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1. Introduction 
 

Nowadays, due to the readily available computing 

facilities and highly accurate constitutive models, it is 

common practice to use complex physical and geometrical 

nonlinear numerical analyses to estimate the structural 

behavior of reinforced concrete elements. The associated 

numerical simulations may yield important data for a 

performance-based design, including the complete time 

history of the structural behavior, from the first moment the 

load is applied, until the total collapse of the structure. 

However, the evolution of the cracking pattern in 

geometrical discontinuous zones of RC elements and the 

associated failure modes are relatively complex and, despite 

the great effort that has been made to develop performing 

numerical models, e.g., Ngo and Scordelis (1967), Vecchio 

(1989), Vecchio and Collins (1993), Yang and Chen (2005), 

Azevedo et al. (2010), Dujc et al. (2010), Dominguez et al. 

(2010), Mamede et al. (2013), Croce and Formichi (2014), 

Balomenos et al. (2015), their simulation is still 

considerably challenging, ACI (1997), Maekawa and 

Okamura (2003), Borosnyói and Balázs (2005). 

In 2001, Meguro and Tagel-Din presented a promising 

extension of the applied element method (Meguro and  
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Tagel-Din 2000), which can be used to perform nonlinear 

analysis of RC structures. With no need of any previous 

knowledge about the crack location or direction of 

propagation, complex phenomena such as crack initiation, 

propagation, opening and closure, could be simulated 

automatically, with reliable accuracy. The effectiveness of 

the method, as implemented in the nonlinear structural 

analysis software ELS (ASI 2013), to simulate different 

failure modes and cracking patterns in RC shear walls 

subjected to monotonic loading, is investigated in the 

present paper. 

 

 

2. Applied element method 
 

Although extremely important in performance-based 

design for safety and vulnerability assessment, the 

prediction of the structural response of RC structures when 

significant level of damage is expected is a considerably 

challenging problem. Numerical methods based on 

continuum material equations, like, for example, the finite 

element method, are known to perform poorly in the case of 

heavily damaged structures. In an attempt to improve the 

accuracy of the numerical simulations near collapse, an 

extension of the discrete element technique was proposed, 

Meguro and Hakuno (1989), Meguro and Tagel-Din (2000) 

and improved by Meguro and Tagel-Din (2001). In this 

technique, known as the Applied Element Method (AEM),  
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the structure is virtually divided into small rigid body 

elements, connected by pairs of normal and shear springs 

along the inter-element edges. The associated degrees of 

freedom are the rigid body displacements of each element, 

with the internal stresses and deformations concentrated at 

springs level. For this reason, although composed of an 

assembly of rigid bodies, the structure as a whole is 

deformable. Although the effect of the Poisson‟s ratio can 

be simulated using the AEM, Tagel-Din and Meguro 

(1998), Meguro and Tagel-Din (2000), it was disregarded 

when the method was implemented in the current version of 

the ELS. For this reason, the Poisson‟s ratio effect is not 

considered in the numerical simulations presented in the 

present paper.  

In order to capture the nonlinear behavior of RC 

structures, the constitutive models presented in Fig. 1 are 

adopted in ELS for steel and concrete, respectively. The 

springs associated to rebars are modeled using the Ristic 

constitutive model (Ristic et al. 1986), as shown in Fig. 

1(a). The tangent stiffness of the rebars is computed taking 

into account the current strain, loading status and previous 

loading history that controls the Bauschinger‟s effect. Fig. 

1(b) illustrates the Maekawa constitutive model (Okamura 

and Maekawa 1991), which is associated to the normal 

springs representing concrete in compression or tension. 

The envelope of the stress-strain curve for compressed 

concrete is defined as a function of the initial Young‟s 

modulus, compressive plastic strain and a fracture 

parameter representing the extent of the initial damage in 

concrete. The tangent modulus is calculated based on the 

current strain and the loading phase. For concrete springs in 

tension, the spring stiffness is set to zero following 

cracking. The constitutive material model illustrated in Fig. 

1(c) is associated to shear springs. Until cracking, stresses 

and strains are assumed to be proportional. After cracking, 

and to avoid numerical problems, a minimum value is 

assumed for the stiffness (1% of its initial value). The 

unbalanced stresses occurring during cracking are 

redistributed at each incremental step of the numerical 

analysis. 

