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1. Introduction 
 

In today’s infrastructure development, structural health 

monitoring is crucial in assessing existing bridges against 

man-made and natural disasters. Accurate assessment after 

an event in preparation for repair, rehabilitation, or 

retrofitting is the common problem. Most of the existing 

structures are made out of complex material known as 

concrete. Concrete can be assessed in many ways where 

factors to be considered in the test are cost, time, idle period 

during assessment, and degree of uncertainty. Development 

of this accurate assessment can be made with rapid 

assessment using non-destructive testing. Non-destructive 

test in concrete is complex due to its inhomogeneous 

ingredients and its particle sizes which experiences clapping 

of cracks and friction present inside the material. In this 

paper, ultrasonic test is used as a non-destructive 

assessment in concrete under uniaxial compressive test in 

concrete cubes. This ultrasonic test method is divided into  

two tests, linear and nonlinear.  

From references, there are numerous linear ultrasonic 

testing procedures in concrete. Past researches use  
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combination of linear ultrasonic test using ultrasonic pulse 

velocity and rebound hammer to test on site strength of 

concrete (Breysse 2012). Another example is the 

combination of ultrasonic pulse velocity and ultrasonic 

pulse amplitude to predict the compressive strength of 

concrete (Liang and Wu 2002). Researchers use 

combinations to improve the prediction of the behavior of 

concrete. Still, ultrasonic pulse velocity is limited due to its 

insensitivity to the changes in load (Daponte et al. 1995). 

Previous researches also uses air-coupled impact echo, 

infrared, and sounding through chain drag method as a non-

destructive method to test concrete (Oh et al. 2013).  

In linear ultrasonic testing, the received waveform 

shares the same amplitude as that of the transmitted 

waveform. Thus, no harmonics is generated during linear 

ultrasonic testing. An illustration of this is the ultrasonic 

pulse velocity test (ASTM C597) wherein time of wave 

traveling a particular distance are the parameters measured 

during testing as shown in Eq. (1). This parameter is shown 

in Fig. 1 where the time to travel of the longitudinal wave 

from transmitter to receiver is used to compute the 

ultrasonic pulse velocity. It is worth noting that in this test, 

it is not essential to measure the wave amplitude. In other 

study, it is observed that cracks of size greater than 100 mm 

are the only ones detected by longitudinal ultrasonic pulses 

(Komlos et al. 1996). Further study claimed that cracks are 

undetectable especially if it is filled up with fluids. 

In relation to Fig. 1, Peak to Peak Amplitude (PPA) of 

the received waveform is also used as a measurement in 
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stress. The ANN model showed increasing WC produced delayed response to stress at initial stages, abruptly responding after 
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Fig. 1 Linear ultrasonic test using UPV and PPA in 

time-domain recorded from the transmitter and 

receiver 

 

 

damage detection. Peak to peak amplitude can be taken 

from the time domain spectra. Peak to peak amplitude is the 

vertical distance from the highest point of the wave form to 

the lowest point of the waveform. In another study, PPA has 

also been one of the significant parameters in estimating the 

residual strength of concrete (Shah and Ribakov 2008) 

(Shah et al. 2012). 

 (1) 

 

For the aforementioned methods, nonlinear ultrasonic 

provides to be promising due to its sensitivity in damage 

and micro- crack detection. Nonlinear ultrasonic waves 

proves to be sensitively interacting with contact-type 

defects (Yim et al. 2012) (Shah and Hirose 2010a). This 

includes the opening/closing of cracks formed when loading 

and unloading occurs. Ultrasonic waves passing thru 

damaged concrete interacts with micro cracks that result to 

generation of higher harmonics. In particular, harmonic 

ratio generated from damaged concrete is sensitive to micro 

structural changes and micro-cracking in the interfacial 

transition zone (Shah and Ribakov 2009). Concrete mixture 

content also influences the generation of higher harmonics. 

