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free transversal vibrations in self-anchored
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Abstract. The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension,
a method to determine the modes of vibration of the structure. The system of differential equations
governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field,
is reported in Appendix C. The whole analysis results from the application of Hamilton’s principle, using
the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces
of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation
concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final
form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-
remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the
resolution of this equation by a particular method based on a numerical approach. Respecting the
boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and
damped, the shape-function of the girder axis and the exponential function governing the variability of
motion amplitude in time. Finally the results so obtained are compared with those deriving from the
dynamic analysis performed by a finite elements calculation program.

Keywords: cable-stayed bridge; nonlinear analysis; variational formulation; trasversal motion; modes of
vibration; numerical approach; software.

1. Introduction

This paper treats of the case of a self-anchored cable-stayed bridge, with two spans, a suspension

converging to the top of the tower in correspondence with the bridge’s axis, and an A-shaped pylon

(Leonhardt and Zellner 1991). The hypothesis is introduced that the suspension cables are infinitely

close, that is to say a “curtain” hypothesis, and that once the tower is built and the assemblage of

the girder elements is finished, they will be subject to successive stretchings, so that the girder gets

an almost straight configuration, when the construction is complete. The only external force acting

on the girder constists of a uniform dead load gT, therefore the prestressed state of structural

elements, on the stay stretching operation, is characterized by traction in the stays, axial

compression in the girder and bending in the tower (Fig. 1).
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As to the tower, a cantilever-like behaviour is hypothesized: it is simulated by elastic constraints

and by an ideal mass concentrated on its top.

We also introduce a resistence to the motion acting on the mass with a sign opposite to that of

velocity and an intensity proportional to the velocity modulus, according to a damping constant c.

Damping constant c is expressed in terms of critical damping , where ξ represents the

damping ratio. Subsequently we refer to: the area respectively of the anchorage cable and of the

generic curtain cable as ACA, AC; the curtain density of the area of the stays as aC; the elasticity

modulus, the area, the mass per length unit, the inertial moments of the pylon calculated with respect

to the barycentric axis along the directions x and z of the global system, as EP, AP, mP , JP, JPz ; the

elasticity modulus, the area, the mass per length unit, the inertial moment of the girder calculated with

respect to its barycentric axis parallel to the global axis y, as ET, AT, mT , JT ; the inertial moment of

the two single beams constituting the girder, calculated with respect to its own barycentric axis parallel

to the global axis x, as Jt; the axial forces in the initial configuration acting respectively in anchorage

and curtain cables and in the girder as , , . The lengths of the anchorage and curtain cable

spans are indicated respectively by  and . The sag variations of the stays are neglected.

Straight cables are hypothesized, both in their initial and final configurations, yet introducing

the equivalent tangent Dishinger modulus ECA and EC, respectively for the anchorage cable and

the generic curtain cable, in order to take into account their real behaviour. The structural

deformations are: the longitudinal displacements uP, uT and the transversal ones wP , wT

respectively of the tower top and of the barycentre of a generic section of the girder; the vertical

displacement vT of the barycentre of a generic section of the girder; the vertical displacements

vC1, vC2, the transversal displacements wC1 wC2 and the longitudinal ones uC1 , uC2 of the

anchorage points of the stays to the girder. The vertical displacement of the tower top is regarded

as equal to zero, so that its axial deformability is neglected. For small vibrations, putting

, the vertical and longitudinal displacements of the anchorage points of the cables

to the girder and of the barycentre of the girder’s generic section, can be expressed in terms of

the transversal displacement wT (Monaco and Fiore 2003):

cc:c ξcc=
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Fig. 1 Prestress configuration
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;  ;

;  ;

Besides we set . The static behaviour of the girder is assumed to follow Engesser-

Courbon hypothesis. Finally we denote by  the mid-width of the girder, by γC the

specific weight of the stays and by ρCA the share coefficient relative to the anchorage cables of the

resulting force transmitted by the stays to the tower top. The meaning of the other symbols utilized

is shown in Figs. 1 and 2.

