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1. Introduction 
 

In structural engineering, a shear wall is a structural 

system used to counter the effects of lateral loads acting on 

a structure. The concrete shear walls must resist to lateral 

loads due to earthquakes. However, structural damages and 

early code shortcomings threaten the efficiency of existing 

structural walls against earthquake. 

The time-varying behavior of reinforced concrete 

structures under sustained service loads drawn the 

attention of engineers who were dealing with the 

problems of their design more than 60 years. The 

solution of structural problems involving creep and 

shrinkage phenomena in composite steel-concrete 

structures has been an important task of engineers since 

the first formulation of the mathematical model of linear 

viscoelasticity. The development of structural analysis 

procedures, based on the creep models, is of great 

interest for engineers who need to investigate the effects 

of creep and shrinkage on the concrete structures. 
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The time-dependent behavior of concrete structures 

due to their properties of shrinkage and creep may lead 

to cause excessive strain and stress redistribution (Al-

Manasseer and Lam 2005). It’s can lead to cracking 

caused by stresses developed in concrete (Chia et al. 

2014). The redistribution of stresses and excessive strain, 

if not detected and treated properly, exerts a deterioration 

of concrete structures and even their collapse, resulting 

in economic and social costs (Almeida 2006).  

Several techniques are currently available to repair  

and retrofit these shear walls structure with insufficient 

stiffness, strength and/or ductility. These techniques include 

the strengthening of existing shear walls by the application 

of shotcrete of ferrocement, filling in openings with 

reinforced concrete and masonry infills, and the addition of 

new shear walls (Chung et al. 2014).  

Recently, new strengthening or rehabilitation techniques 

and materials of reinfirced concrete structures have been 

developed, among them new products based on advanced 

composite materials known as fibre reinforced polymers 

(FRP) can be cited (Mini et al. 2014, Boukhezar et al. 2013, 

Wang et al. 2014, Yeghnem et al. 2009, Sakr et al. 2017). 

FRP materials benefit several advantages in material 

properties and performance compared to the older building 

materials, causing much interest in their use in civil 

engineering areas and to repair damaged structures 
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Abstract.  Creep and shrinkage are the main types of volume change with time in concrete. These changes cause deflection, 

cracking and stresses that affect durability, serviceability, long-term reliability and structural integrity of civil engineering 

infrastructure. Although laboratory test may be undertaken to determine the deformation properties of concrete, these are time-

consuming, often expensive and generally not a practical option. Therefore, relatively simple empirically design code models are 

relied to predict the creep strain.  

This paper reviews the accuracy of creep and shrinkage predictions of reinforced concrete (RC) shear walls structures 

strengthened with carbon fibre reinforced polymer (CFRP) plates, which is characterized by a widthwise varying fibre volume 

fraction. This review is yielded by three commonly used international “code type” models.  

The assessed are the: CEB-FIP MC 90 model, ACI 209 model and Bazant & Baweja (B3) model. The time-dependent 

behavior was investigated to analyze their seismic behavior. In the numerical formulation, the adherents and the adhesives are all 

modelled as shear wall elements, using the mixed finite element method. Several tests were used to demonstrate the accuracy 

and effectiveness of the proposed method. Numerical results from the present analysis are presented to illustrate the significance 

of the time-dependency of the lateral displacements and eigenfrequencies modes. 
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Table 1 Formulas for the modulus of elasticity at age for 28 

days 

Design code Formula for Ec (MPa) 

Eurocode 2 Ecm = 22000(0,1. fcm)0.3 

CEB-FIP Code Model Ecm = 9980√fcm
3

 

ACI 318 Ec = 4733√fcm 

 

 

(Yeghnem et al. 2015).  

An important issue in this study is the time-dependent 

analysis of seismic response of RC shear walls strengthened 

with composite sheets, having a sinusoidal distribution of 

fibres. A three shrinkage and creep predictions models have 

been used to study the behavior of concrete including their 

rheological properties. Those models are namely: CEB-FIP 

MC 90 model, ACI 209 model and Bazant & Baweja (B3) 

model.     

 

 

2. Recommendations for modeling creep and 
shrinkage of concrete 
 

The prediction of creep and shrinkage effects in 

concrete structures as well as effects of various relevant 

variables related to material properties, climate and member 

size are provided in detail in many code type models. 

 

2.1 Shrinkage and creep prediction techniques 
 

Designers typically use one of two code methods to 

estimate creep and shrinkage strain in concrete, i.e., either 

Eurocode 2 or ACI 318. Eurocode 2 is based on the CEB- 

FIP MC 90 model recommended by the Euro-International 

Committee, and ACI 318 is based on the ACI 209 model 

recommended by the American Concrete Institute 

(Meyerson et al. 2002). This chapter presents three 

shrinkage and creep predictions models, namely the CEB-

FIP MC 90 model, ACI 209 model, and Bazant & Baweja 

(B3) model. 
 

2.2 Modulus of elasticity 
 

The modulus of elasticity is an input parameter to the 

creep compliance. It is defined as the tangent modulus of 

elasticity at the origin of the stress-strain diagram and can 

be estimated from the mean compressive cylinder strength 

and the concrete age. The tangent modulus Ec is 

approximately equal to the secant modulus Ecm of unloading 

which is usually measured in tests. Formulas according to 

some relevant design codes are shown in Table 1, where fcm 

is the mean concrete cylinder compressive strength at the 

age of 28 days (MPa). 
Besides the concrete strength, the elastic modulus 

depends also on the type of the aggregate, the curing 
conditions and the test method. The influences of these 
factors are largely responsible for the significant scatter 
which can be observed when experimental values of the 
modulus of elasticity are plotted against the concrete 
strength (Takács 2002). Test result of the elastic modulus is 
usually available for major structures but it is very rare that 

at least a short-term creep test is carried out (Takács 2002).  
 