Increase in water-cement ratio proves to be increasing the 

nonlinear parameter. From a previous study, third harmonic 

ratio is sensitive compared to the second harmonic ratio 

(Shah et al. 2009). In addition, 2
nd

 higher harmonics 

become large, if crack opening displacement is small 

(Hirose and Achenbach 1993). The sensitivity of the A2 and 

A3 depends on the type of loading pattern as single loading 

pattern or multiple step loading pattern (Ongpeng 2016a). It 

is found out that 2
nd

 harmonic amplitude is sensitive to any 

load pattern introduced for low and high water cement ratio. 

It is also suggested that the amplifier be triggered at high 

power level in experiments to produce better sensitivity in 

the higher harmonics generation (Shah et al. 2013). 

Advancement in non-destructive test uses combination of 

acoustic emission with nonlinear ultrasonic test in concrete 

to evaluate damage gives good relation in damage detection 

(Shah and Ribakov 2010b). 

In this paper, nonlinear ultrasonic test method focused 

on spectral frequency analysis. Frequency domain graphs 

focused on harmonic generation that was used as 

parameters in the model. This was a phenomenon resulting 

from interaction between concrete and ultrasonic wave  

 

Fig. 2 Nonlinear ultrasonic test using higher harmonic 

generations A1, A2, and A3 in frequency-domain 

recorded from the receiver 

 

 
Fig. 3 Nonlinear ultrasonic test using frequency F1, 

F2, and F3 at each harmonic amplitude in frequency-

domain recorded from the receiver 

 

 

(Zheng et al. 1999). During this nonlinear interaction, a 

portion of the fundamental frequency gets converted to 

higher harmonics as shown in Fig. 2 where A1, A2 and A3 

were observed. Harmonic generation will not occur without 

attenuation. Attenuation is the reduction in intensity in any 

kind of flux during its travel through a medium. Moreover, 

internal friction contributes to the attenuation. Higher 

harmonic generation occurrence is due to contact of crack 

interfaces called Contact Acoustic Nonlinearity (CAN) 

(Solodov et al. 2002) (Korshak, et al. 2002) (Solodov 1998) 

(Solodov et al. 2011). Opening and closing of cracks and/or 

frictional forces acting on the interfaces between cement 

paste and the aggregates were experienced when concrete 

was loaded. The higher harmonics generated depended on 

the behavior of the cracks forming inside when 

corresponding compressive load was applied (Solodov and 

Chin 1993). This non-classical acoustic nonlinearity in 

solids reveal subharmonic and harmonic generations, 

evident hysteresis, and instability effects. Concrete also 

contributed to complex behavior like dynamic 

characteristics where an amplitude jump right beyond the 

CAN threshold was evident.  

Another method is the non-linear wave modulation 

spectroscopy (NWMS) which is centered on studying the 

non-linear wave mixing happening in the material (Johnson 

2006). This method measures the modulation of the 

ultrasonic using a low frequency vibration. This method is 

best used in comparing damaged and undamaged materials. 

Additionally, non-linear resonant ultrasound spectroscopy 

(NRUS) is centered on measuring the shift of resonance 

frequency and the material dumping as a function of the 
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Fig. 5 Compression loading and unloading of specimen 

 

 

resonance peak amplitude. The NRUS is a branch of the 

Resonant Ultrasound Spectroscopy (RUS) that is utilized in 

the industrial non-destructive evaluation. The shift of 

frequency is also used in this paper as a parameter to be 

considered as shown in Fig. 3 where F1, F2, and F3 and the 

changes of frequency corresponding to the maximum 

amplitude for A1, A2, and A3, respectively. In addition, 

micro-cracking corresponds to the non-linear softening of 

the modulus of elasticity with increasing level in resonance 

experiments which can be seen with strain as low as 10
-8

. 

When the resonance frequency shifts, higher harmonics are 

produced and damping is observed (Van den Abeele et al. 

2000). These phenomena can be observed significantly in 

damaged materials. 

Determining the efficiency of linear and nonlinear 

ultrasonic showed that the wave attenuation and harmonic 

generation are sensitive to different damage level. It is 

proven experimentally that efficiency and sensitivity of 

nonlinear ultrasonic method to detect damages in concrete 

are higher than that of linear ultrasonic (like pulse velocity 

method) for all damage levels. 

