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Abstract. This paper presents a numerical model developed to evaluate the load-deflection and moment-
curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced
Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete
section subjected to a combined axial force and bending moment. The model accounts for tensile strength
of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive
relations, the model evaluates the sectional curvature as a function of the applied axial load and bending
moment. Deflections along the beam are evaluated using a finite difference technique taking into account
support conditions. The developed numerical technique has been tested on a cantilever beam with a
transverse load applied at its end. A study of the behavior of the beam with tension reinforcement
compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover,
cracking of the section in the tensile region at ultimate load has also been considered. The results
indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel.
This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.
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1. Introduction

During recent years, interest in the nonlinear analysis of concrete members has increased

steadily because of the need for better understanding of their actual behavior leading to a better

implementation at optimum capacity. Exact analytical solutions to the materially nonlinear

behavior of concrete do not exist. Such closed-form solutions based on elastic-perfectly plastic

assumptions were introduced for special problems only. Therefore, numerical solutions tools are
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usually sought to provide an actual analysis in the nonlinear range. The most popular solutions

are the finite element (FEM), the equivalent system, the secant stiffness, and the cell

discretization methods. 

The first application of the FEM to RC structures dates back to the late 1960s. Since then,

rapid and great advances have been recorded, as can be seen in several comprehensive articles in

the literature. Reinforced concrete exhibits a very complex behavior near ultimate loads. The

complexity of this behavior can be observed in the nonlinear multi-axial stress-strain response,

tensile cracking, compressive crushing, material failures, and strain softening. Furthermore, the

composite nature of the material introduces additional difficulties in modeling the interactions

between reinforcement and concrete. Each aspect of the material behavior requires special and

extensive attention. Several alternative approaches and constitutive relations have been suggested

(Rasheed and Dinno 1994, Ngo and Scordelis 1994), but no general universal agreement has been

reached. An incremental-iterative analysis algorithm using the secant stiffness approach was

developed by Rashid and Dinno (1994). They succeeded in a direct prediction of the nonlinear

behavior of RC rectangular sections coupled with relevant flexural and axial rigidities. Although

this model takes into account the axial loads, it failed to provide inelastic deflection along the

member. 

Vecchio (1989) modified existing linear finite element routines to enable a nonlinear analysis. This

procedure was based on an iterative, secant stiffness formulation and employed constitutive relations

for concrete and reinforcement based on the modified compression field theory.

Pagnoni and Slater (1992) developed a constitutive relation for reinforced concrete by combining

the bounding surface model with numerical procedures for the modeling of crack propagation.

Tension stiffening and steel reinforcement interaction effects were modeled by a constitutive

bounding surface model.

Although many of these researchers have used the finite element technique for the nonlinear

analysis of RC, there is a number of factors that prevented a wider acceptability of this method. The

first important consideration is that the constitutive properties of concrete have not been identified

completely. There are still no general accepted material laws available to model actual concrete

behavior. Non-linear finite element analysis of concrete structures can be very costly since it

requires considerable structural and numerical experience.

Other researchers have used different approaches for the nonlinear analysis of concrete like the

one by Fertis, who proposed the equivalent systems method (Fertis and Zobel 1958, 1961). This

method was used to analyze non-prismatic elastic sections. In this method, stress and deflection

characteristics of members are determined by replacing the original member of variable stiffness

with one of uniform stiffness, whose elastic line is identical to the original variable stiffness

member. The method was further improved to include the non-elastic behavior of material (Fertis

and Keene 1990, Fertis and Tanej 1991). This method, however, is not suitable for analyzing

sections subjected to combined axial and transverse loads.

Auciello and Ercolano (1992) have proposed the cell discretization technique to analyze large

deflections of beams characterized by a cubic constitutive equation. The solution was obtained by

means of an energy process using cell discretization. The system of nonlinear equations was solved

with a suitable combination of the Newton and Gauss-Seidel methods. 