2.3 CEB-FIP Model Code 1990 (MC 90) 
 

The equations presented here were published in the final 

draft of the MC 90 (CEB-FIP MC 90 1991). The model is 

valid for normal density concrete with grade up to C80 and 

exposed to a mean relative humidity in the range of 40 to 

100%. At the time when the code was prepared, very 

limited information on concrete with a characteristic 

strength higher than 50 MPa were available and therefore 

the models should be used with caution in that strength 

range. 

The CEB-FIP MC 90 procedure computes the creep 

compliance by Eq. (1) 

𝐽(𝑡, 𝑡0) =
1

Ec(t0)
+

Φ(𝑡, t0)

Ec

 (1) 

Where  

Φ (t , t0): the creep coefficient;  

t0: the age of concrete at loading in days;  

Ec=1,1.Ecm: the tangent modulus at the age of 28 days 

(MPa);  

Ec(t0): the tangent modulus at the age of loading t0 

(MPa). 

The creep coefficient is shown below 

Φ(𝑡, t0) = Φ0βcc(𝑡 − t0) (2) 

Where  

Φ0: the notional creep coefficient; 

βc(t−t0): the coefficient to describe the development of 

creep with time after loading. The notional creep coefficient 

can be determined by the following equations 

Φ0= ΦRH β(fcm) β(t0) (3) 

ΦRH=1+ 
1;𝑅𝐻/100

0,1 √ℎ0
3  (4) 

β(fcm)=
16,8

√𝑓𝑐𝑚
 (5) 

β(t0) =
1

0,1:t0
0,2

 
 (6) 

   0 =
2𝐴𝑐

𝑢
 (7) 

Where 

RH: the relative humidity of the ambient environment, 

expressed in (%); 

h0: the notional size of the shear wall (mm);  

Ac: the cross-sectional area of the shear wall (mm
2
);  

U: the perimeter of member exposed to the atmosphere 

(mm). 

The time development function for the creep coefficient 

is written as 

βc (𝑡 − t0)=0
𝑡;t0

βH:𝑡;t0
1
0,3

 (8) 

βH = 1,5,1 + (0.012 ∙ RH)18- h0 + 250 ≤ 1500 (9) 

The shrinkage strain is calculated by 
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𝜀𝑏
𝑓(𝑦) = 𝜀𝑐𝑠(t, ts) =  εcs0 βss(t − ts) (10) 

Where 

εcs0: the notional shrinkage coefficient;  

βs: the time function to describe the development of 

shrinkage with time;  

ts: the age of concrete when drying begins in days.  

The notional shrinkage coefficient can be estimated 

from 

εcs0= εs(fcm) βRH (11) 

Where 

εs(fcm)=,160 + 10𝛽𝑠𝑐(9 − 0,1𝑓𝑐𝑚)- ∙ 10;6 (12) 

βRH={
−1,55 ∙ [1 − .

𝑅𝐻

100
/

3

] ,

0,25, 𝑅𝐻 ≥ 𝛽𝑠1 ∙ 99%,
𝑅𝐻 < 𝛽𝑠1 ∙ 99% (13) 

Where βsc is a coefficient which depends on the cement 

type, 4 for slowly hardening cement, 5 for normal and rapid 

hardening cement and 8 for rapid hardening high strength 

cement; factor βs1 was assumed equal to 1,0. RH in Eq. (13) 

should be not less than 40%. 

The development of shrinkage with time is given by 

βs (𝑡 − ts)=√
𝑡;ts

0.035∙ℎ0
2:𝑡;ts

  (14) 

The influence of mean temperature other than 20°C can 

be also taken into account. With the decreasing temperature 

both the notional creep coefficient and the notional 

shrinkage coefficient are decreasing and their development 

with time are decelerated. 
 

2.4 The 1999 update of the CEB-FIP MC1990 
 

The models were published in the fib Bulletin (FIB 

1999). The primary intention with the update was to im-

prove the prediction models for high-strength concrete and 

further extend the validity of the models to high- 

performance concrete. 

The updated creep model was in fact first published in 

Eurocode 2 (Eurocode 2 2001). It is closely related to the 

model in the MC 90 (CEB-FIP MC 90 1991), but three 

strength dependent coefficients were introduced into the 

original model. The extended model is valid for both 

normal strength concrete and high performance concrete up 

to concrete cylinder strength of 110 MPa. Three coefficients 

were introduced into the MC 90 model 

α1=.
35

𝑓𝑐𝑚
/

0,7

 ;α2=.
35

𝑓𝑐𝑚
/

0,2

 ;α3=.
35

𝑓𝑐𝑚
/

0,5

4 (15) 

Coefficients α1 and α2 are meant to adjust the notional 

creep coefficient through the ΦRH term. Coefficient α3 is 

meant to be the adjustment for the time dependency 

function. Eqs. (4) and (9) have been rearranged in following 

form 

ΦRH= α201 + α1 
 1;𝑅𝐻/100

0,1 √ℎ
3 1 (16) 