Seen in Fig. 4 is the incident wave and transmitted wave 

for two conditions. In linear condition, the incident wave 

when passing through cracks in concrete will be scattered. 

 

Table 1 Design mix for the different materials 

Item 

Max. 

aggregate 

size (mm) 

W/C 

(%) 

Unit quantity (kg/m3) 

Cem

ent 
Sand 

Grav

el 

Water- 

Reducing 

Agent 

Fiber 

Content 

ORC 

FRC 
20mm 40 60 344 761 1038 0.69 

ORC=0 

FRC=78.

5 

 

 

In nonlinear condition, as seen in this paper’s experimental 

procedure, the transmitted wave reacted to two types of 

mechanism-opening/closing and sliding/friction of cracks.  
Aside from microscopic and macroscopic scale damage 

level assessment, Nonlinear Mesoscopic Elastic (NME) 
theory can also be used in concrete. This is a scale in 
between micro and macro where dimensions are preferred 
by some researchers as vital to the study of concrete 
materials. Several important properties such as shift of 
resonance frequency, generation of higher harmonics, and 
the phenomenon known as slow dynamics (Johnson and 
Sutin 2005), can be observed in a heterogeneous material in 
this case, concrete. These effects are called non-classical 
non-linear where there are softer regions inside a hard 
material. Some examples of failure are micro cracks in soft 
bonding regions between grains. In particular, the presence 
of cement paste in concrete served as a soft bonding region 
binds with aggregates of different sizes together which 
serves as a hard material in the matrix. If external forces are 
applied to a concrete specimen, some weak joints may be 
broken since it is relatively weaker than the coarse 
aggregates. For weak joints, non-linear behavior sets in at 
an earlier stage. For strong joints, it behaves linearly and 
then non-linearly.  

Artificial Neural Network (ANN) is a tool available in 

MATLAB that is capable of modelling nonlinear systems. It 

is a data mining tool that is based on the neural structure of 

the brain. This means that the ANN is modeled so that it can 

learn from experience. A Neural Network basically consists  

Transmitter during linear condition 

 

Receiver during linear condition 

 
 

Receiver during nonlinear condition 

 

Fig. 4 Ultrasonic wave passing through concrete in linear and nonlinear condition 

Tensile    Shear 
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of input layer, hidden layer and output layer. Each node 
from the input layer is connected to a node from a hidden 
layer and the node in the hidden layer is connected to the 
node in the output layer. Weights and Biases are present in 
each node connection. The higher the weights, the higher 
the impact of the input node. It uses algorithms in adjusting 
weights and biases and this process is called training. It 
determines the relationship of the input nodes and the 
output nodes of the model using transfer functions. It is 
used in modelling confined compressive strength of hybrid 
circular concrete columns (Oreta and Ongpeng 2011) and 
prediction of hybrid fibre-added concrete strength (Ali 
Demir 2015). There are also studies which focus on neural 
network algorithm development. An example is the study of 
decomposition techniques for multilayer perceptron training 
(Grippo et al. 2016). A fast and efficient method for training 
categorical radial basis function network is also studied 
(Alexandridis et al. 2016). The role of synchronized and 
chaotic spiking neutral ensembles in neural information 
processing (Rossello et al. 2014) and a neural network for 

 

 
 
learning the meaning of object and word from feutural 

representation (Ursino et al. 2015) are also being 

developed. 

In this paper, average strain and linear/nonlinear  

ultrasonic test results were used as input parameters in the 

development of ANN models to predict stress in concrete. 

The ANN model was advantageous to generalize complex 

behavior of concrete combining its microscale, mesoscale, 

and macroscale properties. The ANN model learns from 

experimental data similar to a human brain learning from its 

experience. The input parameters initially considered were: 

strain (ε), Ultrasonic Pulse Velocity (UPV), Peak to Peak 

Amplitude (PPA), Fundamental Harmonic Amplitude (A1), 

Second Harmonic Amplitude (A2), Third Harmonic 

Amplitude (A3), Fundametal Frequency (F1), Second 

Harmonic Frequency (F2), and Third Harmonic Frequency 

(F3). Prior to ANN modeling, statistical Spearman’ rank 

correlation was used to reduce the input parameters in the 

ANN modeling stage.  

