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1. Introduction 
 

Waste materials such as blast furnace slag (BFS) and 

waste tire rubber (WTR) have been continuously increased 

with the advancement of industrial activity. As a result, 

management and disposal of BFS and WTR have become a 

great concern.  

BFS is one of the most important supplementary 

cementitious materials, and widely used in cement and 

concrete industries. BFS is a by-product obtained while 

melting iron ore in blast furnace. By melting the iron ore at 

1400-1600°C, pig iron is produced and the floating 

impurities, containing mainly lime, silica and alumina from 

the BFS arises (Duggal 2008). The use of BFS in cements 

reduces raw material consumption, the CO2 emissions and 

other environmental impacts, while improving their 

technical properties such as high resistance to chloride 

penetration, sulfate attack and ASR, improved workability, 

pumpability and compaction characteristics for concrete  
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placement, increased strength and durability, reduced 

permeability (Crossin 2015, Siddiquea and Bennacer 2012, 

Deb et al. 2014, Atis and Bilim 2007, Dellinghausen et al. 

2012, Teng et al. 2013, Zhu et al. 2012, Yung et al. 2013, 

Saade 2015). 

Disposal of waste tire rubber has become a major 

environmental issue in all parts of the world. Every year 

millions of tires are discarded, thrown away or buried all 

over the world, causing a very serious threat to the ecology. 

Tire burning, which was the easiest and cheapest method of 

disposal, causes serious fire hazards (Thomas 2016). One 

way of utilizing waste rubber tires is to recycle them. 

Concerning the reuse of recycled rubber in mortars and 

concrete, extensive studies have been conducted on used 

tires modified concrete and mortars. Results have indicated 

that rubberized concrete mixtures show lower density, 

increased toughness and ductility, higher impact resistance, 

lower compressive and splitting tensile strength, and more 

efficient sound insulation (Yilmaz and Degirmenci 2009, 

Al-Akhras and Smadi 2004, Eiras et al. 2014, Uygunoglu 

and Topcu 2010). 

Because of the economic, ecological and technical 

advantages, waste materials such as blast furnace slag 

(BFS) and waste tire rubber powder (WTRP) are used as 

supplementary cement and concrete material, or artificial 

pozzolan in cement and concrete industry. In this industry, 

it causes losses in both time and financial costs for 

preparing the cement mortars and concretes by using  
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Abstract.  The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and 

waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different 

mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing 

BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier 

machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that 

acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, 

WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. 

Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In 

order to do predictive experimentation, we exploit R programming language and corresponding packages. During 

experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher 

coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best 

R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results 

indicated that experimental data can be estimated to a notable close extent by the model. 
 

Keywords:  blast furnace slag; waste tire rubber powder; compressive strength; random forest; ada boost; SVM; Bayes 

classifier models 

 

mailto:yilmaz.kocak@dpu.edu.tr
mailto:yilmaz.kocak@dpu.edu.tr


 

Giyasettin Ozcan, Yilmaz Kocak and Eyyup Gulbandilar 

Table 1 Chemical compounds of PC, BFS and WTRP  

Materials PC BFS WTRP 

Chemical compounds, wt.%    

SiO2 19.88 37.61 18.30 

Al2O3 5.24 15.37 4.08 

Fe2O3 2.66 0.63 3.88 

CaO 63.50 33.09 9.94 

MgO 1.11 8.55 2.30 

SO3 2.78 0.00 3.57 

Na2O 0.40 0.70 1.06 

K2O 0.78 0.96 0.45 

Loss on ignition 3.72 0.17 - 

 

 

various additives. By using various calculation methods, 

these losses are eliminated. While some researchers prefer 

statistical methods, other researchers prefer the expert 

systems. Artificial Neural Network (ANN) and fuzzy logic 

and expert systems have become popular and have been 

used by many researchers to solve a wide variety of 

problems in civil engineering applications (Sakthivel et al. 

2016, Motamedi et al. 2015, Behnood et al. 2015a, 

Beynood et al. 2015b, Mansouri and Kisi 2015, Wang et al. 

2015, Beycioğlu et al. 2015, Subasi 2009, Topcu and 

Saridemir 2008, Yaprak et al. 2013, Gulbandilar and Kocak 

2013, Castelli et al. 2013, Kelestemur et al. 2014). On the 

other hand, Adaptive Neuro-Fuzzy Inference System 

(ANFIS) and multiple regression analysis are used in civil 

engineering to perform predictions.  