The system of differential equations governing the vibrations of the bridge has been obtained by

the application of Hamilton’s principle, that can be expressed as follows:

where:

T* represents the kinetic energy accumulated by the structure when passing from the initial to

the final deformed state;

represents the strain energy associated with the linear displacement increments;

Vg represents the geometric strain energy due to initial prestress;
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 represents the potential energy of the additional external forces, which are equal to zero in

this case, because the focus is on determining the free vibrations of the bridge;

δWD is the virtual work made by viscous damping forces, which, as it is known, are non-

conservative (Abdel-Ghaffar, Ahmed and Lawrence 1982).

Substituting in the above equation the expressions of the energies reported in Appendix B, we

have derived the system of differential equations governing the motion of the structure. 

In order to simplify the solution method for the motion equations, the following hypotheses have

been made: for the functions

, , ,

variation laws, obtained through a continuous linear regression according to the principle of

minimum quadratics, have been adopted; for  the expression obtained

through a polynomial regression of the third order, according to the principle of minimum

quadratics, has been used.

Functions CV and CU appear several times in the functional since they connect respectively the
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Fig. 3 (a) Law proposed for CV - left span , (b) Law proposed for
CV - right span  
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Fig. 4 (a) Law proposed for CE - left span , (b) Law
proposed for CE- right span 
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vertical displacements vT and vCi and the longitudinal displacement uT with the transversal

displacement wT.

Therefore an initial effective simplification of the motion equations has been allowed by their

linearization.

Besides, as to function CE, a mean value of the equivalent tangent Dishinger modulus has been

taken into consideration, both for the first and second spans.

Figs 3a-3b, 4a-4b and 5a-5b feature the laws proposed for functions CV, CE and , concerning a

cable-stayed bridge having the geometrical and mechanical characteristics summarized in Table 1

(cf. paragraph 4).

2. Linear solution

The system of differential equations governing the motion of the structure, is reported in

Appendix C.

This paper proposes an approximate solution of Eq. (4)’, making part of this system. The terms

containing the product wT · uP and its derivatives, as well as the tower displacement wP compared to

the girder displacement wT, are neglected: in this way Eq. (4)’ becomes indipendent from the other

equations of the system. This assumption is allowable since the numerical solutions that have been

carried out, have shown that, with the A-shaped tower, the displacements uP and wP of its top are

negligible with respect to the girder transversal displacement wT (cf. paragraph 4). Finally the terms

in wT whose order is superior to the first, are neglected too. If the mechanical characteristics of the

girder are steady throughout its whole development, the equation describing the damped free

sC

°( )

Fig. 5 (a) Law proposed for -left span = F + Gz + Hz2 + Jz3 = 165.06 − 0.839z − 8.4·10−4z2+1.61·10−5z3

[m], (b) Law proposed for -right span = K + Sz + Vz2 + Wz3 = 195.94 − 1.992z + 9.37·10−3z2

−1.007·10−5z3 [m]

sC

°( )
sC

°( )

sC

°( )
sC

°( )

Table 1 Data concerning the geometrical and mechanical characteristics of the cable-stayed bridge

l1 = 147.42 [m] LT = 358.02 [m] hP = 74.2 [m] HP = 114.6 [m] bT = 11.73 [m]

ACA = 0.034 [m2] AC = 0.007 [m2] aC = 0.00033 [m2/m] AT = 0.74 [m2] AP = 18 [m2]

g
T
 = 193.11 [kN/m] mT = 19.68[kN · s2/m2] γC = 7.85 · 10−5 [kN/cm3] JT = 59.55 [m4] Jt = 0.18 [m4]

JP = 112.26 [m4] ET = 21000 [kN/cm2] EP = 3122 [kN/cm2] ξC = 0.001 ξT = 0.004
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transversal vibrations of the girder, putting , assumes the following form:

(1) 