The shrinkage model represents a major change. The 

total shrinkage is subdivided into the autogenous shrinkage 

component and the drying shrinkage component. With this 

approach it was possible to formulate a model which is 

valid for both normal strength concrete and high 

performance concrete having compressive strength up to 

120 MPa. 

The total shrinkage strain at time t is calculated as 

βH=1,5,1 + (0.012𝑅𝐻)18-0 + 250α3 ≤ 1500α3 (17) 

𝜀𝑏
𝑓(𝑦) =εcs(t,ts) = εcas(t) + εcds(t,ts) (18) 

εcas(t)= εcas0(fcm)∙ βas(t) (19) 

εcds(t,ts)= εcds0(fcm)∙ βRH(RH) ∙ βds(t,ts) (20) 

Where 

εcas(t) and εcds(t,ts): the autogenous and drying shrinkage 

strain at time t, respectively;  

εcas0(fcm) and εcds0(fcm): the notional autogenous and 

drying shrinkage coefficients, respectively; 

βas(t) and βds(t-ts): the time development function for 

autogenous and drying shrinkage, respectively;  

βRH (RH): the coefficient taking into account the effect 

of relative humidity on drying; 

t: the concrete age in days;  

ts: the age of concrete, when drying begins in days; 

The complete description of the 1999 update of the 

CEB-FIP MC1990 model can be found in the fib Bulletin 

(FIB 1999). 
 

2.5 ACI 209 model 
 
ACI 209 model (ACI 209 1998) recommends a 

procedure and set of equations for predicting creep effects 

in concrete structures. The method for predicting creep, 

established in this model, is valid for both normal and 

lightweight concrete, subjected to standard conditions. 

The creep coefficient, under standard conditions, is 

expressed by 

Φ(𝑡, t0)= 
(𝑡;𝑡0)0,6

10:(𝑡;𝑡0)0,6  Φ(t0) (21) 

Where 

t0: the initial time of loading in days; 

t: age of concrete in days of loading (days); 

Φ (t0): the final creep coefficient and expressed as 

Φ (t0)= 2,35 ∏ 𝛾𝑐,𝑖
6
𝑖<1  (22) 

Where γc,I, i=1…6 are empirical coefficients with ac-

count for parameters affecting the creep magnitude. 

Coefficient γc,1 accounts the concrete age at the time of 

the first loading, t0. 

𝛾𝑐,1 = {
1,25 ∙ 𝑡0

;0.118, 𝑡0 > 7𝑑𝑎𝑦𝑠;𝑚𝑜𝑖𝑠𝑡 𝑐𝑢𝑟𝑒𝑑

1,13 ∙ 𝑡0
;0.094, 𝑡0 > 1 − 3 𝑑𝑎𝑦𝑠 𝑠𝑡𝑒𝑎𝑚 𝑐𝑢𝑟𝑒𝑑

 (23) 

Coefficient γc,2 includes the effect of variations in the 

ambient relative humidity, RH (%) 

𝛾𝑐,2= 1,27 - 0,0067 • RH,   RH > 40% (24) 

Coefficient γc,3 accounts the size and shape of the 

member. Two alternative methods are given for the 
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Table 2 Correction factor accounts size and shape of the 

member for deriving creep and shrinkage 

Effects 
Average thickness ho,ACI 

51 76 104 127 152 

Creep 1,3 1,17 1,11 1,04 1,00 

Shrinkage 1,35 1,25 1,17 1,08 1,00 

 

 

estimation of γc,3 (ACI 209 1998). Here presented technique 

is based on the average thickness ho, ACI=2ho (see Eq. (7)) 

and recommended for average thicknesses up to about 305 

to 380 mm. For average thickness of the member less than 

150 mm, γc,3 is obtained from Table 2. 

For average thickness of members greater than 150 mm 

and up to 380 mm, γc,3 is calculated by the equation 

 𝛾𝑐,3 = {
1,14 − 0.00092 ∙ 0,𝐴𝐶𝐼;    𝑡 + 𝑡0 ≤ 1 𝑦𝑒𝑎𝑟

1,10 − 0.00067 ∙ 0,𝐴𝐶𝐼;   𝑡 + 𝑡0 ≤ 1 𝑦𝑒𝑎𝑟
 (25) 

Coefficients γc,4…γc,6 depend on the composition of the 

concrete 

 𝛾𝑐,4= 0,82 + 0,00264. s; s > 130 mm; 

 𝛾𝑐,5= 0,88 + 0,0024 . ɵ; ɵ < 40 or ɵ > 60%; 

 𝛾𝑐,6 =  0,46 + 0,09 . ɑ <  1,0;    ɑ >  8%, 

(26) 

Where s is the slump of the fresh concrete (mm); ɵ-the 

ratio of the fine aggregate to total aggregate by weight (%) 

and ɑ is the air content (%). These coefficients in undefined 

intervals are assumed equal to 1,0. 

Under a constant stress σ0 first applied at age t0, the 

load-dependent strain at time t is derived from the rela-

tionship 

ε (t) =
σ0

𝐸𝑐(𝑡0)
,1 + Φ(t, t0 )- (27) 

Where Ec(t0) is obtained from the equation presented in 

Table 1. The concrete strength at age t0 may be obtained 

from the 28 day strength by the equation 

fc(t)=
𝑡0

α:β∙t0
𝑓𝑐(28) (28) 

Where α and β depend on the cement type and curing 

conditions. For normal Type I cement, these coefficients are 

assumed equal to 4 and 0,85 (for moist curing) and 1 and 

0,95 (for steam curing), respectively. 