In this study, we aimed to develop models to evaluate 

the effect of BFS and WTRP on compressive strength of 

cement mortars by using Machine Learning algorithms that 

classify observed data accurately. More clearly, we exploit 

Ada Boost (Freund and Schapire 1997), Random Forest 

(Breiman 2001), SVM (Boser et al. 1992) and Bayes 

classifier models (Russell and Norvig 2003). Respectively, 

Ada Boost algorithm becomes a good classification option, 

when observations comprise bias. The algorithm converts a 

set of weak learners into a strong learner. Another 

classification based method is Random Forest. The method 

is based on random decision tree learning and introduces 

ensemble learning strategy to reduce the risk of overfitting. 

The third strategy, Support Vector Machines constructs a 

hyperplane to distinguish each class. Finally, Bayes 

classification method applies Bayes theorem for learning 

and prediction.  
For purpose of constructing the models, 12 different 

mixes with 288 specimens of the 2, 7, 28 and 90 days 
compressive strength experimental results of cement 
mortars containing Portland cement (PC), BFS, WTRP, 
BFS+WTRP used in training and testing for Random 
Forest, Ada Boost, SVM and Bayes classifier models were 
gathered from the standard cement tests. The models were 
trained with 288 data of experimental results. The Random 
Forest, Ada Boost, SVM and Bayes classifier models had 
four input parameters and one output parameter. The 
obtained results from compressive strength tests were 
compared with predicted results.  

Table 2 Physical characteristics of PC, BFS and WTRP 

Materials 

Range dimension 

(over sieve), % Specific 

gravity, g/cm3 

Blaine, 

cm2/g 
>45 μm >90 μm >200 μm 

PC 4.7 0.3 0.0 3.15 3504 

WTRP 45.4 17.9 2.2 1.70 2404 

BFS 60.9 46.0 25.5 2.88 1848 

 

Table 3 Codes and mix proportions of blended cements 

Cement type PC, g BFS, g WTRP, g PC, % BFS, % WTRP, % 

S1 450 0 0 100 0 0 

S2 427.5 22.5 0 95 5 0 

S3 405 45 0 90 10 0 

S4 382.5 67.5 0 85 15 0 

S5 360 90 0 80 20 0 

S6 438.75 0 11.25 97.5 0 2.5 

S7 427.5 0 22.5 95 0 5 

S8 427.5 11.25 11.25 95 2.5 2.5 

S9 405 33.75 11.25 90 7.5 2.5 

S10 405 22.5 22.5 90 5 5 

S11 405 45 22.5 85 10 5 

S12 405 67.5 22.5 80 15 5 

 

 

2. Experimental procedure 
 

In this study, CEM I 42.5 R cement (PC), blast furnace 

slag (BFS), waste tire rubber powder (WTRP), standard 

aggregate and water were used as materials. The cement 

produced in the SET Istanbul Ambarli Cement Plant 

(Turkey). BFS was obtained from the Eregli Iron and Steel 

Plant in Zonguldak (Turkey). WTRP was obtained from a 

Commercial Business in Ankara (Turkey). WTRP, in the 

bottom during the making various grades and sizes of 

granules obtained from waste tires in very fine powder, and 

was obtained by sieving 125 μm sieve. For the preparation 

of mortar specimens, standard aggregate, conforming to TS 

EN 196-1 (TS EN 196-1 2009), and city water of the 

Istanbul Province Buyukcekmece District were used. Table 

1 lists the chemical compounds of the PC, BFS and WTRP. 

Chemical analyses of the PC, BFS and WTRP were 

performed on ARL 8680 X-ray diffraction (Table 1).  

Physical characteristics of the PC, BFS and WTRP are 

listed in Table 2. Surface areas were determined as Blaine 

values by Toni Technik 6565 Blaine and specific weights 

were determined by Quantachrome MVP-3. 