Neglecting the contribution of damping and putting wT = wT
*(z)·eiωt in steady-state, Eq. (1)

becomes:

(2)

Subsequently taking into consideration damping and putting wT = wT
*(z)·Φ(t), in steady-state and

in the hypothesis of normal mode of vibration according to which ωnC = ωnT = ω (cf. Appendix B

and Monaco and Fiore 2003), Eq. (1) divides into two equations, the first of which coincides with

(2) and the second is given by:

with λ = const = (3)

Eq. (3) admits the expression as a solution and allows therefore

to calculate for each mode of vibration the damped frequency and the

exponential function governing the variability of motion amplitude in time. Instead (2) is

a differential equation with variable coefficients and makes it possibile to obtain the natural

(not damped) frequency ω and the shape function of the girder axis, for each mode of

vibration.
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3. Solution of the differential equation

We propose a method for the solution of differential Eq. (2) based on numerical calculus. 

Considering initially the boundary value problem for the first span, Eq. (2) can be written, by a

synthetic mathematical notation, in the form:

 with 

(4)

having put:

;

; 

;

; 

.

To transform the boundary value problem of the fourth order into a problem of the second order,

it is necessary to replace the expression  in Eq. (4), getting the following system:
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with:

;    ; 

;   

The boundary value problem for the second span is obtained in a perfectly analogous way:
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To solve the equation under examination from a numerical view-point, it is necessary to consider

the boundary value problems related to the two spans as just one discrete problem defined over the

whole length of the bridge. For this purpose a decomposition of interval [0, l1] is initially carried

out, that is to say, putting K = l1/N, with N as a whole number, the following points are defined:

 with ,    .

If interval [l1, LT] is then divided using the same amplitude K chosen for the first span, indicating

the lower whole part of the real number K by , the following points are obtained:

 with .

Subsequently the first and second derivatives of the unknown fuctions are approximated using

finite difference formulas based on Taylor expansions. Denoting the approximation of the function

in point z = zj by hj, that is setting with j = 0, …, N+M, the first and second derivatives of

hj can be witten:

;   (8)

On the basis of the above assumptions, Eqs. (6) and (7) become:

                       with (9)

    with (10)

and, replacing the first and second derivatives with expressions (8), it follows that:

with  (11)

                               with (12)

A system of N + M − 2 vectorial equations is formed by Eqs. (11) and (12) altoghether.

Finally, putting and defining the following 2 × 2

matrices:

with ;

   with ;

with ;
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with 

  with ; 

with (13)

a block tridiagonal linear system is obtained. The boundary conditions, related to the structure under

examination, to be satisfied at the ends of each span, are:

;    ;    ;    ;

;    ;    (14)

From the conditions related to points z=0 and z=LT it follows that: 

;   (15)
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;     (16)
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third and fourth derivatives to the right and the left of the point. For the third derivatives it is

possible to apply the backward and the forward difference formulas respectively for the spans on

the left and on the right of z = l1:

; 

(20)

Instead as to the approximation of the fourth derivatives, it is rather complex since the known

formulas cannot be applied to noncontinuous functions. Therefore one can think of proceeding in

the following way: two new unknown values are introduced into the system,

 and ,

which are inserted in the equations of the two spans. But doing so an equation is absent because the
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with:

On the basis of these considerations, the global system to be solved is equivalent to the product of

a block tridiagonal matrix, indicated by A, for vector h:

(25)

The last step is to study for which values of parameter ω the problem allows a nontrivial solution,

that is to say coefficient matrix A results singular. In order to do that, it is useful to recall the

notions of eigenvector κi Cn
 and eigenvalue λi C of an A Cn×n matrix: Aκi = λiκi. Besides it

is necessary to apply the relation connecting the determinant of an A Cn × n matrix to its

eigenvalues λi: 

(26)
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approximation is 750, that is more than twice the points chosen for the discretization. 