  

Fig. 6 Compressive testing procedure by loading and unloading setup using ultrasonic testing 

  
(a) and (b) WC40 and WC60 normalized stress directly proportional to ε 

  
(c) and (d) WC40 and WC60 normalized stress inversely proportional to A2 

Fig. 7 Parameters with the highest spearman’s rank correlation 

Transmitter, 

100 kHz

Receiver, 

200 kHz

 

Concrete 

specimen 
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Table 2 Spearman’s correlation coefficient 

Correlation WC40 WC60 

Very strong ε  

Strong  ε 

Moderate A1, A2, A3, PPA A1, A2, A3, PPA 

Very weak UPV, F1, F2, F3 UPV, F1, F2, F3 

 

 

2. Experimental procedures 
 

A total of 16 cubic specimens were casted for concrete 

specimens. The size of the specimen is 150 mm×150 

mm×150 mm. Specimens are designed at ultimate load of 

900 kN and 1,200 KN for WC60 and WC40, respectively. 

The design of the multistep loading pattern is shown in Fig. 

5. The sand-total aggregate ratio is 45%. Shown in Table 1 

is the design mix for the four types of concrete. 

A universal testing machine was used to subject each 

specimen through step loading after standard wet curing for 

28 days. Simultaneously, at every step load, specimens were 

assessed using linear and nonlinear ultrasonic testing. In 

addition, two strain gauges were placed vertically along two 

faces of the concrete cube to measure its contraction against 

load. The designed step load was used to examine the 

behavior of the harmonics generated when crack opened 

and closed with load.  

The experiment consisted of tone-burst pulser supplied 

with voltage amounting up to 1800 V. Its output was aimed 

to a single frequency which drove the nonlinear range 

response of the specimen. Another device used was the high 

gain broadband receiver that could be tuned to the desired 

frequency. This device effectively eliminated the noise 

frequencies that affect the recorded measurements. The 

pulser-receiver unit have built in modern facilities such as 

low pass filter set at 3 MHz and high pass filter set at 50 

KHz, and input impedance of 50 Ω. 

Transducers were connected to the tone-burst pulser and 

broadband receivers. It was carefully aligned, centered and 

bonded to the concrete specimen using a couplant. A 

transducer with 100 kHz generating frequency capacity was 

used to transmit the signal through the damaged concrete 

with a receiver of 200 kHz on the opposite end as shown in 

Fig. 6.  

Four cube specimens were tested for each type of 

sample. In every step load, time-domain waveform data for 

each specimen were obtained from the ultrasonic test 

equipment. These were converted to frequency spectra 

using Fast Fourier Transform (FFT) to acquire the input 

parameters needed in this paper. 

Shown in Fig. 7(a) and 7(b) are scatter plot of the 

linearly normalized stress strain for WC40 and WC60. This 

input parameter, strain, is considered since this shows the 

highest correlation among all other parameters that 

influence the stress. Additionally, it shows that the stress is 

directly proportional to the strain experienced in Fig. 7(a) 

and 7(b) experienced in the multiple step loading pattern as 

presented by the regression lines formed in the graphs. On 

the other hand, Figs. 7(c) and illustrates the second 

harmonic amplitude of WC40 and WC60. The A2 is  

 

Fig. 8 ANN model with 4 IN-5 HN-1 ON with L1 and 

L2 as transfer functions 

 

 

inversely proportional to stress as presented by the 

regression lines in each plot. The behavior of the datasets 

when stress is plotted according to single independent 

variable can be difficult to model using statistical regression 

due to wide spread of data sets. In this paper, ANN is used 

as a model that can be developed using multiple input 

parameters with non-linear relationship based from the 

training, validating, and testing stages.  

