panel has side dimensions of 890 mm, thickness of 70 

mm, and a reinforcing ratio of 2% in two orthogonal 

directions. The panel was subjected to monotonic uniaxial 

tension parallel to one reinforcing steel direction. The 

compressive cylinder strength is 23 MPa and the reinforcing 

steel has tensile yield strength of 240 MPa. 

The panel is represented with one membrane element in 

the model with the parameters for the concrete model in 

Table 3. Fig. 7 shows the average stress versus average 

strain in the loading direction. It should be noted that the 

response in terms of average stress versus strain is a global 

measure, equivalent to a force versus displacement relation. 

The membrane model captures well the three phases of 

specimen behavior starting with the initial elastic response 

followed by concrete cracking, the yielding of the 

longitudinal reinforcement and finally its hardening 

response. Despite the perfect bond assumption between 

concrete and steel, the model results are closed to the 

experimental ones in the concrete cracking phase thanks to 

the fact that the uniaxial tension is parallel to one 

reinforcement direction and thanks to the calibration of the 

concrete constitutive law with the fracture energy in 

tension. 

 

Fig. 8 Cyclic shear loading of RC panel by Mansour and 

Hsu (2005a) 

 

Table 4 Mechanical properties of RC panels, Mansour and 

Hsu (2005a) 

Panel 
𝑓𝑐𝑐 

(MPa) 
𝛼 𝜌𝑙 

𝑓𝑦𝑙 

(MPa) 
𝜌𝑡 

𝑓𝑦𝑡 

(MPa) 

CA2 45 45.0° 0.0077 424.1 0.0077 424.1 

CB3 48 45.0° 0.0170 425.4 0.0077 424.1 

CD3 47 68.2° 0.0130 425.3 0.0130 425.4 

CF2 44 79.8° 0.0056 424.1 0.0056 424.1 

CE3 50 90.0° 0.0120 425.4 0.0120 425.4 

 

 

5.2 RC panel under uniform cyclic shear 
 

The second correlation study concerns the RC panel 

specimens of Mansour and Hsu (2005a). These specimens 

were 1397 mm square with a thickness of 178 mm and were 

reinforced with two orthogonal layers of steel reinforcement 

with different reinforcing ratios and different inclinations 

relative to the specimen’s principal axes. The specimens 

were subjected to quasi-static, uniform cyclic shear at the 

panel mid-plane with monotonically increasing amplitude. 

The homogeneous stress state of pure shear at 45o to the 

horizontal was achieved by loading the panel edges with 

normal forces of equal value but opposite sign in two 

orthogonal directions. The specimens were subjected to 

cyclic load reversals, under load-control before the reaching 

of reinforcement yielding, and under displacement-control 

thereafter. During the test, the specimen strains were 

measured over a length crossing several cracks. 

The specimens are divided in five groups CA, CB, CD, 

CE and CF, where the second letter refers to different 

reinforcement orientation. Each group is characterized by 

different specimens, labeled with different numbers, with 

different reinforcement ratios, for more details readers can 

refer to Mansour and Hsu (2005a). Table 4 gives the amount 

of reinforcement, its orientation and the mechanical 

properties of the constituent materials, with 𝑓𝑐𝑐 denoting 

the compressive cylinder strength, 𝛼 the angle between the 

reinforcement in the longitudinal l-direction and the 

horizontal panel edge, 𝜌𝑙 and 𝑓𝑦𝑙 the reinforcement ratio 

and the tensile yield strength of the bars in the l-direction, 

respectively, and 𝜌𝑡 and 𝑓𝑦𝑡 the reinforcement ratio and  
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Fig. 9 Comparison of numerical results with measurements 

of vertical strain vs. horizontal strain for specimen CE3 of 

Mansour and Hsu (2005a) 

 

 

Fig. 10 Comparison of numerical results with measurements 

of normal stress vs. vertical strain for specimen CE3 of 

Mansour and Hsu (2005a) 

 

 

the tensile yield strength of the bars in t-direction, 

respectively. 

The complete collapse of specimens CA2 and CF2 

could not be reached because of equipment limitations. The 

failure of specimens CB3 and CD3 was due to shear after 

the development of moderate or good deformation ductility, 

respectively. 

Each specimen is represented with one membrane 

element in the model with the parameters for the concrete 

model in Table 3. 

Fig. 8 compares the resulting numerical shear stress-

strain response with the experimental measurements. The 

results show that the proposed model describes accurately 

several features of the measured panel response such as the 

initial stiffness, the cracked stiffness, the shear strength, the 

panel deformation ductility, the pinching of the hysteretic 

behavior, and the onset of concrete compression failure, 

where applicable. 