Executing the program for a sufficient number of values of ω , it is possible to diagram the

obtained eigenvalues λmin in function of the values of ω themselves: in the light of Eq. (26), the

abscissas of minimum points of the resulting curve are just the values of ω making the determinant

of matrix A equal to zero and then the natural frequencies that have been looked for. 

4. Numerical application 

The proposed solution method has been utilized to determine the frequencies of the cable-stayed

bridge having the characteristics reported in Table 1 and in Fig. 6. 

The results of the calculus procedure are synthesized in Fig. 7, where the first four vibration

frequencies of the bridge (the abscissas of the null points of the graph) are underlined.

Finally we have performed the dynamic analysis of the cable-stayed bridge under examination by

a finite elements calculation program. Finite elements code SAP2000 has been used. The initial

stage consisted in building a model as faithful as possible to the structure under examination, whose

geometrical and mechanical features are summarized in Table 1 and in Fig. 6. The geometric

realization of the model has been obtained, properly placing, with respect for the real configuration

of the structure, a series of linear elements (frame elements) and of plane elements (shell elements),

interconnected by joints. In particular frame elements have been used both for the pylon and the

stays, shell elements for the girder, with a total of 568 frame elements, 2035 shell elements, 1600

joints and 9528 degrees of freedom. Each frame or shell element is associated to a section and a

material, coherently to the data reported in Table 1. Precisely only three materials have been

employed, the concrete which the pylon is made of, and two types of steel, one for the stays and the

other for the girder. Program SAP2000 provides the natural frequencies of the structure related to

wholly general modes of vibration. Therefore, from the first 30 modes of vibration of the bridge, we

Fig. 6 Geometrical characteristics of the cable-stayed bridge
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have extrapolated only the vibrations having the transversal displacement component of the girder

predominant in comparison with the other motion components. In particular the transversal modes

of vibration have resulted to be the 4th, the 12th, the 18th and the 30th ones. From now onwards,

these modes of vibration will be referred to as respectively the 1st, the 2nd, the 3rd and the 4th

transversal modes of vibration of the bridge girder. Obviously the first 30 modes of vibration also

include the vertical, longitudinal and torsional modes of vibration and the modes with coupled

motion of the girder and the tower (Abdel-Ghaffar 1991). Just one of these coupled motions

concerns the transversal oscillations of the girder, which in this case are indeed decidedly negligible

in comparison with the vibrations of the tower: that is the reason why these motions lie outside the

research carried out. 

Observing Table 2 you can note that the values of natural frequencies ωi obtained by the

numerical method are quite comparable to the values determined by the finite elements procedure. 

Moreover, from a comparison between the displacements of the tower top and those of the girder,

derived from program SAP2000, it results that the hypothesis of neglecting the displacements of the

tower top compared to the transversal one of the girder can be considered acceptable. In fact Table 3

shows, for each of the four transversal modes of vibration, respectively the values of the

displacements of the tower top and the value of the maximum transversal displacement of the girder.

Fig. 7 Graph of the natural frequencies

Table 2 Values of the natural frequencies

Numerical method ω1 = 6.54 rad/sec ω2 = 14.65 rad/sec ω3 = 25.2 rad/sec ω4 = 47.75 rad/sec

Finite elements ω1 = 7.78 rad/sec ω2 = 16.35 rad/sec ω3 = 25.67 rad/sec ω4 = 44.12 rad/sec

Table 3 Values of the displacements

Mode ω [rad/sec]

Displacements of the tower top Maximum displacement 
of the girder in direction

 x [mm.]
Displacement in 

direction x [mm.]
Displacement in 

direction y [mm.]
Displacement in 
direction z [mm.]

1 7.78 0 3.408*10−5 0 0.02943

2 16.35 0 1.776*10−4 0 0.02665

3 25.67 0 4.95*10−4 1.404*10−6 0.02493

4 44.12 -2.034*10−6 -2.371*10−5 0 0.02784
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Finally Fig. 8 shows the shape-functions of the girder axis normalized to the unit, related to the

first four transversal modes of vibration, obtained by the two above mentioned methods.