 
 
3. Artificial neural network models 

 
 

 

A previous study used ultrasonic testing and ANN was 

used to develop a model that would predict the residual 

strength of the concrete (Shah et al. 2012). The parameters 

used were peak to peak, strength of the concrete (fc’), 

velocity of the wave, input voltage, arrival time and water 

to cement ratio (WC). It was also observed in the 

parametric study that the voltage input, peak to peak and 

arrival time were the most significant parameters in 

predicting the residual strength of the concrete. The average 

pulse velocity which was used in the linear ultrasonic 

method did not appear to be important in the damage 

detection.  
In this paper, multistep loading pattern was used to 

consider the damping effect of concrete when subjected to 
repeated load. The input parameters initially considered 
were: strain (ε), Ultrasonic Pulse Velocity (UPV), Peak to 
Peak Amplitude (PPA), Fundamental Harmonic Amplitude 
(A1), Second Harmonic Amplitude (A2), Third Harmonic 
Amplitude (A3), Fundamental Frequency (F1), Second 
Harmonic Frequency (F2), and Third Harmonic Frequency 
(F3). Prior to ANN modeling, statistical Spearman’s rank 
correlation was used to reduce the input parameters in the 
ANN modeling stage. The software SPSS statistics was 
used in doing this process of pre-elimination. The 
Spearman’s rank correlation was used because it measured 
the strength and direction of the monotonic relationship of 
the two parameters involved rather than their linear 
relationship. The Spearman’s rank order correlation had 
already been used in studying the relationship of the input 
parameters to further support the result of the network 
(Osman et al. 2016) and it had also been used in selecting 
the input parameters that would be used in ANN to enhance 
the performance of the network. (Kumar and Anamika 
2016). The parameters were arranged from highest  
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correlation to lowest correlation. It was observed that there 
was a strong correlation between the average strain (ε) and 
the stress. It is noticeable that A1, A2, A3, and PPA were 
moderately correlated with the stress. The parameters F1,  

 

 
 
F2, F3, and UPV had very weak correlation with the stress. 
All the weak correlation was discarded in the ANN 
modeling. The remaining input parameters that were used in 
training, validating, and testing the ANN model were ε,  

Table 3 Trained, validated, and tested ANN models for WC40 concrete 

IN-HN-ON IN parameters X (varying HN) L1 L2 
Pearson correlation coefficient (R) 

Training data Validating data Testing data 

4–xHN-1 

ε 

A2 

A3 

ORC/FRC 

3 

 

 

L 

O 

G 

S 

I 

G 

 

 

P 

U 

R 

E 

L 

I 

N 

0.96 0.91 0.93 

4 0.95 0.93 0.95 

5 0.85 0.86 0.98 

9 0.94 0.96 0.92 

5–xHN-1 

ε 

A2 

A3 

PPA 

ORC/FRC 

3 0.94 0.93 0.98 

4 0.93 0.95 0.96 

5 0.95 0.95 0.93 

6 0.94 0.95 0.96 

11 0.94 0.91 0.93 

6–xHN-1 

ε 

A1 

A2 

A3 

PPA 

ORC/FRC 

4 0.95 0.94 0.94 

5 0.94 0.97 0.93 

6 0.94 0.95 0.95 

7 0.96 0.98 0.93 

13 0.95 0.94 0.95 

4–xHN-1 

ε 

A2 

A3 

ORC/FRC 

3 

 

 

T 

A 

N 

S 

I 

G 

 

 

P 

U 

R 

E 

L 

I 

N 

0.94 0.93 0.95 

4 0.95 0.94 0.86 

5 0.96 0.95 0.96 

9 0.95 0.94 0.95 

5–xHN-1 

ε 

A2 

A3 

PPA 

ORC/FRC 

3 0.93 0.92 0.95 

4 0.94 0.96 0.98 

5 0.95 0.97 0.92 

6 0.94 0.94 0.96 

11 0.96 0.92 0.96 

6–xHN-1 

ε 

A1 

A2 

A3 

PPA 

ORC/FRC 

4 0.94 0.95 0.94 

5 0.95 0.98 0.85 

6 0.96 0.96 0.90 

7 0.95 0.92 0.87 

13 0.95 0.96 0.95 

  

Fig. 9 Simulated output VS Target output for WC40 Fig. 10 Simulated output VS Target output for WC60 
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Fig. 11 Parametric study using the chosen model 

(Varying ε with constant input parameters) 
 
 
PPA, A1, A2, and A3. Shown in Table 2 was the result of 
the Spearman’s correlation ranking. 