Hamoush and Terro (1993) developed an exact solution model for sections subjected to combined

axial force and bending moment. The load-strain relation was developed for six different modes of

strain: pure elastic, pure plastic and elastic-plastic in compression and tension. A Newton-Raphson
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concept was used in the iteration technique for determining the strain values ε1 at the top and ε2 at

the bottom surfaces of section. However, that model was proposed for steel members only.

The performance of reinforced concrete members under load depends, to a great extent, on the

stress-strain relationship of concrete and steel and on the type of stress applied.

The constitutive modeling of concrete has received a worldwide research attention in the

literature. Many researchers have proposed empirical functions for the stress-strain relation of

concrete in compression (Wang, et al. 1978, Ahmad and Shah 1979). The work presented by Desayi

and Krishan (1964) and modified by Tsai (1987) has formed the basis of the constitutive modeling

employed in this paper.

The use of Fiber Reinforced Polymers FRP in reinforced concrete structures is gaining a

worldwide acceptance due to their numerous advantages. FRP are easy to handle, light weight,

posses high tensile strength and excellent resistance to fatigue, chemicals and corrosion.

The research work on FRP laminates includes that on ductility of strengthened beams (El-Hawary,

et al. 2003, Bencardino, et al. 2002, Duthinh and Starnes 2004); importance of adequate anchorage

system (Spadea 2000); effect of CFRP on concrete confinement (Swamy and Mukhopadhyaya

1999); effect of FRP configuration on behavior (Brena and Macri 2004) and modeling of FRP

confined concrete (Javier Malvar, et al. 2004, Fujikake, et al. 2004). ACI 440 report (1996) contains

also some details regarding the use of FRP in concrete structures. 

FRP may also be used as strands for internal reinforcement replacing steel bars in reinforced

concrete structures (Hamid, et al. 1995). 

The nonlinear behavior of concrete in compression and tension are both considered in the work

presented in this paper. The load-deflection and moment-curvature behavior of a typical

cantilever with a point transverse load at its end is analyzed. A comparison between the behavior

of the beam with tensile steel reinforcement and that with Fiber Reinforced Polymer (FRP) is

presented. Four different types of FRP systems are employed in this analysis: Nonlinear and

linear systems incorporating glass fibers and nonlinear and linear systems incorporating carbon

fibers. The authors are also in the process of introducing additional FRP types for the

replacement of tension steel in the repair of RC structures. The areas of FRP used in the analysis

were calculated such that their ultimate moment is equivalent to that of a beam with steel tension

reinforcement only. Since the behavior of concrete in tension is also included, patterns of

cracking giving zero tension in concrete were also taken into account in the numerical method. A

simplified finite difference technique is employed to determine the load-deflection characteristics

along the beam, taking into account its support conditions. The computer code for the model has

been developed using MATLAB (2002).

The constitutive relations adopted for concrete and reinforcing steel in addition to those of the

employed FRP systems are presented in this work. Different values of the point transverse load are

studied up to the failure value giving an ultimate moment at the support. Cracking patterns are

considered at the failure load only. The results indicated that beams reinforced with FRP systems

possess more ductility than those reinforced with steel. This is expected since the moduli of

elasticity of all four types of FRP are much lower than that of reinforcing steel. Should a lower

ductility be required, an optimum value of FRP area for one or combination of FRP layers could be

employed.
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2. Constitutive stress-strain relations 

2.1. Concrete

Although tensile stresses in concrete are very small, they can be relatively significant at low

values of loading. This is why the proposed model adopted in compression the relations developed

by Desayi and Krishan (1964) and modified by Tsai (1987), and extended it to tension. This

constitutive relation is presented in the equation below and illustrated in Fig. 1: 
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Fig. 1 Proposed stress-strain in compression and tension relation for concrete

Fig. 2 Proposed stress-strain in compression and tension relation for reinforcing steel
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2.2. Reinforcing steel

A bilinear relation, elastic-perfectly plastic, for steel is considered in compression and tension.