5. Conclusions

After knowing the system of differential equations governing the motion of a self-anchored cable-

stayed bridge with a curtain suspension, obtained by a study to the continuum based on generalized

Hamilton’s principle in a nonlinear field, neglecting nonlinear terms and some quantities affecting

the solution in a non-remarkable way, the equation of the transversal oscillatory motion of the girder

of the bridge has been derived. 

This equation, in the hypothesis of normal mode of vibration and in steady-state, has been divided

into two equations: the first is a fourth order differential equation with variable coefficients,

represents the equation concerning the free transversal oscillations of the girder and makes it

possibile to obtain, for each mode of vibration, the natural (not damped) frequency and the shape

function of the girder axis; the second one is a second order differential equation, reflects the

damping of the system and allows to calculate, for each value of the natural frequency, the

corresponding damped frequency and the exponential function governing the variability of motion

amplitude in time. The equation describing the free (not damped) transversal motion of the bridge

girder has been solved by a numerical method. Initially the boundary value problem of the fourth

order has been transformed into a problem of the second order. Subsequently, after dividing the first

and second spans respectively into N and M intervals having the same amplitude, for each interval

the motion equation has been rewritten and the first and second derivatives of the unknown

Fig. 8 Modes of vibration
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functions have been approximated using finite difference formulas based on Taylor expansions.

Then the boundary conditions have been imposed at the ends of each span and a vectorial system,

characterized by a block tridiagonal coefficient matrix, has consequently been obtained. Finally a

study has been carried out to determine for which values of natural frequencies the problem allows

a nontrivial solution, that is to say the coefficient matrix results singular. 

In order to do this, program “main1”, based on the relation connecting the determinant of a

matrix to its eigenvalues, has been elaborated. In particular program “main1” has been structured in

such a way to provide as output, for each value of natural frequency inserted in input, the lesser

eigenvalue, in absolute value, within the whole set of eigenvalues corresponding to the coefficient

matrix calculated for that specific value of the natural frequency and the graph of the girder

transversal displacements normalized to the unit. 

So it has been possible to diagram the minimum eigenvalues so obtained in function of the values

of the natural fequencies themselves, putting the values of natural frequencies in abscissa and the

values of minimum eigenvalues in ordinate: the abscissas of minimum points of the resulting curve

have provided just the natural frequencies that have been looked for. 

Finally the dynamic analysis of the bridge has been performed by using a finite elements

calculation program. Finite elements code SAP2000 has been used. This program provides the

natural frequencies of the structure related to wholly general modes of vibration, thereby only the

vibrations having the transversal displacement component of the girder predominant in

comparison with the other motion components have been extrapolated from the first 30 modes of

vibration including the transversal, longitudinal, vertical and torsional motions of the bridge. The

coincidence between the results obtained by the two different methods attests the validity of the

treatment we have conducted. The numerical method that has been presented in this paper, has

led to appreciable results, proving to be better than a finite elements calculation program, both

for the application speed of the procedure and its suitability to the several typoligies of cable-

stayed bridges. Moreover the numerical method we have proposed, allows to take into account

some specificities of the structure being examined, that can hardly be inserted into a finite

elements calculation program.
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Appendix B: Potential energy, kinetic energy and virtual work of the  viscous
damping forces

Potential energy of the structure

The potential energy of the whole structure is given by the sum of the contributions relative to the

stays, the girder and the pylon: .

Potential energy of the anchorage stays:
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Potential energy of the curtain stays:

 

with: .

Potential energy of the girder:

with:  for

  for  . 

Potential energy of the pylon:

 with: 

Kinetic energy of the structure

The kinetic energy of the cable-stayed bridge results from the sum of the contributions given by

the stays, the girder and the pylon: . 

Kinetic energy of the stays:

Kinetic energy of the girder:
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Kinetic energy of the pylon:

 with:  

Virtual work of the viscous damping forces of the structure

The virtual work made by the dissipative forces of the whole structure is given by the sum of the

terms related to the stays, the girder and the tower: δWD = δWDCA + δWDC + δWDT + δWDP.