The shrinkage strain at time t measured from the start of 

drying is calculated by following equation 

𝜀𝑏
𝑓(𝑦) = ε 𝑐𝑠(t) = {

ε 𝑐𝑠,𝑢𝑡/(35 + 𝑡) ;   𝑚𝑜𝑖𝑠𝑡 𝑐𝑢𝑟𝑒𝑑

ε 𝑐𝑠,𝑢𝑡/(55 + 𝑡);  𝑠𝑡𝑒𝑎𝑚 𝑐𝑢𝑟𝑒𝑑
 (29) 

Where εcs,u is the ultimate shrinkage at time infinity and 

represents the product of the applicable correction factors 

ε 𝑐𝑠,𝑢= 780x10
-6 ∏ 𝛾𝑐𝑠,𝑖

7
𝑖<1  (30) 

Where γcs,i, i=1…7 are empirical coefficients with 

account for parameters affecting the shrinkage magnitude. 

Coefficient γcs,1 includes the effect of variations in the 

ambient relative humidity, RH (%) 

𝛾𝑐𝑠,1  = 2
1,40 − 0,0102 ∙ RH , 40 ≤ 𝑅𝐻 ≤ 80%
3,00 − 0,0030 ∙ RH , 80 ≤ 𝑅𝐻 ≤ 100%

 (31) 

Coefficient γcs,2 accounts for the size and shape of the 

Table 3 Shrinkage correction factor accounts for initial 

moist curing period 

Curing period in days 1 3 7 14 28 90 

γc,7 1,2 1,1 1,0 0,93 0,86 0,75 

 

 

member. Two alternative methods as in creep analysis are 

given in (ACI 209 1998) for estimating the γcs,2. Herein 

presented technique is based on the average thickness h0,ACI 

(Table 2).  

For average thickness of members greater than 150 mm 

and up to 380 mm, γcs,2 is calculated using the equation 

𝛾𝑐𝑠,2  = {
1,23 − 0,0015 ∙ 0,𝐴𝐶𝐼  ;  𝑡 − 𝑡0 ≤ 1 𝑦𝑒𝑎𝑟

1,17 − 0,0011 ∙ 0,𝐴𝐶𝐼  ;  𝑡 − 𝑡0 > 1 𝑦𝑒𝑎𝑟
 (32) 

Coefficients γcs,3...γcs,7 depend on the composition of the 

concrete 

𝛾𝑐𝑠,3 = 0,89 + 0,00161 ∙ 𝑠; 𝑠 > 130 𝑚𝑚; 

𝛾𝑐𝑠,4< {
0,30 + 0,014 ∙ ψ;  ψ ≤ 50%
0,90 + 0,002 ∙ ψ;  ψ > 50%

 

𝛾𝑐𝑠,5<0,95 + 0,008 ∙ α;  α > 8% 

𝛾𝑐𝑠,6<0,75 + 0,00061 ∙ 𝑐, 

(33) 

Where c is cement content in concrete (kg/m
3
); other pa-

rameters are analogous to Eq. (26). These coefficients in 

undefined intervals are assumed equal to 1,0. 

Coefficient γcs,7 accounts for variations in the period of 

initial moist curing and is presented in Table 3. For a 

concrete which is steam cured for a period of between one 

and three days γcs,7=1,0. 

 

2.6 Bazant & Baweia (B3) model 
 

The complete description of the B3 model can be found 

in (Bazant et al. 1995a, Bazant et al. 1995b).  

The mean shrinkage strain at time t is given as 

𝜀𝑏
𝑓(𝑦) = ε 𝑐𝑠(t,t0)=- ε 𝑐𝑠∞𝑘𝑅𝐻S(t) (34) 

Where 

ε 𝑐𝑠∞= 𝛼1α2(1,9x10
-2

w
2,1𝑓𝑐𝑚

;0,28
+270)x10

-6
 (35) 

S(t)=tanh√(𝑡 − 𝑡0)/𝜏𝑠ℎ (36) 

Where 

εcs∞: the ultimate shrinkage;  

S(t): the time function for shrinkage; 

α1 and α2: the correlation terms for effects of cement 

type and curing conditions respectively; 

W: the water content; 

kRH: humidity dependence factor; 

t: the age of concrete; 

t0: the age, when during begins; 

𝜏sh: the size dependence factor. 
The B3 model takes into account the influence of the 

material composition directly. Besides model parameters, 
which are considered in previously reviewed models, the 
cement content, the water-cement ratio, the aggregate- 
cement ratio and the water content are taken into account. 

The prediction model parameters and corresponding 
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Table 4 Models variables and limitations 

Variable 
CEB-FIP MC 90 

Model 

ACI 209 

Model 

Bazant & Baweja 

(B3) Model 

fcm (MPa) 20-120 ---- 17-69 

A/C ---- ---- 2,5-13,5 

Cement (kg/m3) ---- ---- 160-720 

W/C ---- ---- 0,35-0,85 

RH (%) 40-100 40-100 40-100 

Cement type I, II or III I, II or III I, II or III 

to or ts (moist cured) ---- ≥7 days ts≤to 

to or ts  

(steam cured) 
---- ≥1-3 days ts≤to 

 

 

Fig. 1 Cheung’s type element (12 DOFs) 

 

 

limitations for the CEB-FIP MC 90, ACI 209 and B3 

models are presented in Table 4. In this table, A/C is 

aggregate-to-cement ratio; W/C is water-to-cement ratio, t0 

and ts are the age of concrete at loading and beginning of a 

shrinkage, respectively. 