This relation is given in the equation below and illustrated in Fig. 2:

σ = E × ε  for E = 200 GPa (2)

2.3. FRP systems

The FRP systems utilized in this work is based on woven glass or carbon fabric composites made

of vinylester matrices. Vinylester is generally preferred over epoxy for its better resistance to

moisture, strong fiber-matrix interface bond, interface durability and its usually cheaper in cost. The

fabrics were used both on 0 and 45 degrees orientation, where 0 degree means that the load

direction is parallel to the weft or weaving direction. The materials were tested experimentally by

Hamoush (2001). The 0 degrees materials demonstrated linear response, while the 45 degrees

loading showed high nonlinearity. The Ramberg-Osgood equation was selected to represent the

behavior of the fabrics as it covers both linear and nonlinear responses of materials.

The constitutive relations for the four different types of FRP employed in this work are given in

Eqs. (3) through (6) below Hamoush (2001). They are also illustrated in Fig. 3:

Linear glass fiber

σ = E × ε  for ε  ≤  1.25% and E = 27.6 GPa (3)

Linear carbon fiber

σ = E × ε for ε ≤ 1.25% and E = 48.3 GPa (4)

Non-linear glass fiber
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Fig. 3 Stress-strain relation for the four FRP systems in tension
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for ε ≤ 11% and E = 11.7 GPa; R = 255.1 GPa & n = 4.2 (5)

Non-linear carbon fiber

for ε ≤ 11% and E = 11.7 GPa; R = 334.4 GPa & n = 4.2 (6)

3. Finite difference approach

Deflections along the beam are calculated using the finite difference technique. In this finite

difference solution, the member is divided into a number of equal elements. The elements are joined

at their ends by nodes. A trial deflected shape is assumed to start the iterative method. The

deflections are then calculated at the nodes using a Taylor approximation for beam-columns. The

curvatures at nodes are calculated from internal equilibrium. The finite relationship between

curvature and deflection is presented below. See reference (Desayi and Krishnan 1964)

Δi + 1 = (lxx)ρi + 2Δi − Δi−1 (7)

 
where,

lxx = length of each element or segment

Δi  = displacement of loaded beam at node (i), measured from its initial position

ρi  = curvature of section at node (i)

As can be seen from Eq. (7), a knowledge of two previous values of deflection is required to get

that at node i + 1. If the beam is simply supported, a value is assumed at the middle of the beam-

column, which would form node i. From symmetry, node i − 1 and node i + 1 would then have the

same value. In which case, Eq. (7) would become as follows:

Δi + 1 = ((lxx)ρi + 2Δi) / 2 (8)

Eq. (8), however, should only be used for the node next to the middle one. Knowing the assumed

displacement at the middle and at the node next to it, the remaining deflection values should then

be determined using Eq. (7) until the node at the simple support is reached. Since the deflection at

the support should be equal to zero, the assumed value at the middle of the beam is then altered

accordingly.

As for a cantilever beam-column case, the finite difference calculation is started at the fixed end.

To satisfy a zero displacement and rotation at the fixed end, an imaginary node beyond the support

with displacement Δi − 1 = Δi + 1 is assumed. Since the displacement at the fixed end Δi is also equal

to zero, Eq. (7) is written for the next node only as follows:

Δi + 1 = (lxx)ρi / 2 (9)

The deflection at the rest of the nodes are then calculated using Eq. (7). No iteration is required

for the cantilever case. 
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4. Numerical algorithm

The computer code has been written using MATLAB (2002). This well-established and robust

numerical tool will allow the authors to develop the presented methods further. The following steps

has been followed throughout the analysis:

Step1 The beam-column is subdivided into n elements joined at their ends by n+1 nodes.

Step2 Starting at the fixed end, the moment and axial force are calculated at the section of each

node.

Step3 With the strain at the compression side of the section fixed, the strain at the tension face

is varied until equilibrium is reached between applied and calculated axial forces.

Cracking patterns can be imposed by the user at desired nodes at the start of the analysis.

If a crack is imposed at a section, the tension force in concrete is set to zero.