Virtual work of the viscous damping forces of the stays:

where: ξC is the damping ratio of the stays;  and  are the

critical dampings per length unit concerning respectively the anchorage stay and the generic curtain

stay, being ωnCA and ωnC their corresponding natural frequencies.

Virtual work of the viscous damping forces of the girder:

 

where: ξT is the damping ratio of the girder; ccT = 2 mTωnT is the critical damping per length unit of

the girder and ωnT is its natural frequency. 

Virtual work of the viscous damping forces of the tower:

where: ξP is the damping ratio of the tower;  and  are the

ideal critical dampings per length unit of the tower, respectively in the directions z and x of the

global reference system, while ωnPu and ωnPw are its natural frequencies in the same directions.
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Appendix C: System of differential equations
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Appendix D: Program “main1”

Clear
format long e
l1 = 147.42;
LT = l1 + 210.6;
K = (LT − l1)/200;
z = 0 : K : l1 ;
N = length (z) − 1; 
z1 = l1 + K : K : LT ; 
M = length [z1] ;
z = [z z1] ;
A = zeros (2*(N + M + 1) + 1);
K2 = K^2;
ω = input(“Write the value of ω”);
for i = 1 : N − 2
j = 2*i − 1;
A([ j j + 1], [j j + 1]) = 2*(K2*alfa 3(z(i), ω) − 2*alfa 1(z(i)));
A([ j j +1], [j + 2 j + 3]) = 2*alfa 1(z(i)) + K*alfa 2(z(i));
A([ j + 2 j + 3], [j j + 1] = 2*alfa 1(z(i+1)) − K*alfa 2(z(i + 1)); 
end
A([2*N − 3 2*N − 2], [2*N − 3 2*N − 2]) = 2*(K2*alfa 3(z(N −1), ω) − 2*alfa 1(z(N − 1)));
A(2*N − 3,2*N − 1) = 2*A1(z(N − 1)) + K*B1(z(N − 1));
A(2*N − 1,2*N − 3) = − B1(z(N));
A(2*N − 1,2*N − 2) = − D1(z(N));
A(2*N − 1,2*N − 1) = B1(z(N)) + K*C1(z(N));
A(2*N − 1,2*N) = K*A1(z(N));
A(2*N, 2*N − 1) = K*C2(z(N)) − B2(z(N));
A(2*N, 2*N + 1) = K*A2(z(N));
A(2*N, 2*N + 2) = B2(z(N));
A(2*N, 2*N + 3) = D2(z(N));
A(2*N + 1, 2*N − 2) = 1;
A(2*N + 1, 2*N + 3) = 1;
A(2*N + 2, 2*N − 1) = 2*A2(z(N + 1)) − K*B2(z(N + 1));
for i = N +1 : M + N
j = 2*i − 1; 
A([ j + 1 j + 2], [j + 1 j + 2]) = 2*(K2*beta 3(z(i), ω) − 2*beta 1(z(i)));
A([ j + 1 j + 2], [ j + 3 j + 4]) = 2*beta 1(z(i)) + K*beta 2(z(i));
A([ j + 3 j + 4], [ j + 1 j + 2]) = 2*beta 1(z(i + 1)) − K*beta 2(z(i +1));
end
j = 2*(M + N + 1) − 1;
A([j + 1 j + 2], [j + 1 j + 2] = 2*(K2 beta 3(z(M + N + 1), ω) − 2*beta 1(z(M  + N + 1)));
[U, D] = eig(A); 
[λmin, KK] = min(abs(diag(D)));
x = U(:, KK);
λmin

x2 = x(length(x) : − 2 : length(x) − 2*M + 3);
x1 = [0; x(2 : 2 : 2*(N − 1)); 0; x2(length(x2) : −1 : 1); 0];
g = [0 : LT/750 : LT];
y = spline(z(1 : length(x1)), x1, g);
plot(g, y)

CC