 

 

3. Finite element model for reinforced shear walls 
 

The finite element method (FEM) is a generalization of 

standard structural analysis procedures which permit the 

calculation of stresses and deflections in two and three 

dimensional structures. It has been popular for many years 

to analyze any type of building structures. However, due to 

relatively low efficiency and high computing cost, it has 

never been popular for shear walls analysis. The 

experiences with this method revealed that some 

applications are not as straightforward as initially 

conceived. Particularly, it has been found that many lower-

order elements such as the bilinear elements are subjected 

to parasitic shear, which greatly stiffens the elements in 

their response to bending. Also, it is felt that the best 

method of dealing with parasitic shear is to avoid them by 

using elements that can exactly represent the strain state of 

pure bending.   

To obtain an improved element, Cheung et al. (1978) 

and Chan et al. (1979) were developed the finite strip 

element, and higher order element to modelize the shear 

wall with the rotational DOFs for representing the strain 

state of pure bending. 
Cheung (1983) and Lee (1987) provided a 12 DOFs 

plane stress element having two translational DOFs and one 
DOF per node (Fig. 1). Their works have been used in 
many researches (Kim et al. 2003). As suggested by Kwan 
(1992, 1993), by neglecting the lateral strain in the wall,  

 

Fig. 2 Kwan’s strain based element (8 DOFs) 
 
 

which are generally of little significance. The DOFs can be 

reduced from 12 to 8 as shown in Fig. 2. Use of this 

simplified Cheung’s element, which is computationally 

more efficient, is recommended rather the original Cheung’s 

element. Using the mixed FEM, Kwan (1992) developed a 

wall element with the 8 DOFs. This element included two 

existing elements, namely the simplified Cheung’s element 

(Cheung 1983) and Kwan’s strain based element (1993). 

 

 

4. Solution procedure 
 

4.1 Creep and shrinkage effect on the elastic 
deformation of RC shear walls 

 
The strain εb(y) in the RC shear walls can be expressed 

as 

𝜀𝑏(𝑦) = 𝜀(𝑦) +  𝜀𝑏
𝑓(𝑦) (37) 

Where ε(y) is the vertical strain of RC shear walls which 

is expressed as 

𝜀(𝑦)  =
𝑑𝜐

𝑑𝑦
 (38) 

 

4.2 Fibre volume fraction Vf 
 

The plates are made of fibre composite with varying 

fibre volume fraction widthwise (Kubiak 2005). Widthwise 

variable of fibre volume fraction Vf was assumed as 

sinusoid function in the following way 

 𝑉𝑓 = 𝑉𝑓𝑎𝑣 + 𝐴𝑖. 𝑐𝑜𝑠 (
2𝜋𝑥

𝑏
) (39) 

Where Vfav=0.5 is the assumed average value for fibre 

volume fraction, Ai is the sinusoid amplitude defining 

variation of material properties widthwise plate, with a 

calculated range of amplitude from -0.4 to 0.4 and b is 

width of the plate. In order to determine the magnitude 

characterising material properties, Eq. (40) found in 

literature (Kelly 1989) were used basing on theory of 

mixture.  

Using Eq. (40) it is possible to determine an equivalent 

value for the following material properties: 

• Modulus of elasticity in transverse direction Ey, 

• Shear modulus Gxy, 

• Poisson ratio υxy. 
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(a) (b) (c) 

Fig. 3 A strengthened RC shear wall: (a) perspective 

view; (b) front view and (c) lateral view 
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= 𝐸𝑚.
𝐸𝑚. (1 − √𝑉𝑓) + 𝐸𝑓 . √𝑉𝑓

𝐸𝑚 . [1 − √𝑉𝑓 . (1 − √𝑉𝑓)] + 𝐸𝑓 . √𝑉𝑓 . (1 − √𝑉𝑓)
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𝜐𝑥𝑦 = 𝜐𝑚. (1 − √𝑉𝑓) + 𝜐𝑓.√𝑉𝑓 

(40) 

 
4.3 Stiffness matrix of the shear wall element  
 
Figs. 3(a), (b) and (c) describe a combination of 

composite plates having variable fibre volume fraction 

widthwise and a reinforced shear wall, attached to the 

two sides using adhesive plates. The adhesives are 

assumed to be isotropic shear walls of thickness ta, the 

external adherents are considered to be composite shear 

walls of thickness tc bonded to the area SB=bh1. In the 

static analysis problem, the shear wall element which has 

the total area ST=bh is subjected to lateral load. Lets us 

denote by μ the deflection, υ the vertical displacement 

and ω the rotation of the vertical fibers. 