Step4 The strain at the compression face is, then, varied until the difference between applied and

calculated moment changes sign and then iterated until it reaches acceptable user preset

tolerances. It should be kept in mind that forces equilibrium in step 3 is performed and

the strain at the tension face obtained whenever the strain at the compression face is

varied. 

Step 5 Having the strain values at both faces of the section at the node, the curvature is then

obtained from the ratio of the difference between those two strain to the depth of the

section.

Step 6 Next, Eq. (7) is employed to get the deflection at the next node. As mentioned above, the

algorithm is first started by calculating the curvature at the fixed end to get the

displacement at the next node using Eq. (9).

5. Numerical examples

The developed method has been tested for a simplified cantilever beam-column case where a hand

verification of the results has been performed by the authors to check the accuracy of the results.

The considered beam has a length of 3 m, and a 300 × 600 mm × mm concrete section with a

compression steel of 2580 mm2. A 76 mm concrete cover has been used for the compression and

tension steel or FRP tension reinforcements. The concrete had a compressive strength of 27.58 MPa

and the steel has a yield strength of 276 MPa. In the case of tensile steel reinforcement, a tensile

steel area of 1290 mm2 has been used, giving an ultimate moment of 264.45 kN.m. 

To obtain the same ultimate moment value using FRP systems as a replacement for the tension

reinforcing steel, the following areas of FRP were calculated:

Linear Glass Fiber = 1677.3 mm2

Linear Carbon Fiber = 967.7 mm2

Non-Linear Glass Fiber = 6276.8 mm2

Non-Linear Carbon Fiber = 5025.3 mm2

FRP fabrics were cut along the weft and on 45 degrees orientation to represent the linear and

nonlinear cases, respectively. Although the nonlinear case does not provide optimum strengthening,

the use of FRP at exactly 0o is not guaranteed in practice and hence the extreme, 45o, case has to be

studied. The fabrics were fixed in place, using epoxy, in such a way that the center of each strip lies
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at 76 mm, concrete cover, from the outer tensile concrete surface as shown in Fig. 4.

Initially, a transverse load of 86.74 kN has been placed at the end of the cantilever to create an

ultimate moment at the fixed end. A comparison of the displacements and curvatures along the

length of the cantilever for the section reinforced with steel and with FRP systems is presented in

Fig. 5. The section is assumed to be uncracked and therefore, concrete contributes in resisting

tension. The displacement and curvature behavior of the nonlinear fibers are very close whereas

those of the linear fibers are almost identical. The higher values of displacement for the section

reinforced with FRP systems is expected since their moduli of elasticity are much lower than that of

reinforcing steel. The moduli of elasticity of the FRP systems ranges from 11.7 to 48.3 GPa

whereas that of reinforcing steel is 200 GPa. Therefore, beams reinforced with FRP, in general, of

reinforcing steel. The moduli of elasticity of the FRP systems ranges from 11.7 to 48.3 GPa

whereas that of reinforcing steel is 200 GPa. Therefore, beams reinforced with FRP, in general,

offer a much higher deflection than those reinforced with steel. This is also observed with the

gradual drop in the curvature in FRP systems compared to the sharp change within the first element

Fig. 4 Layout of FRP fabrics

Fig. 5 Displacement and curvature along the length
of the cantilever for the steel and FRP
systems. Transverse load = 86.740 kN

Fig. 6 Displacement and curvature along the length of the
cantilever for the steel with alternated cracks and
uncracked sections. Transverse load = 86.740 kN
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of the beam. This latter change can be further smoothened, in general, if the finite difference mesh

is refined by increasing the number of element. However, it was observed that little difference has

taken place by refining the mesh. The mesh utilized in this work consisted of ten elements and

eleven nodes. 

With the maximum transverse load maintained at 86.74 kN, an analysis has been performed on the

effect of patterns of cracking on the displacement and curvature of the beam. Fig. 6 shows a

comparison between the behavior of the beam with steel reinforcement and with uncracked and

cracked sections at alternated nodes. Fig. 7 presents a comparison between the displacement and

curvature behavior of the section, uncracked and totally cracked, reinforced with nonlinear fiber glass.