 

 
3. Experimental tests 

 

The experimental specimens presented in this paper are 

rectangular RC shear walls with 1000×1350×120 mm and a 

centered square opening 400 mm wide, located at the base  
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Fig. 2 Geometry of the specimen and test setup 

(dimensions in mm) 

 

 
of the shear wall (see Fig. 2). The shear wall was clamped 

to a RC load-bearing beam of 2500×800×200 mm. That 

beam was fixed to the laboratory strong floor using 4 high 

strength steel bars, which were prestressed with 350 kN/bar 

in the horizontal direction and 265 kN/bar in the vertical 

direction, in order to immobilize the specimens. 

The horizontal loading was applied to the shear wall 

through a cylindrical steel hinge using a 900 kN capacity 

hydraulic jack. To measure the horizontal force, a load cell 

was used, positioned between the reaction wall and the 

hydraulic jack used to apply the horizontal force. Two 

LVDT were used to measure the horizontal displacements 

of the specimens. The displacements were measured at the 

top of the shear walls and at the upper part of the opening, 

on the opposite side to where the load was applied (Fig. 2). 

In the first load steps the horizontal load was applied in 20 

kN increments, but after cracking it was reduced to 10 kN 

increments. A more detailed description of the experimental 

tests can be found in Bounassar (1995). 

The shear wall specimens were designed using strut and 

tie models. Three different strut and tie models were used: 

model (a) where the horizontal load is mainly transferred by 

inclined compression (“compression model”-MB1); model 

(b) using a transversal tie (“tension model”-MB2); and 

model (c), using a combination of the two previous models 

(“mixed model”-MB3), see Fig. 3. A horizontal applied 

load (Pd) of 350 kN was considered in the design of all 

shear walls. The resulting reinforcement layouts are 

illustrated in Fig. 4. 

   
(a) Steel (b) Concrete (tension/compression) (c) Concrete (shear) 

Fig. 1 Constitutive models for steel and concrete in ELS 
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Table 1 Mechanical characteristics of the concrete 

Specimen fc (MPa) fck (MPa) fct (MPa) Ec (GPa) 

MB1, MB3 37.0 29.0 2.83 33.3 

MB2 39.0 31.0 2.96 33.8 

 

 
3.1 Material characterization 

 
The concrete was made using locally available 

crushedcoarse limestone aggregate, along with medium and 

fine sand and Portland cement CEM II/B-L 32.5 N. The 

maximum aggregate size was 9.52 mm. The concrete 

compressive strength (fc) was measured on 150×300 mm 

cylinders, according to EN 12390-3. The characteristic 

compressive strength (fck), the modulus of elasticity (Ec) and 

the tensile strength of the concrete (fct) were calculated from 

its compressive strength according to the fib Model Code 

2010, Eqs. (1) to (3). The obtained results are listed in Table 

1.  

8 cck ff        [MPa] (1) 

3/1

10
5.21 








 c

c

f
E       [GPa]

 (2) 

  3/2
3.0 ckct ff       [MPa]

 

(3) 

In order to determine the yield stress (fy), the tensile 
strength (ft) and the ultimate strain (eu) of the longitudinal 
reinforcement, direct tensile tests were performed on 
coupons from the same steel batch, according to EN 10002-
1. Those results are listed in Table 2. 

 

 
Table 2 Mechanical characteristics of the reinforcement 

bars 

 (mm) 6 8 10 12 16 

fy (MPa) 480 560 530 550 600 

fu (MPa) 630 644 670 616 666 

eu (%) 13.9 13.9 17.5 16.5 13.5 

 

 
A more detailed description of the experimental test 

campaign can be found in Bounassar (1995). 

 
3.2 Analysis of the experimental results 

 
The experimental capacity curves, expressing the 

relationship between the horizontal displacements recorded 

by transducers LVDT1 and LVDT2 (see Fig. 2) and the 

horizontal applied load, are illustrated in Fig. 5. The values 

of the cracking load (Pcr), corresponding to the load level 

for the first cracks visible to the naked eye, the ultimate 

load at failure (Pu) and the ratio between the experimental 

failure load and the design load (Pd) are collected in Table 

3. 
Analyzing Fig. 5, one can observe that, at the beginning 

of loading process, all three specimens exhibit similar 
stiffness. However, at failure, specimen MB2 presented 
higher horizontal deformations when compared to the 
others, due to a ductile failure through the transversal tie.  
Specimen MB1 presented a more brittle failure by the 
concrete crushing of the compression strut on the right-side 
short column. The premature failure of MB3 was caused by 
concrete crushing in the load application zone. Accordingly, 
it achieved a smaller ultimate load, presenting a slightly 
sub-unitary ratio between the experimental failure load and  