In this study, the PC was used for the preparation of 

reference samples. The amount of PC is reduced by 5, 10, 

15 and 20% by weight being substituted by the same 

amount of BFS. Similarly, the amount of WTRP 

substitution is 2.5 and 5% by weight. Besides, in order to 

investigate the properties of ternary mixtures, the amount of 

PC is reduced by 2.5+2.5%, 7.5+2.5%, 5+5%, 10+5%, 

15+5% by weight being substituted by the same amount of 

BFS and WTRP, respectively. Codes and mix proportions 

of reference and blended cements are given in Table 3.  
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Mortar mixtures, used in compressive strength tests, 

each contained 450 g PC or blended cement, 1350 g 

standard sand and 225 ml water, and mixed in a mortar-

mixing machine, conforming to TS EN 196-1 (TS EN 196-1 

2009). The prepared mortars were poured into the 

40×40×160 mm three-segmented rectangular prismatic 

formworks. These specimens were then shaken for one 

minute on a shaking table so the mortar settled into the 

formworks, and were kept in a laboratory environment for 

24 hours. At the end of this duration, the specimens were 

taken out of the formworks and kept in a curing pool. The 

specimens, taken from the pool at the end of 2, 7, 28 and 90 

days using Atom Technik device, were tested compressive 

strength in accordance with TS EN 196-1 (TS EN 196-1 

2009). 

 

 

3. Machine learning models with random forest, ada 

boost, SVM and naïve bayes classifier 
 

Classification algorithms identify the observed data and 

put them into categories as a result of common features of 

data. Based on observations, where both instances and 

category memberships are known, classification algorithms 

predict the categories of new observations. 

 

3.1 Ada boost 

 
Ada Boost is an adaptive algorithm that unveil a strong 

learner from multiple weak learners (Freund and Schapire 

1997). It is commonly preferred when the classification 

algorithms suffer from high-dimensional data. The 

algorithm has the ability to select only the features that 

improve prediction performance. The form of the boost 

classifier is as follows 





T

t

tT xfxF
1

)()(  (1) 

Where, ft is a weak learner that takes the object x as 

input and yield the sum of the weak learners as the final 

classifier as output. Here, computation of each weak learner 

depends on a hypothesis, h(xi) and minimized training error 

at step t, at. Formally, 

)()( xhxf tt   (2) 

 
3.2 Random forest 

 
Random Forest, which is an extension of decision trees, 

is a remarkable classifier. In order to prevent overfitting 

possibilities of decision trees, Random Forests are 

proposed. Since, deep decision trees have tendency to have 

high variance, Random Forest computes the average of the 

multiple decision trees, which are trained from the same 

data set. In other words, training of Random Forests 

implements the bagging to reduce variance. Detailed 

explanations about Random Forests can be founded in 

literature (Breiman 2001). 

In terms of R, we exploit Random Forest package (Liaw 

and Wiener 2002). During programming execution, we 

assume proximity and importance parameters are TRUE 

and trace is 100. We exploit all other default parameters.  

 
3.3 Support vector machines 

 
In contrast to Boosting and Random Forest, Suppor 

Vector Machines, SVM, are non-probabilistic classifier. 

SVM assumes that each train sample is a vector point in 

multi-dimensional space. Afterwards, it constructs 

hyperplanes in the multi-dimensional space to classify 

vector points. In order achieve optimal classification, 

distance between such hyperplanes and nearest train point 

samples of each class should be maximized. In order to 

enable non-linear classifiers, SVM exploits kernel trick. 

Detailed explanations about SVM can be founded in 

literature (Boser et al. 1992). 

 
3.4 Naïve bayes classifier 

 
Similar to SVM, Naïve Bayes algorithm is a 

deterministic classifier. Naïve Bayes Classifier algorithm is 

based upon Bayes Theorem (Russell and Norvig 2003). The 

algorithm assumes that there is strong independence among 

features. Let assume a problem instance is represented by n 

features. Formally, 

),....,,( 21 nxxxx   (3) 

Bayes classifier computes the probability of the instance 

is a member of k
th

 class, Ck. Formally, 

),....,,( 21 nkk xxxCpC   (4) 

When all probabilities are computed, the instance is 

assigned into Ck with highest probability.  

 

 

4. Experimental design and model parameters 
 

In terms of experimentation, we have exploited R 

language and corresponding R packages. R is an open 

source statistical analysis programming language and first 

appeared in 1993. It is commonly preferred during machine 

learning techniques, including classification algorithms.  

R introduces an archive network to download necessary 

packages to execute required algorithms. In this study, we 

have exploited maboost (Naghibi and Pfister 2014), random 

Forest (Liaw and Wiener 2002), and e1071 packages to 

execute multiclass Ada Boost, Random Forest, SVM and 

Naïve Bayes algorithms respectively.  