The mixed finite element method established by 

Kwan (1992) was deployed to deduce the stiffness matrix 

of a proposed strengthened shear wall system. The 

displacement components at any point within the wall 

element may be expressed in the terms of the nodal DOF 

of the element as follows  
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(42) 

The strain energy for each wall element can be written 

as 

𝑈𝑒 = 𝑈𝐵
𝑒 + 𝑈𝑆

𝑒 (43) 

Where: 𝑈𝐵
𝑒  and 𝑈𝑆

𝑒  are the strain energy due to the 

bending and shear effects respectively, which are written as 

e function of the strains on the shear wall element. The 

strain energy considering only the bending effect 𝑈𝐵
𝑒  is 

done as 

𝑈𝐵
𝑒 =

1

2
∑∫𝐸𝑦

(𝑖)(𝜀𝑏(𝑦))2 𝑑𝑥 𝑑𝑦

3

𝑖<1

𝑑𝑧 (44) 

According to this relationship, the strain energy 𝑈𝐵
𝑒 can 

be expressed as 

𝑈𝐵
𝑒 =

1

2

[
 
 
 
 
 
 
 
 
 

𝐸𝑏𝑡
(1)

𝑡𝑏 ∫ ∫ (𝜀𝑏(𝑦))
2

𝑏
2

;
𝑏
2

ℎ
2

;
ℎ
2

𝑑𝑥 𝑑𝑦 +

2𝐸𝑎
(2)

𝑡𝑎 ∫ ∫ (𝜀(𝑦))
2
𝑑𝑥 𝑑𝑦 +

𝑏
2

;
𝑏
2

𝑦1:
ℎ1
2

𝑦1;
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2
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2
𝑑𝑥 𝑑𝑦

𝑏
2

;
𝑏
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𝑦1:
ℎ1
2

𝑦1;
ℎ1
2 ]

 
 
 
 
 
 
 
 
 

 (45) 

The expression of the strain energy which relate to the 

shear effect may be written as 

 𝑈𝑆
𝑒 =

1

2
∑∫𝐺𝑥𝑦

(𝑖)(𝛾(𝑥𝑦))2 𝑑𝑥 𝑑𝑦

3

𝑖<1

𝑑𝑧 (46) 

The insertion of this relationship into the previous 

equation leads to the following expression 

𝑈𝑆
𝑒 =

1

2
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2
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 (47) 

In which 

𝛾(𝑥𝑦) =
𝑑𝜈

𝑑𝑥
+

𝑑𝑢

𝑑𝑦
 (44) 

The following form of the strain energy for each wall 

element is expressed by 

𝑈𝑒 =
1

2
𝑑𝑒

𝑇𝐾𝑤𝑑𝑒 (49) 

Where the nodal displacement vector is given as 

𝑑𝑒
𝑇 = *𝑢1, 𝜔1, 𝜈1, 𝜈2, 𝑢2, 𝜔2, 𝜈3, 𝜈4+. To carry out numerical 

analysis, we employ the standard finite element formulation 

to determine the stiffness matrix Kw of a strengthened shear 

wall element. No explicit procedure to determine the 

stiffness matrix needs to be given here. However, more 

detailed information can be found in reference (Bathe 

1996). 

 

4.4 System equation of motion  
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Fig. 4 Shear walls structures: 

25 storey 

Fig. 5 Externally bonded 

plates at the base of     

shear walls structures (25 

storey) 

 

 

The generalized differential equation of motion for the 

coupled shear walls may be expressed as 

,𝑀-. 𝐷(𝑡) + ,𝐶-̈ . 𝐷(𝑡) + ,𝐾-̇ . 𝐷(𝑡) = −,𝑀-. 𝐸. 𝐷𝑔(𝑡)̈  (50) 

In which [C] and [K] are the global  damping and  

stiffness matrices of the structures, respectively, 

)t(D,)t(D  and )t(D are the relative displacement, 

velocity and acceleration vectors to the structures with 

respect to base; E is a location vector which defines the 

location of effective seismic loads and )t(D
g

  is the 

horizontal ground acceleration. 

The damping matrix of the model is assumed to be 

proportional to the stiffness and mass matrices by the 

Rayleigh’s proportionality factors α1, α2 and can be written 

as 

,𝐶- = 𝛼1. ,𝑀- + 𝛼2. ,𝐾- (51) 

The proportionality factors α1, α2 can be obtained from 

𝛼1 = 𝜉.
2.𝜆𝑗.𝜆𝑃

𝜆𝑗:𝜆𝑃
 and 𝛼2 = 𝜉.

2

𝜆𝑗:𝜆𝑃
 (52) 

Where λj and λp are two chosen natural frequencies of 

the shear wall structures, which are determined by solving 

the undamped eigenvalue equation 

|,𝐾- − 𝜆2,𝑀-| = 0 (53) 

ξ is the assumed damping ratio for the two chosen 

modes. In the present analysis, the damping ratio is taken as 

5%. The Newmark-β step-by-step time-integration method 

is employed to obtain the solution of the dynamic equation. 

The two parameter β and γ of the Newmark integration are 

taken as ¼  and ½  respectively. To achieve a reasonable 

accuracy of the dynamic response of the structure, the time 

step is made sufficiently small compared with the periods of 

the first few modes of vibration of the structure.  
 

 

5. Numerical study 
 

In order to verify the accuracy of the mechanical 
concept of the proposed method, a typical 25 storey shear 
wall structures is analyzed. The shear wall is strengthened 
by bonded CFRP plates, at the bottom (see Figs. 4 and 5). 