   
(a) Compression model (b) Tension model (c) Mixed model 

Fig. 3 Basic models of load transmission 

   

Fig. 4 Reinforcement layouts (dimensions in mm) 
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(a) LVDT1 (b) LVDT2 

Fig. 5 Experimental capacity curves 

 
Table 3 Experimental results 

Specimen Pd (kN) Pcr (kN) Pu (kN) Pu/Pd 

MB1 350 120 407 1.16 

MB2 350 80 410 1.17 

MB3 350 120 330 0.94 

 

 
the design load. As illustrated in Table 3, in the other two 

specimens the obtained failure load was above the design 

load, with similar Pu/Pd ratios. 

The beginning of cracking occurred for about the same 

load level in all the tested specimens, usually in the 

connection region between the left-side short column and 

the upper part of the shear wall. Nevertheless, specimen 

MB2 presented higher crack openings, especially in a 

region located on the left upper side of the shear wall, 

where tension stresses are present and the shear wall has a 

smaller amount of reinforcement. 

 

 
4. Numerical modelling 

 
To assess the reliability of the AEM in simulating the 

development of distinct failure modes in reinforced 

concrete walls subjected to monotonic loading, the 

experimental tests performed on the three shear walls 

described in Section 3 were simulated in ELS. The 

experimental pushover curves registered for each shear wall 

by the two LVDT presented in Fig. 2 are compared with the 

corresponding numerical estimates. Special attention is also 

paid to the direct comparison of the cracking patterns 

obtained in the laboratory and predicted by the numerical 

model.  
The 3D geometry of the RC walls was accurately 

defined, taking into account the precise arrangement of the 
structural rebars. To guarantee a numerically converged 
solution, a sensitivity analysis was also performed, 
analysing the influence of the number of load steps, number 
of connecting springs between the elements, and the 
element size. Similar to the experimental procedure, the 
numerical analysis starts by characterizing the materials in 
the RC walls, namely the concrete and the steel in the 
rebars. The previously presented mechanical properties for 
concrete and steel, see Tables 1 and 2, were used to 
calibrate the relevant parameters defining the corresponding 
constitutive models. 

  

(a) Experimental 

reinforcement pattern 

(b) Simulated reinforcement 

pattern 

  

(c) View of the rebars in 

the 3D model 

(d) Complete 3D model 

Fig. 6 Three-dimensional model of MB1 shear wall 

 

 
4.1 Spatial geometry modeling of the RC walls 

 
The three structures under analysis in the present paper 

have the same external geometry, composed by a 

rectangular shear wall, clamped to a load-bearing beam and 

with a square opening located at the base of the wall. Each 

structure has a distinct reinforcement pattern, designed to 

ensure distinct failure mechanisms, as described above. The 

reinforcement steel bars are inserted in the 3D numerical 

model taking into account their cross-section and layout, as 

illustrated in Fig. 6 for one of the shear walls. 

 

4.2 Sensitivity analysis 
 

In order to guarantee the convergence of the numerical 

solution, a mesh sensitivity analysis was performed, 

studying the effect of the element size and the number of 

connecting springs between elements. 

It is known (Meguro and Tagel-Din 2000), that AEM 

numerical simulations performed with large-size elements 

yield over-stiff solutions, meaning that the simulated failure 

loads result larger than the real solution. On the other hand, 

the number of connecting springs between elements is an 

important factor as well. While this number does not affect 

the stiffness of the elements associated to translational 

degrees of freedom, it directly affects the rotational 

stiffness. However, this error becomes insignificant for 

small-sized elements, as the relative rotation between 

adjacent elements becomes small. Exhaustive tests 

published in the literature (Meguro and Tagel-Din 2001), 

permitted to conclude that the use of a relatively large 

number of small-sized elements together with relatively  
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Fig. 8 Compressive rectangular cross-section members 

with confining reinforcement 

 

 

small number of connecting springs leads to highly accurate 

solutions in reasonable CPU time. 

To study the convergence of the AEM solution, the shear 

wall MB1 was analyzed using three increasingly smaller-

sized elements (approximately cubic shapes with edges of 

50, 25 and 16.7 mm). Additionally, for each different 

element size, two models were considered, using 5 and 10 

connecting springs for each pairs of adjacent element faces. 