Both figures indicate that cracking slightly increases displacement and curvature. This slight increase is

more noticed in sections reinforced with tension steel than in those reinforced with FRP systems.

Fig. 7 Displacement and curvature along the cantilever
for the nonlinear glass fiber, uncracked and
totally cracked. Transverse load = 86.740 kN

Fig. 8 Displacement and curvature along the length of
the cantilever for the steel and FRP systems.
Transverse load = 66.723 kN

Fig. 9 Displacement and curvature along the length
of the cantilever for the steel and FRP
systems. Transverse load = 44.482 kN

Fig. 10 Displacement and curvature along the length
of the cantilever for the steel and FRP
systems. Transverse load = 22.241 kN
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Figs. 8 to 11 illustrate the displacement and curvature behavior of the cantilever reinforced with

steel and FRP systems loaded at the free end with 66.723, 44.482, 22.241 and 4.448 kN

respectively. The same difference, as in the ultimate case, between the behavior of the sections

reinforced with steel and those with FRP systems with the latter being considerably more ductile.

However, the sharp drop in the curvature of sections reinforced with tensile steel observed at the

ultimate load case disappears in all other load cases. Also, at 4.448 kN, in Fig. 11, this difference is

significantly reduced and the section reinforced with steel approaches those reinforced with FRP

systems. Whereas the displacement and curvature of the sections reinforced with FRP systems

coincide. This behavior is hardly surprising since at very low loads the curvature at the nodes close

to the fixed end are small anyway for all reinforcement types and therefore will not cause large

difference in the displacement at the free end. Whereas, at higher loads, the difference in the

curvature is very large between steel and FRP reinforcement which will eventually add up to cause

a high difference in the displacement at the free end. 

A transverse load of 44.482 kN was coupled with an axial compression of 22.241 kN at the free

and, the results are shown in Fig. 12 for sections reinforced with steel and nonlinear FRP systems.

Comparing the results to those in Fig. 9 where only a transverse load of 44.482 kN was applied, a

slight decrease in the displacement and curvature are observed.

6. Conclusions

The following conclusions and recommendations are extracted from the study presented above:

1. The developed technique is based on establishing a load-deflection relationship for sections

subjected to combined axial force and bending moment. Material and geometric non-linearities are

considered in the method. Elastic-plastic constitutive relations are adopted for material non-

linearities. The geometric nonlinearly is solved using a finite difference approach to predict the

updated deflected shape of the beam in a step-by-step iteration procedure. 

Fig. 11 Displacement and curvature along the length
of the cantilever for the steel and FRP
systems. Transverse load = 4.448 kN

Fig. 12 Displacement and curvature along the length of
the cantilever for the steel and FRP systems.
Transverse load = 44.282 kN & axial load =
-22.241 kN
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2. The numerical method described in this research has been developed using a PC version of

MATLAB. The developed code is accurate, fast and user-friendly. Also, it is easily expandable to

include advanced material properties. This latter feature is important when compared to other FEM

methods where the researcher is usually restrained by modules and constitutive relations provided

by the software house thus hindering further development.

3. FRP fabrics may be utilized as external reinforcement for concrete beams. The FRP reinforced

beams were found to possess more ductility than steel reinforced ones.

4. The type and orientation of FRP fabrics greatly affect the behavior and the load carrying

capacities of members as they affect the material nonlinearities and hence the constitutive relations

parameters. 

5. The authors are investigating the properties of additional types of FRP systems as a

replacement of tensile steel reinforcement or for use in the repair of structures. Those new types of

FRP are usually obtained by either using new materials altogether or by varying the layout and

orientation of the fibers in the mesh of the FRP.

6. The developed modules can incorporate a combination of different FRP layers to accommodate

specified strength and/or ductility conditions and may also allow for non-uniform sections and

different support conditions.

7. The use of FRP systems as a replacement to reinforcing steel is still relatively recent and the

model presented in this research study is a modest attempt to advance the understanding of the

flexural behavior of such members.
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