Table 5 Mechanical properties of materials 

Materials Concrete Adhesive epoxy Carbon 

Modulus of 

elasticity E 

(GPa) 

---- 3 3,445 140 

Poisson’s ratio ʋ 0.18 0.35 0.35 0.22 

 

Table 6 Dimensions properties of shear walls structure 

Shear walls 

structures 

Dimensions 

TH (m) SH (m) WW(m) WT (m) 

25 storey 75 3 12 0.25 

TH: Total Height; SH: Storey Height; WW: Wall Width; 

WT: Wall Thickness 

 

Table 7 Properties of earthquake records 

Earthquake Site Date 
Ground 

acceleration max 
Magnitude 

El-Asnam Site 10-10-1980 0.049 g 7.3 

Boumerdés 
Boumerdés: 

Keddara 
21-05-2003 0.35 g 6.8 

 

 

On the basis of the presented analysis method, to 

demonstrate the effect of creep and shrinkage on the 

earthquake response of RC shear walls, the following 

data have been used for the numerical results: RH=40%, 

t0=28 days, t=120 days. The numerical values of the 

geometry and materials properties for shear walls 

structure are summarized in Tables 5 and 6. Also, one 

material for strengthening is investigated, consisting of 

carbon fibres with an epoxy matrix. Their material 

properties are given in Table 5. 

 
5.1 Earthquake records 

 

In general, earthquakes have different properties, such 

as peak acceleration, duration of strong motion and 

different ranges of dominant frequencies, and therefore 

have different influences on the structure. Two earthquake 

excitations are used in this study. El Asnam and Boumerdes 

earthquake records (see Table 7) were selected to 

investigate the dynamic response of the structure. 

 
5.2 Time-dependent analysis of eigenfrequencies 

 

An RC shear wall structures strengthened with 

composite plates having the fiber distribution Vf=0.9 is 

being considered. On the basis of the presented 

numerical method, a computer program has been written 

for 25 storey shear wall structures in order to evaluate 

the influence of creep and shrinkage on the three firsts 

eigenfrequencies of RC shear wall structures strengthened 

by CFRP. The structure strengthened is subjected to 

Boumerdes earthquake. The results are presented on 

Tables 8 and 9.  

We denote by: CEB-FIP MC 90 model: model I, ACI 

209 model: model II and Bazant & Baweja (B3) model: 

model III.  

Tables 8 and 9 show the creep and shrinkage effect on  
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Table 8 Three firsts frequencies (Hz), bonded plates at the 

base with: 25 storey structure, t=120 days, RH=40%, 

tc=0.006 m, SB/ST=20%, CFRP 

Fibre volume Fraction Vf Code type Model Mode 1 Mode 2 Mode 3 

𝑉𝑓 = 0.5 − 0.4. 𝑐𝑜𝑠 (
2𝜋𝑥

𝑏
) 

(near the edge of the plate) 

Model I 

Model II 

Model III 

0.472 

0.455 

0.421 

2.332 

2.292 

2.198 

3.865 

3.646 

3.387 

Unstrengthened model 

 

Model I 

Model II 

Model III 

0.402 

0.382 

0.348 

2.107 

1.903 

1.772 

3.247 

3.002 

2.872 

 

Table 9 Three firsts frequencies (Hz), bonded plates at the 

base with: 25 storey structure, RH=40%, tc=0.006 m, 

SB/ST=20%, 𝑉𝑓 = 0.5 − 0.4. 𝑐𝑜𝑠 .
2𝜋𝑥

𝑏
/  , CFRP 

t 

(days) 

Code 

type 

Model 

Mode 1 Mode 2 Mode 3 

 Strengthened 
Unstrengthen-

ed 
Strengthened 

Unstrengthen-

ed 
Strengthened 

Unstrengthen-

ed 

120 

Model I 

Model II 

Model III 

0.472 

0.455 

0.421 

0.402 

0.382 

0.348 

2.332 

2.292 

2.198 

2.107 

1.903 

1.772 

3.865 

3.646 

3.387 

3.247 

3.002 

2.872 

1000 

Model I 

Model II 

Model III 

0.456 

0.439 

0.411 

0.381 

0.342 

0.301 

2.317 

2.279 

2.187 

1.896 

1.791 

1.608 

3.782 

3.498 

3.209 

2.915 

2.715 

2.497 

3000 

Model I 

Model II 

Model III 

0.433 

0.418 

0.406 

0.367 

0.323 

0.291 

2.292 

2.263 

2.178 

1.803 

1.623 

1.548 

3.731 

3.424 

3.196 

2.815 

2.678 

2.417 

4000 

Model I 

Model II 

Model III 

0.427 

0.402 

0.383 

0.324 

0.296 

0.278 

2.266 

2.237 

2.171 

1.778 

1.753 

1.513 

3.715 

3.367 

3.046 

2.802 

2.489 

2.351 

5000 

Model I 

Model II 

Model III 

0.393 

0.364 

0.327 

0.311 

0.286 

0.254 

2.161 

2.117 

2.107 

1.722 

1.702 

1.482 

3.702 

3.309 

2.965 

2.784 

2.418 

2.321 

 

Table 10 Fibres volume fractions 

The sinusoid 

amplitude Ai  
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

Fibres volume 

fractions 

Vf;Vfav=0.5 

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

 

 

the three firsts eigenfrequencies. From table 8, it is worth 

noting that the values of frequencies obtained increase in 

comparison with unstrengthened model, under all type 

code models: CEB-FIP MC 90 model, ACI 209 model and 

Bazant & Baweja (B3) model. Also, it can be shown that 

model I gives higher values of frequencies comaparing 

them with models II and III.  From Table 9, increasing 

the age of concrete leads to decreases eigenfrequencies of 

RC shear wall structures, which due to the predominant 

action of creep and shrinkage. 