The convergence was considered achieved when the 

changes in the capacity curves from one analysis to the next 

were too small to be visually noticeable. The estimates for 

the capacity curve stabilized for a mesh consisting of 35120 

elements (edge of 25 mm) and 5 connecting springs 

between element faces and therefore, this combination was 

considered an appropriate mesh and used for all the tests 

reported in this paper. 

A similar analysis was performed to calibrate the 

loading increment on model MB1. Pushover curves were 

obtained using 700 and 1000 loading increments and no 

noticeable differences were obtained between the resulting 

capacity curves. The loading increment was thus defined as 

1.0 mm per step for all models. 

 

4.3 Calibration of the constitutive models 
 

4.3.1 Steel 
The steel stress-strain curves obtained experimentally 

for the material characterization under tensile tests were 

simulated numerically and used to calibrate the parameters 

defining the Ristic constitutive model of steel (Ristic et al. 

1986). The mechanical properties presented in Table 2 were 

used, considering a Young‟s Modulus of 200 GPa, a shear 

modulus of 79.9 GPa and a post yield stiffness factor of 

0.01. A comparison between the experimental and simulated  

 

Table 4 Mechanical characteristics of the concrete used in 

the numerical modelling 

Specimen Confinement fc (MPa) fck (MPa) fct (MPa) Ec (GPa) 

MB1, MB3 
Zone 1 47.2 39.2 3.46 36.1 

Zone 2 50.9 42.9 3.68 37.0 

MB2 
Zone 1 50.0 42.0 3.62 36.8 

Zone 2 53.9 45.9 3.85 37.7 

 

 

Fig. 9 Numerical model MB1: Boundary conditions 

and applied load 

 

 

stress-strain curves for all rebars used in the reinforcement 

of the shear walls is illustrated in Fig. 7. 

 

4.3.2 Concrete 
The addition of stirrups is known to provide 

confinement and to increase the ultimate compressive 
strength of the concrete (fib Model Code 2010). To take into 
account this effect in the numerical model, two levels of 
confinement were considered, namely a relatively loose 
confinement in the upper part of the shear wall and the 
load-bearing beam (Zone 1) and a stronger confinement 
justified by the dense stirrup distribution in the area of the 
short columns (Zone 2). According to fib Model Code 2010, 
the compressive strength of the confined concrete, fckc, can 
be computed using Eq. (4). 

4/3

2,
5.31 












ckck

cck

ff

f   (4) 

The confining pressure 2 can be calculated, for 

rectangular cross-sections, using Eq. (5) with c defined by 

Eq. (6). 

    
(a) 8 mm rebar (b) 10 mm rebar (c) 12 mm rebar (d) 16 mm rebar 

Fig. 7 Comparison between the experimental and simulated steel tensile tests 
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(6) 

In Eqs. (5) and (6), fcd is the design value of cylinder 

compressive strength of concrete, fyd is the design yield 

strength of reinforcing steel, Asy and Asz are the areas of 

reinforcement in the y and z direction, respectively, bi is the 

center line spacing along the section parameter of 

longitudinal bars (indexed by i) engaged by a stirrups 

corner or a cross-tie, and ac, bc and sc are representative 

distances defined in Fig. 8.  

The resulting mechanical characteristics adopted for the 

confined reinforced concrete in the numerical simulation of 

the three tested shear walls are listed in Table 4. 

The average values for the mechanical properties of the 

concrete presented in Table 4 were used to calculate the 

parameters defining the Maekawa constitutive model 

(Okamura and Maekawa 1991) used for concrete. The 

concrete shear modulus was taken as E/2(1+ν) and a 

Poisson ratio (ν) of 0.2 was considered. 

Another important parameter characterizing the material 

constitutive models in ELS is the separation strain. This 

parameter defines the strain value in the springs located 

between two neighboring elements at which the elements  

 

Table 5 Relative errors of the numerical solutions 

Relative error (%) LVDT1 LVDT2 

MB1 11.2 9.0 

MB2 5.3 6.1 

MB3 9.3 6.0 

 

 

are considered to be physically separated. According to the 

ELS Modeling Manual (ASI 2010), for reinforced concrete 

elements, the separation strain should be higher than the 

ultimate tensile strain of the rebars. Taking into account the 

tensile strains presented in Fig. 7 and Table 2, the separation 

strain was set to 0.2 for all the numerical models presented 

in the present paper. 