In training and testing of the Random Forest, Ada 

Boost, SVM and Bayes classifier models the age of samples 

(Days), PC, WTRP and BFS were entered as input; while 

compressive strength values of cement mortars were used as 

output (Table 4). The comprehensive sensitivity analysis of 

input variables for output variable was determined using 

Automatic Linear Modelling in SPSS 22.0 software 

package (Fig. 1). The importance of sensitivity for Days, 

WTRP and PC as input variables were 0.9, 0.08 and 0.002, 

respectively. We have used all the input variables in our  
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Fig. 1 The importance level of input variable 

sensitivities for output variable 

 

Table 4 The input and output quantities used in random 

forest, ada boost, SVM and bayes classifier models 

  
Data used in training and 

testing the models 

  Minimum Maximum 

Input variable 

Age of samples, Days 2 90 

PC, g 360 450 

BFS, g 0 90 

WTRP, g 0 22.5 

Output variable 
Compressive strength, 

MPa 
12.4 64.4 

 

 

study since the results of the analysis were almost identical. 

In the Random Forest, Ada Boost, SVM and Bayes 

classifier models, 288 of the experimental data were used 

for the training of the models and other 48 data (the average 

of the 6 experimental data) were used for testing the trained 

models.  

 

 

5. Results and discussion 
 

In this study, the values of compressive strength were 

modeled using Random Forest, Ada Boost, SVM and Bayes 

classifier models.   

The models tried to be compared according to the 

absolute fraction of variance (R
2
), mean absolute percentage 

error (MAPE) and a root-mean squared (RMS) error 

criteria. These criteria are defined by Eqs. (5), (6) and (7), 

respectively (Ozcan et al. 2009). 
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Fig. 2 Compressive strengths for training random 

forest, ada boost, SVM and bayes classifier models 

with sample number 

 

 

Fig. 3 Comparison of compressive strength 

experimental and testing results of the random forest 

model with sample number 

 

 

Fig. 4 Comparison of compressive strength 

experimental and testing results of the ada boost model 

with sample number with sample number 

 

 

Here t is the target value, o is the network output value, 

N is the total number of pattern. 

In the training and testing of Random Forest, Ada 

Boost, SVM and Bayes classifier models from experimental 

data are used. During our model, we exploited 288 of the 

data as experimental and remaining 48 data as training. 

Sample number and experimental results for training were 

given in Fig. 2. 

Sample number and experimental results from the 

Random Forest, Ada Boost, SVM and Bayes classifier 

models are presented in Figs. 3, 4, 5, and 6, respectively. 

All results obtained from experimental studies and 
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Table 5 Comparison of compressive strength experimental results with testing results obtained from the random forest, 