After the reduction of parameters, linear normalization 

of data was done. This normalization converted minimum 

values for each parameter as zero, and maximum values for 

each parameter as one. The reason for linear normalization  

 

 

was to eliminate the scale factor between parameters with 

small and large values. Artificial Neural Network (ANN) 

was then used as a tool that is capable of modelling 

nonlinear systems. It is a data mining tool that is based on 

the neural structure of the brain. This meant that the ANN 

was modeled so that it can learn from experience. A Neural 

Network basically consisted of input layer, hidden layer and 

output layer. Each node from the input layer was connected 

to a node from hidden layer and the node in the hidden layer 

was connected to the node in the output layer. Weights and 

biases were present in each node connection. To get the 

desired output, the weight of the node must be adjusted. It 

used algorithms in adjusting weights and biases under 

training stage where the performance goal was measured 

using mean square error. It determined the relationship the 

input and the output of the model using transfer functions.  
The ANN was utilized in numerous prediction problems 

many times in researches. The author used ANN in 
modelling the confined compressive strength of hybrid  

Table 4 Trained, validated, and tested ANN models for WC60 concrete 

IN-HN-ON IN parameters X (varying HN) L1 L2 
Pearson correlation coefficient (R) 

Training data Validating data Testing data 

4–xHN-1 

ε 

A2 

A3 

ORC/FRC 

3 

 

 

L 

O 

G 

S 

I 

G 

 

 

P 

U 

R 

E 

L 

I 

N 

0.80 0.91 0.86 

4 0.87 0.89 0.86 

5 0.86 0.91 0.81 

9 0.84 0.83 0.89 

5–xHN-1 

ε 

A2 

A3 

PPA 

ORC/FRC 

3 0.84 0.89 0.84 

4 0.90 0.88 0.91 

5 0.86 0.94 0.83 

6 0.86 0.78 0.93 

11 0.86 0.82 0.95 

6–xHN-1 

ε 

A1 

A2 

A3 

PPA 

ORC/FRC 

4 0.84 0.89 0.87 

5 0.88 0.91 0.93 

6 0.88 0.86 0.93 

7 0.90 0.89 0.94 

13 0.95 0.93 0.95 

4–xHN-1 

ε 

A2 

A3 

ORC/FRC 

3 

 

 

T 

A 

N 

S 

I 

G 

 

 