 

4.4 Boundary conditions 
 

The results obtained from a nonlinear analysis using 
solid elements are highly sensitive to the accurate definition 
of the boundary conditions. To simulate the experimental 
boundary conditions, the load-bearing beam was considered 
clamped on the two ends and the bottom surfaces, as 
illustrated in Fig. 9. To avoid stress singularity and in 
accordance with the experimental procedure, the applied 
load is transmitted to the structure through a 200×120×5 
mm metallic plate. 

Taking into account that a significant reduction in the 
structural stiffness is expected in the numerical simulations 
of the pushover tests due to severe cracking and crushing of 
the concrete and eventual failure of the reinforcement steel, 
a displacement loading control is used to obtain the capacity  

   
Fig. 10 Experimental and simulated 

capacity curves for the MB1 model at 

LVDT1 

Fig. 11 Experimental and simulated 

capacity curves for the MB1 model at 

LVDT2 

Fig. 12 Experimental and simulated 

capacity curves for the MB2 model at 

LVDT1 

   
Fig. 13 Experimental and simulated 

capacity curves for the MB2 model at 

LVDT2 

Fig. 14 Experimental and simulated 

capacity curves for the MB3 model at 

LVDT1 

Fig. 15 Experimental and simulated 

capacity curves for the MB3 model at 

LVDT2 
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(a) Point A: Vexp=160 kN, Vnum=130 kN (b) Point B: Vexp=260 kN, Vnum=230 kN 

   
(c) Point C: Vexp=320 KN, Vnum=287 kN (d) Point D: Vexp=407 KN, Vnum=340 kN (e) Strut and tie model 

Fig. 16 Model MB1-cracking pattern at selected points and collapse mechanism 

  
(a) Point A: Vexp=120 KN, Vnum=120 kN (b) Point B: Vexp=240 KN, Vnum=220 kN 

   
(c) Point C: Vexp=320 KN, Vnum=335 kN (d) Point D: Vexp=400 KN, Vnum=400 kN (e) Strut and tie model 

Fig. 17 Model MB2-cracking pattern at selected points and collapse mechanism 

371



 

Corneliu Cismasiu, António Pinho Ramos, Ionut D. Moldovan, Diogo F. Ferreira and Jorge B. Filho 

 
 

curves. The displacements were applied in 1.0 mm steps. 

 

4.5 Comparison between the simulated and 
experimental results 
 

The experimental and numerical results obtained for the 

three reinforcement setups and testing sequences presented 

in Section 3 are compared in this section. The comparison 

endorses a thorough assessment of the reliability of the 

applied element-based computational model in recovering 

the experimental capacity curves and in simulating the 

distinct failure modes and cracking patterns. 

 
4.5.1 Capacity curves 
Similar to the experimental test, the simulated capacity 

curves are obtained by plotting the total base shear force 

against the horizontal displacements measured in the 

vicinity of the two displacement transducers (LVDT1 and 

LVDT2) presented in Fig. 2. Two capacity curves are thus 

obtained for each model, one for each LVDT. The 

experimental capacity curves are plotted in Figs. 10 to 15 

(dark markers) against their simulated counterparts (light 

markers). 
The overall agreement between the experimental and 

numerical results is rather good, except the capacity curve 
of the MB1 model recorded at the LVDT1 transducer. The 
numerical model recovers well the global stiffness  

 
 

deterioration of the shear walls until roughly 80% of their 
bearing capacity, as visible by comparing the slopes of the 
experimental and simulated capacity curves along the A-B-
C paths identified on the LVDT1 plots. The differences 
between the base shear values along these paths may, 
however, be considerable, as visible in Fig. 10 and, 
especially, Fig. 14. These differences are justified by the 
occurrence of a rapidly propagating crack in the numerical 
model (softening in tension is not considered in the 
Maekawa concrete constitutive model, see Fig. 1(b)), which 
leads to sudden strain localization, thus releasing some of 
the base shear. This effect, visible in the „bumps‟ occurring 
around 120-140 kN of base shear in all simulated capacity 
curves, was not observed in the force-driven experimental 
tests. However, the stiffness reduction corresponding to this 
event seems to take place in the experimental model as 
well, leading to the similar stiffness predictions on the A-B-
C loading paths. The simulated cracking pattern causing 
this stiffness degradation is also in good accordance with 
the experimental results, as shown in the next section, 
although it seems that the numerical model over-estimates 
the suddenness of the cracking event and the subsequent 
strain localization. A second, and less dramatic, propagating 
cracking event is recorded by the numerical models MB1 
and MB2 around 300 kN and 400 kN of base shear, 
respectively (see Figs. 10 to 13), but once again its 
occurrence seems not to have such noticeable effect in the 
experimental results (although slightly visible in Fig. 10). 