To further assess the accuracy of the numerical model, 

the response of panel CE3 is compared with the measured 

vertical strain vs. horizontal strain relation in Fig. 9, and the 

vertical normal stress vs. corresponding vertical strain 

relation in Fig. 10. The agreement of the axial strains with  

 

Fig. 11 Cyclic shear loading of RC panel by Stevens et al. 

(1987) 

 

 

the experimental results is excellent. The progressive 

expansion of the panel due to the accumulation of plastic 

strains is captured very well by the proposed model. The 

slight discrepancy between experimental and analytical 

results at the sudden increase of compressive stress stems 

from the sudden closure of the cracks in the numerical 

model, which does not represent well the progressive 

stiffness recovery of rough crack closure in the specimen. 

This fact is also evident from the vertical vs. horizontal 

strain response in Fig. 9. 

 

5.3 RC panel under compression with shear 
 

The third correlation study concerns the square RC 

panel by Stevens et al. (1987) with side dimensions of 1625 

mm and thickness of 285 mm. The reinforcing ratios were 

2.93% and 0.98 in two orthogonal directions at 45° relative 

to the panel edges. The specimen for the correlation study 

identified as SE10 had compressive cylinder strength of 34 

MPa and tensile yield strength for the reinforcing steel of 

422 MPa and 479 MPa for the larger and smaller bar 

diameter, respectively. To induce a stress state of biaxial 

compression with shear the panel edges were subjected to 

normal stresses of opposite sign in the orthogonal directions 

with the compressive stress value equal to twice the value 

of the tensile stress. The specimen was subjected to cyclic 

load reversals under increasing deformation. 

The specimen is represented with one membrane 

element in the model with the parameters for the concrete 

model in Table 3. Fig. 11 compares the numerical shear 

stress-strain relation with the average shear strain from the 

strain measurements at the panel edges. The results confirm 

the ability of the model to describe accurately several 

features of the measured panel behavior such as the yielding 

and subsequent hardening behavior, as well as the panel 

strength. The unloading stiffness and the residual strain are 

less accurate than those of the preceding example, because 

the direction of the reinforcing steel deviates from the 

loading direction and thus amplifies the effect of secondary 

shear resisting mechanisms in the RC panel. In fact, the 

cracks in the specimen are not parallel to the reinforcing 

mesh that might contribute to the shear strength not only 
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with axial tension but also through the dowel action. The 

significant effect of the dowel action on the unloading 

stiffness of the RC panel might arise from the fact that the 

reinforcing bars behave elastically upon load reversal. This 

limitation of the proposed membrane model will be further 

investigated in a future study. 

 

 

5. Conclusions 
 

The study describes a RC membrane element with a 

damage-plasticity model for the concrete in perfect bond 

with one or more biaxial orthotropic steel layers, each layer 

representing the reinforcing bars in two orthogonal 

directions. The concrete constitutive model couples damage 

with plasticity but avoids the internal iterations for the 

material state determination common in this type of 

formulation. While the consistent theoretical basis achieves 

robustness of the calculations, the lack of internal iterations 

improves significantly the numerical efficiency of the 

model and its suitability for large scale simulations. Key 

features of the proposed concrete constitutive relation are: a 

clearly defined multiaxial limit state function, two damage 

parameter with one describing the tensile damage state and 

one the compressive damage state, and an efficient plastic 

strain and damage evolution law for general three 

dimensional stress states. 

The correlation studies with experimental results of 

concrete specimens under cyclic load conditions and single 

panels under uniform stress conditions lead to the following 

conclusions: 

• The agreement of the model with measured data of the 

hysteretic response of concrete specimens confirm the 

model’s ability to represent the nonlinear material behavior 

under uniaxial cyclic tension and compression, and biaxial 

stress states. 

• The proposed RC membrane model is able to simulate 

the hysteretic behavior of RC panels with general 

reinforcement layout with satisfactory accuracy. The 

material constitutive relation for these studies is calibrated 

once against available material data and is used consistently 

in plane stress conditions without the need to further adjust 

the material parameters. 

• The comparison of the numerical results with the 

experimental response measurements of single RC panels 

under uniform stress states confirm the model’s ability to 

describe the shear strength and ductility of RC panels with 

sufficient accuracy. 

More extensive correlation studies with specimens 

under complex stress conditions will be discussed in a 

future work. 
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