ada boost, SVM and bayes classifier models 

Data used in the models construction Compressive strength, MPa 

Days PC, g BFS, g WTRP, g Exp. Random Forest Ada Boost SVM Bayes 

2 450 0 0 23.0 33.9 20.9 39.6 20.9 

2 427.5 22.5 0 21.1 28.5 19.1 31.5 19.1 

2 405 45 0 17.7 25.4 16.7 28.9 16.7 

2 382.5 67.5 0 16.3 24.6 15.3 27.9 43.9 

2 360 90 0 13.9 25.0 12.8 28.3 50.1 

2 438.75 0 11.25 15.8 22.7 14.7 25.2 21.0 

2 427.5 0 22.5 15.7 22.5 14.6 24.6 19.8 

2 427.5 11.25 11.25 16.0 22.2 14.9 21.0 20.2 

2 405 33.75 11.25 15.9 21.9 14.8 18.5 11.6 

2 405 22.5 22.5 15.1 20.7 14.1 18.9 11.0 

2 405 45 22.5 12.6 20.9 11.6 17.7 11.6 

2 405 67.5 22.5 13.0 21.2 11.9 20.9 11.9 

7 450 0 0 45.2 46.8 40.2 42.1 56.2 

7 427.5 22.5 0 44.6 44.6 39.5 36.7 54.7 

7 405 45 0 38.6 38.5 33.5 33.0 53.8 

7 382.5 67.5 0 34.1 35.7 29.1 31.6 43.1 

7 360 90 0 32.1 34.5 27.1 29.6 28.1 

7 438.75 0 11.25 36.2 37.5 32.1 28.5 29.1 

7 427.5 0 22.5 30.6 33.6 26.5 27.8 26.5 

7 427.5 11.25 11.25 34.0 36.4 29.0 24.8 29.0 

7 405 33.75 11.25 34.4 35.7 29.4 23.0 23.3 

7 405 22.5 22.5 29.9 31.5 25.8 23.6 23.7 

7 405 45 22.5 25.9 29.3 23.8 21.5 24.9 

7 405 67.5 22.5 25.4 28.0 23.4 22.9 23.4 

28 450 0 0 58.3 52.4 40.2 57.8 56.3 

28 427.5 22.5 0 56.5 51.6 49.5 56.0 54.5 

28 405 45 0 50.8 47.9 45.7 52.3 53.9 

28 382.5 67.5 0 49.3 46.8 43.3 48.8 43.3 

28 360 90 0 43.8 43.8 38.7 43.1 47.9 

28 438.75 0 11.25 45.6 43.2 40.5 46.1 49.7 

28 427.5 0 22.5 41.8 39.9 36.7 42.3 35.7 

28 427.5 11.25 11.25 44.7 42.9 39.6 45.2 49.8 

28 405 33.75 11.25 43.8 42.6 39.7 44.1 34.6 

28 405 22.5 22.5 40.0 38.4 35.9 39.9 35.9 

28 405 45 22.5 36.1 36.1 32.1 36.6 24.1 

28 405 67.5 22.5 35.5 36.0 31.5 36.0 23.4 

90 450 0 0 64.3 53.3 56.3 62.8 56.3 

90 427.5 22.5 0 62.6 53.4 54.5 62.1 54.5 

90 405 45 0 60.4 50.0 53.4 58.9 53.4 

90 382.5 67.5 0 58.3 49.3 51.2 57.1 43.2 

90 360 90 0 53.3 45.6 47.3 51.8 47.3 

90 438.75 0 11.25 50.0 44.7 44.9 51.5 57.1 

90 427.5 0 22.5 46.8 41.2 41.7 45.3 56.9 

90 427.5 11.25 11.25 50.1 43.7 44.1 50.6 54.1 

90 405 33.75 11.25 50.4 44.2 45.3 50.8 53.4 

90 405 22.5 22.5 45.6 39.8 40.5 44.0 11.1 

90 405 45 22.5 41.7 38.4 36.6 43.2 53.8 

90 405 67.5 22.5 44.3 38.1 39.3 42.8 23.2 
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Fig. 5 Comparison of compressive strength 

experimental and testing results of the SVM model 

with sample number 

 

 

Fig. 6 Comparison of compressive strength 

experimental and testing results of the bayes classifier 

model with sample number 

 

 

Fig. 7 Comparison of compressive strength 

experimental results with training results of the 

random forest model 

 

 

predicted by using the testing results of the Random Forest, 

Ada Boost, SVM and Bayes classifier models, for 2, 7, 28 

and 90 days compressive strength were given in Figs. 7, 8, 9 

and 10, respectively. 

The linear least square fit line, its equation and the R
2
 

values were shown in these figures for the testing data. As it 

is visible in Figs. 8 and 7 the values obtained from the 

testing in the Ada Boost and Random Forest models are 

very closer to the experimental results, respectively. 

However, As it is visible in Figs. 9 and 10 the values 

obtained from the testing in the SVM and Bayes classifier 

 

Fig. 8 Comparison of compressive strength 

experimental results with training results of the ada 

boost model 

 

 

Fig. 9 Comparison of compressive strength 

experimental results with training results of the SVM 

model 

 

 

Fig. 10 Comparison of compressive strength 

experimental results with training results of the bayes 

classifier model 

 

 

models are farther to the experimental results. The result of 

testing phase in Figs. 8 and 7 show that the Ada Boost and 

Random Forest models are capable of generalizing between 

input and output variables with reasonably good 

predictions. 

The statistical values for all the station such as RMS, R
2
 

and MAPE for testing were given in Table 6. 