P 

U 

R 

E 

L 

I 

N 

0.83 0.90 0.81 

4 0.85 0.76 0.86 

5 0.85 0.88 0.81 

9 0.89 0.91 0.92 

5–xHN-1 

ε 

A2 

A3 

PPA 

ORC/FRC 

3 0.88 0.89 0.93 

4 0.85 0.93 0.88 

5 0.88 0.86 0.83 

6 0.82 0.91 0.89 

11 0.87 0.88 0.88 

6–xHN-1 

ε 

A1 

A2 

A3 

PPA 

ORC/FRC 

4 0.87 0.91 0.79 

5 0.90 0.93 0.90 

6 0.87 0.91 0.94 

7 0.93 0.92 0.94 

13 0.93 0.85 0.90 
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circular concrete columns (Oreta and Ongpeng 2011) from 
previous studies which showed accurate prediction model 
tools. Recent studies also used ANN in the prediction of 
hybrid fibre-added concrete strength (Ali Demir 2015). A 
new method in determining the three point bending strength 
of concrete mortars in non-destructive manner was also 
predicted using ANN (Alexandridis et al. 2015). Estimation 
of the compressive strength of concrete using the ultrasonic 
pulse velocity and the ANN which can be used in health 
monitoring of concrete structures was also done (Bilgehan 
and Turgut 2010). Another study in damaged concrete was 
predicting the residual strength of concrete using non-linear 
ultrasonic testing and artificial neural network. Peak to 
peak, strength of the concrete (fc’), velocity of the wave, 
input voltage, arrival time and water to cement ratio (w/c) 
were the input parameters that were used in this study. In 
the results, the voltage input, peak to peak and arrival time 
were the most significant parameters in predicting the 
residual strength of the concrete. Shown in Fig. 8 is an 
example ANN model with 4 IN-5 HN-1 ON, where “IN” 
represented the number of input nodes, “HN” represented 
the number of hidden nodes, and “ON” represented the 
number of output node. The network architecture used in 
this paper was defined as “IN-HN-ON”. Transfer function 
for each layer was also varied where “L1” is the 1

st
 layer 

transfer function and “L2” is the 2
nd

 layer transfer function. 
In particular, LOGSIG and TANSIG was varied in L1 to 
arrive at a model.  

Data from the experiment were processed from eight 

cube specimens that contain 144 datasets per water cement 

ratio. In the neural network, the data were divided into 

training (60%), validating (20%) and testing (20%). When 

training networks, the training subset was used in updating 

the weights and biases of the network. The validation subset 

was used to validate that the network was generalizing. The  

 

 

validation subset was also used to stop the training of the 

network before overfitting. The testing subset was used to 

measure on how good the model could generalize. The 

network training function used in this paper was Levenberg-

Marquardt optimization in updating the weight and biases 

with a target performance goal measured using mean square 

error. This function is one of the fastest backpropagation 

algorithms available. This algorithm was proven to give 

good results in mechanics of materials like quality control 

in resistance spot welding (Martin et al. 2007), prediction of 

the strength of mineral admixture concrete (Atici 2011), and 

predicting residual strength of non-linear ultrasonic 

evaluated damaged concrete (Shah et al. 2012). The ANN 

network when trained, validated, and tested to attain a 

performance goal produced stochastic results. Each run of 

the model produced unique weights and biases that were 

saved for further analysis.    

Variation of the number of input nodes, hidden nodes, 

and transfer functions was done to come up with twenty-

eight distinct models per WC ratio was trained, validated, 

and tested. The transfer function was varied for the first 

layer using TANSIG or LOGSIG, while the second layer 

transfer function was PURELIN.  

Single hidden layer was used throughout the modeling 

in this paper to arrive at the simplest model in predicting 

compressive strength. Varying number of hidden nodes was 

designed to model as many possible networks. A previous 

study gave good estimate of the number of hidden nodes 

needed (Oreta and Kawashima 2003). It was suggested that 

it will be between the average and the sum of nodes on the 

input and output layers (Hecht-Nielsen 1998).  

From the 28 ANN models trained, validated, and tested, 

a model was chosen for each WC having the highest 

Pearson correlation coefficient (R) in testing, and the 

(a) ORC40

 

(b) ORC60 

 
(a) 4-5HN-1 where A3 is constant at median value (b) 6-13HN-1 where A1, A3, PPA are constants at median value 

(c) FRC40

 

(d) FRC60 

 
(c) 4-5HN-1 where A3 is constant at median value (d) 6-13HN-1 where A1, A3, PPA are constants at median value 

Fig.12 Parametric study using the chosen model with varying strain and 2
nd

 harmonic amplitude 
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soundness of the behavior for the input parameters in 

relation to the compressive stress of concrete. Some of the 

models had its R=0.98, but these models may tend to 

overfit. In order to avoid overfitting, the soundness of 

models was checked by having simulations attuned to 

theory. As an example, increasing axial strain led to 

increasing compressive stress. In this way, it prevented the 

trained ANN models to overfit even if it has the most 

desirable R. Shown in Tables 3 and 4 are the ANN model 

with transfer function at the first layer, R for the training, 

validating and testing data for WC40 and WC60, 

respectively.  