The creep and shrinkage affects the modulus of 

elasticity of concrete and therefore on its rigidity (decrease 

of modulus of elasticity=decrease of stiffness) which 

contributes to increase the periods. 
Finally, the reduction of eigenfrequencies of RC shear 

wall structures strengthened by CFRP plates, under all 
type code models, is the result of the reduction of 
stiffness who is lost by the creep of concrete. 

  
5.3 Effect of widthwise varying fibre volume fraction 

on lateral displacement 
 

A different distributions of fibres were considered, each 

characterized by variations of the amplitu-de Ai of 

sinusoidal fibres volume fration Vf, as given in Table 10. As 

can be seen from Table 10, that the increase of amplitude Ai 
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Fig. 6 Effect of widthwise varying fibre volume 

fraction on the top lateral displacement 

 

 
from 0 to 0.4 corresponds to the increase of fibre volume 

fraction near the middle part of the plate and the decrease of 

amplitude Ai from 0 to 0.4 corresponds to the increase of 

fibre volume fraction near the edge of the plate. 

The lateral displacements at the top of RC shear walls, 

strengthened by composite plates having a sinusoidal 

variation of fibres, are presented by Figs. 6(a)-(b). The 

purpose of this study is to illustrate how the fibre volume 

fractions, with amplitude Ai of sinusoid changing from-0.4 

to 0.4, affect the top lateral displacements after 

strengthening. 

The model of a strengthened shear wall  is compared 

with  a model of reference (without strengthening), under 

the two selected earthquakes (El-Asnam and Boumerdes), 

taking into account  the aging effect of concrete, mainly 

creep and shrinkage cited in CEB-FIP MC90 model. The 

lateral displacements of repaired shear wall are given by 

Figs. 6(a)-(b). 

From the obtained results, the fact that can be 

concluded is that an increase in volume fraction of fibres 

results in an increase of Young’s modulus and therefore 

causes decreases in the lateral displacement (lateral 

stiffness). The reduction has been achieved by the Vf=0.9 

distribution with an average reduction of 18.72% for 25 

storey building strengthened by CFRP plates (under 
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(b) El Asnam earthquake 

Fig. 7 Time history response of the lateral 

displacement of strengthened shear walls structures 

under different “code type” models 

 

 

Boumerdes earthquake). Thus, fibres must be concentrated 

at the edges of the composite plates where the stresses are 

the highest. In term of information from the location of the 

bonded area and the effect of the thickness of the bonded 

composite plates, it can be found in reference (Meftah et al. 

2008). 

 

5.4 Time history response of the lateral displacement 
of strengthened shear walls structures: Comparison from 
different “code type” models 
 

The results of the time history response of the lateral 

displacement for the strengthened shear walls under all 

code type models tested in this study (CEB-FIP MC 90 

model, ACI 209 model and Bazant & Baweja (B3) model), 

under each of the two earthquake records are presented 

below. An RC shear walls strengthened with composite 

plates having the fiber distribution Vf=0.9 is being 

considered. On the basis of the presented numerical 

method, a computer program has been written for 25 

storey shear walls structures, in order to evaluate the 

influence of creep and shrinkage on the lateral 

displacement. The results are reported in Figs. 7(a)-(b). 
Figs. 7(a)-(b) show the time history response of the 

lateral displacement of strengthened shear walls 
structures under different “code type” models. From 
the results, the significantly best performance has been 
achieved for CEB-FIP MC 90 model compared with ACI 

209 model and Bazant & Baweja model. 
 

 

6. Conclusions 
 

The seismic analysis of reinforced concrete shear 

walls structures strengthened with composite plates 

having variable fibre volume fraction,  including the 

considerations of the rheological properties of concrete 

mainly creep and shrinkage has been studied. It should be 

emphasized that the results presented in this paper are only 

partial, and a more detailed evaluation remains to be 

finished. The analysis is based on the finite element 

method. The following conclusions are extracted from 

the current study: 

(a) The influence of creep on time dependent behavior 

of shear walls structures strengthened by CFRP sheets 

according to CEB-FIP MC 90 model, in comparison with 

ACI 209 model and Bazant & Baweja (B3) model is 

noted.  

(b) From this study of the CEB-FIP MC 90, ACI 209 

and Bazant & Baweja prediction models, it has been 

concluded that certain parameters have a much influence 

on the time-dependent response of shear walls structures 

strengthened. 

(c) The proposed model permits the study of lateral 

stiffness and vibration characteristics including the 

opposed effects of creep and shrinkage cited in the three 

code type models. 

(d) Significant improvement in the displacements was 

observed when the fibers are clustering near the wall 

edges, so that they are concentrated. 

(e) The evaluated frequencies modes are decreased 

with time also due to the action of creep and shrinkage. 

(f) The influence of creep action is more significant 

in the early ageing of concrete.  

(g) The creep and shrinkage effect must be carefully 

evaluated in order to understand the behavior of shear 

walls structures repaired by CFRP. 

(h) Analysis results show that the application of 

externally bonded carbon fiber sheets is an effective seismic 

strengthening procedure for RC shear walls.  
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