The statistical values of R
2
, RMS and MAPE from 

testing in the Random Forest model were found as 0.9639, 

5.7291 and 0.1810, in the Ada Boost 0.9831, 5.2425 and 

0.1105, in the SVM 0.8513, 5.8504 and 0.1848, in the 
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Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models 

Table 6 The compressive strength statistical values of 

proposed the random forest, ada boost, SVM and bayes 

classifier models 

Statistical parameters Random Forest Ada Boost SVM Bayes 

R2 0.9639 0.9831 0.8513 0.5479 

RMS 5.7291 5.2425 5.8504 11.1276 

MAPE 0.1810 0.1105 0.1848 0.2697 

 
Table 7 Correlations for all this models 

Statistical parameters 
Random 

Forest 

Ada 

Boost 
SVM Bayes Experimental 

Random Forest 

Pearson 

Correlation 
1 0.969** 0.919** 0.775** 0.982** 

Sig. (2-tailed)  0.000 0.000 0.000 0.000 

Adaboost 

Pearson 

Correlation 
0.969** 1 0.918** 0.733** 0.991** 

Sig. (2-tailed) 0.000  0.000 0.000 0.000 

SVM 

Pearson 

Correlation 
0.919** 0.918** 1 0.748** 0.923** 

Sig. (2-tailed) 0.000 0.000  0.000 0.000 

Bayes 

Pearson 

Correlation 
0.775** 0.733** 0.748** 1 0.740** 

Sig. (2-tailed) 0.000 0.000 0.000  0.000 

Experimental 

Pearson 

Correlation 
0.982** 0.991** 0.923** 0.740** 1 

Sig. (2-tailed) 0.000 0.000 0.000 0.000  

** Correlation is significant at the 0.01 level (2-tailed) 

 

 
Bayes 0.5479, 11.1276 and 0.2697, respectively. All of the 

statistical values in Table 7 show that the proposed the Ada 

Boost and Random Forest models are suitable and predict 

the 2, 7, 28 and 90 days compressive strength values very 

close to the experimental values. 

Furthermore, four models and experimental output 

values were compared by SPSS 22.0 software package 

(Table 7). We have found statistically significant 

relationship within all models (p<0.000). Hence, we 

observed high level correlation among four models and 

experimental output values (Pearson correlation values 

between 0.982 and 0.733). 

Hence, the comprehensive sensitivity analysis of four 

model sensitivities for experimental output values was 

determined by Automatic Linear Modelling (Fig. 11). The 

importance of sensitivity for the Ada Boost, Random 

Forest, SVM and Bayes classifier models were 0.79, 0.021, 

0.000 and 0.000, respectively. The Ada Boost and Random 

Forest models yielded better prediction performances. 

Results imply that Bayes model does not present efficient 

prediction outputs for this study. In fact, Bayes model may 

not be sensitive to noisy data or outliers. Hence Bayes 

model doesn’t present optimal yields for this data set.  

 
 
6. Conclusions 

 
In this study, the Random Forest, Ada Boost, SVM and 

Bayes classifier models were used for the prediction the 2, 

7, 28 and 90 days compressive strength values of cement 

mortars containing PC, BFS, WTRP and BFS+WTRP. In 

 

Fig. 11 The importance level of four model 

sensitivities for experimental output values 

 

 

order to train the models, we exploited 288 experimental 

data, whereas 48 data were used for testing machine 

learning models. Analysis of the prediction results denote 

that Adaboost model presented the most accurate outputs.  

During Adaboost model R
2
, RMS and MAPE were 

found as 0.9831, 5.2425 and 0.1105, respectively. We also 

observed accurate results from Random Forest model. R
2
, 

RMS and MAPE outputs of Random Forest were 0.9639, 

5.7291 and 0.1810 respectively. The prediction results of 

SVM were also acceptable. In other words, R
2
, RMS and 

MAPE results of SVM were 0.8513, 5.8504 and 0.1848 

respectively. Finally, we conclude that Naïve Bayes 

presented the worst prediction performance. Particularly, 

R
2
, RMS and MAPE yields of Bayes classifier model were 

found as 0.5479, 11.1276 and 0.2697 respectively. We 

assume Adaboost and Random Forest models may be 

compatible to similar problems when overfitting is a 

problem. Furthermore, the two models may be convenient 

to prediction from noisy or high dimensional data.  

As a result, compressive strength values of cement 

mortars containing PC, BFS, WTRP and BFS+WTRP can 

be predicted in the Random Forest, Ada Boost, SVM and 

Bayes classifier models in a quite short period of time. The 

conclusions have shown that the Ada Boost and Random 

Forest models are practicable methods for predicting 

compressive strength values of cement mortars containing 

PC, BFS, WTRP and BFS+WTRP. Furthermore, these 

systems can reduce losses in both elapsed time and financial 

costs during the preparation of the cement mortars and 

concretes by exploiting various additives. In the future, new 

studies can be made by removing limitations such as the 

cement type prepared with various mineral additives.  
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