Based from Table 3, model for WC40 is taken as 4 IN-5 

HN-1 ON with L1 as TANSIG and L2 as PURELIN 

transfer function. This model has the highest Pearson  
correlation coefficient (R) in testing, and the soundness of 
the behavior for the input parameters in relation to the 
compressive stress of concrete. On the other hand, the  
model for WC60 as shown in Table 4 is 6 IN-13 HN-1 ON 

with L1 as LOGSIG and L2 as PURELIN transfer function. 

The highest R values in training do not arrive at models. 

The ANN model can overfit its data when R value in 

training is very high and R value in testing is relatively low.  

In this paper, careful analysis of R values was used to 

arrive at models without overfitting of ANN to its datasets 

presented. As seen in Figs. 9 and 10 are the R values with 

residual errors. Residual errors of WC40 and WC60 for the 

training, validating, and testing data give a good 

measurement of the accuracy of ANN model in predicting 

non-linear relationship of parameters to determine the stress 

in concrete.   

Based from the models, parametric study is used to 

analyze and compare the four types of concrete with the 

highest Spearman’s rank correlation which is the strain. 

Seen in Fig. 11 is the behavior of increasing strain for 

models having other input parameters taken as the median 

of the dataset. It is noted that the WC40 FRC has delayed 

stress response and behaves linearly compared to the others. 

The WC60 ORC on the other hand behaves nonlinear than 

the rest. This indicates that the higher water cement ratio 

behaves nonlinear in its stress strain diagram. 

Another parametric study is used to analyze and 

compare the four types of concrete. Seen in Fig. 12 is the 

behavior of the stress against the input parameters ε and A2. 

The other parameters in each corresponding chosen model 

is made constant using their median value. Strain is selected 

for the parametric study since it gives high correlation to all 

models, while A2 was chosen to be another parameter 

where previous studies show that A2 is sensitive to the 

changing load in concrete (Ongpeng et al. 2016a) (Ongpeng 

et al. 2016b). The models give good agreement to theory 

that increasing strain increases its stress. The varying A2 

parameters are limited to the values 0 to 0.30. This is to 

prevent extrapolation of the prediction model out of the 

training data. In Fig. 12(a) and (c), it shows that low water-

cement ratio with decreasing A2 in a particular strain level 

produces increase in stress. For high water-cement ratio 

seen in Fig. 12(b) and (d), changes in A2 in a particular 

strain level is not significant. In addition, all FRCs in low 

and high water-cement ratio show slow response to stress 

than the ORC. This indicates the resistance of short steel 

fiber that significantly delays stress increase. 

 

 

4. Conclusions 
 

The feed-forward backpropagation artificial neural 

network (ANN) models were used to compare four types of 

concrete mixtures with varying water cement ratio (WC), as 

ordinary concrete (ORC) and concrete with short steel fiber-

reinforcement (FRC). The models showed promising results 

comparing four types of mixtures for the concrete cubes 

ORC WC40, ORC WC60, FRC WC40, and FRC WC60. 

Prior to ANN modeling, statistical Spearman’s rank 

correlation was used to reduce the input parameters in the  
ANN model. In general, different types of concrete 
produced similar top five input parameters that had high 
correlation to compressive stress. These were average strain  
(ε), fundamental harmonic amplitude (A1), 2

nd
 harmonic 

amplitude (A2), 3
rd

 harmonic amplitude (A3), and peak to 

peak amplitude (PPA).  

The model was chosen for each WC model having the 

highest Pearson correlation coefficient in testing, and the 

soundness of the behavior for the input parameters in 

relation to the compressive stress of concrete. The ANN 

model showed that increasing WC produced delayed 

response to stress at the initial stages, followed by abrupt 

response after 40%. This was due to the presence of more 

voids for high water cement ratio that activated Contact 

Acoustic Nonlinearity (CAN) at the latter stage of loading 

path. In addition, FRC showed slow response to stress than 

the ORC. This indicated the resistance of short steel fiber 

that significantly produced delayed stress increase against 

the loading path. Moreover, residual errors of WC40 and 

WC60 for the training, validating, and testing data gave a 

good measurement on the accuracy of ANN model in 

predicting non-linear relationship of the parameters 

presented to determine the stress in concrete. 
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