  
(a) Point A: Vexp=140 KN, Vnum=110 kN (b) Point B: Vexp=220 KN, Vnum=175 kN 

   
(c) Point C: Vexp=300 KN, Vnum=270 kN (d) Point D: Vexp=330 KN, Vnum=330 kN (e) Strut and tie model 

Fig. 18 Model MB3-cracking pattern at selected points and collapse mechanism 
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In order to quantify the quality of the AEM solutions 

and to endorse a direct comparison between different 

models, the relative error of the numerical solution is 

defined as the area comprised between the experimental and 

simulated capacity curves in Figs. 10 to 15, normalized to 

the total area under the experimental capacity curve, 

duV

duVV

u

u

num



 


max

max

0

exp

0

exp

  
(7) 

In Eq. (7), Vexp and Vnum are the values of the base shear 

in the experimental and simulated capacity curves, 

respectively, and umax is the maximum horizontal 

displacement recorded experimentally. The relative errors 

for each of the six plots are presented in Table 5. 

With the exception of the capacity curve of the MB1 

model read at LVDT1, the relative errors of the AEM 

solution are situated between 5 and 10%, which is 

considered sufficient for practical purposes. 

 
4.5.2 Cracking patterns 
A readily interpretable representation of the simulated 

cracks‟ size and localization is the plot of the principal 

strain contours. Using the element size, the strains can be 

directly connected to the crack opening, facilitating the 

comparison with the experimental results. During the 

experimental campaign the cracking patterns developed in 

the tested RC walls were recorded for different load levels 

(Bounassar 1995). These images were used to assess the 

ability of the AEM to accurately simulate the developing of 

the cracking patterns in RC shear walls. To illustrate this 

ability, the experimental and simulated cracking patterns 

corresponding to the points A to D showed in Figs. 10, 12 

and 14 are overlaid and presented in Figs. 16 to 18 for the 

MB1, MB2 and MB3 models, respectively. After the 

cracking plots corresponding to points D in Figs. 10, 12 and 

14 (i.e., near the ultimate load), the collapse mechanism 

assumed for the reinforcement design is also presented for 

illustrative purposes. It is noted that the simulated cracking 

patterns correspond to the same abscissa as indicated by 

points A to D, meaning that the base shear forces may be 

different on the experimental and simulated plots (but the 

lateral displacements are the same). In all plots, darker areas 

indicate more pronounced cracks. 

The AEM implemented in ELS uses a discrete crack 

approach, meaning that cracks can only develop at the 

surface of the elements. For this reason, and to improve the 

accuracy, the adopted element size must be smaller than the 

expected crack spacing. As the element size was 25 mm in 

all analyses reported here, one cannot expect to reproduce 

smaller crack spacing. Nevertheless, the cracking pattern 

observed experimentally is consistently reproduced by the 

AEM model at all tested loading points and for all models 

under analysis. The sequence of emergence and propagation 

of the cracks is also consistently reproduced by the 

simulations. The collapse mechanisms assumed in the 

design of the shear walls correspond to those observed 

experimentally and predicted by the numerical model. 

5. Conclusions 
 

In this paper, the experimental tests carried out on three 

RC shear walls containing a centered square opening are 

presented, together with the corresponding numerical 

simulation performed using the Applied Element Method.  

Regarding the experimental results, one may observe 

that the “tension model” shear wall (MB2) presented the 

higher horizontal deformations, due to a more ductile 

failure mobilized through the transversal tie. This model 

also presented the larger crack openings, especially on the 

left upper side of the shear wall, that had only a small 

amount of tensile reinforcement. The “compression model” 

(MB1) achieved a similar failure load for a less ductile 

failure mechanism. The premature failure load of model 

MB3 was caused by concrete crushing in the load 

application zone.  

In what concern the numerical simulation, one can 

conclude that the AEM was able to predict with good 

accuracy the load-deformation curve, the failure loads and 

modes as well as the cracking patterns. 
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