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Abstract. As concrete is most usable material in construction industry it’s been required to improve its
quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first
time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes
(SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-
Bernoulli and Timoshenko beam theories. The characteristics of the equivalent composite being determined
using mixture rule. The foundation around the column is simulated with spring and shear layer. Employing
nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are
derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The
influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary
conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the
concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to
concrete column armed with steel.
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1. Introduction

Typical concretes consist of ordinary Portland cement (OPC), fillers such as sand, coarse
aggregates, admixtures and water. This combination of materials allows concrete to be produced in
a fluid form that can be pumped and moulded. The complex chemistry and physical structure of
cement hydrates in concrete however mean that issues of fundamental science still need to be
resolved. Research at the nanoscale has the potential to contribute to these debates and questions.
Analysis at the nanoscale may provide further insight into the nature of hydrated cement phases
and their interaction with admixtures, nanofillers and nanofibers. These interactions offer the
possibility of modifying cement reactions, creating new surface chemistries (referred to as
nanoscience), developing new products for the concrete industry (referred to as nanotechnology),
and allowing a more controlled and ecologically friendly manufacturing route to cement and
concrete.

Buckling of concrete column has been investigated by many researchers. The first who studied
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theoretically the buckling stability of elasto-plastic columns appeared to be Engesser (1889). He
proved that the material non-linearity can largely reduce the buckling load. Further, he raised the
important question how the column unloads, and suggested that the buckling load of an inelastic
column must be obtained from Euler's formulae. This question was only correctly resolved later on
by Shanley (1947) who, with the help of the simple theoretical model and various experiments,
showed that the buckling of an elastic-plastic column occurs at the so-called tangent critical load.
Mau (1990) and Mau and El-Mabsout (1989) developed a beam-column element for the finite
element inelastic buckling analysis to determine the column load-carrying capacity. Pantazopoulou
(1998) compiled data from the literature of over 300 column tests and developed requirements for
reinforcement stability that recognize the interaction between displacement ductility demand in
critical section, tie effectiveness, limiting concrete strain, bar size and tie spacing. Dhakal and
Maekawa (2002a) used fiber finite element analyses to present an average compressive stress-
strain relation for reinforcing bars as a function of slenderness ratio and yield strength. Later, Bae
et al. (2005) conducted an experimental program study on bar buckling and examined the effects
of three important bar parameters, the L/D ratio (length over bar diameter), e/D (initial
imperfection over bar diameter) ratio and the ratio of ultimate strength to yield strength. Dhakal
and Maekawa (2002b) derived a method to predict the buckling length of longitudinal reinforcing
bars using an energy method. The exact analytical solutions for the buckling loads of a reinforced
concrete Euler-type column are presented in, e.g. Krauberger et al. (2007), where the effect of the
material non-linearity on the buckling load is fully assessed. The development of a finite element
model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous
beams was presented by Lou et al. (2015). Bajc et al. (2015) derived a new semi-analytical
procedure for the determination of buckling of the reinforced concrete column exposed to fire. An
experimental investigation on the behaviour of geopolymer composite concrete beams reinforced
with conventional steel bars and various types of fibres namely steel, polypropylene and glass in
different volume fractions under flexural loading was presented by Vijai et al. (2015). Choi et al.
(2015) conducted shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members
with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and
the level of effective prestress. Nominal moment-axial load interaction diagrams, moment-
curvature relationships, and ductility of rectangular hybrid beam-column concrete sections were
analysed by El-Helou and Aboutaha (2015) using the modified Hognestad concrete model.

It can be observed from literature that the theoretical researches on buckling of concrete
columns armed with SWCNTs are rare. The main goal of the present paper is to present a
mathematical model for concrete columns and discuss about the nanotechnology effects. For this
ends, the concrete column is modelled with Euler-Bernoulli and Timoshenko beam models. The
foundation is simulated with spring and shear constants. Applying energy method and Hamilton’s
principal, the governing equations are derived. DQM is used for obtaining the buckling load of
structure. The effects of different parameters such as volume percent of SWCNTs, geometrical
parameters, elastic foundation and boundary conditions on the buckling of concrete columns are
discussed.

2. Mathematical modelling

Fig. 1 shows a SWCNT-reinforced concrete column with length L and thickness h embedded in
foundation. The surrounding foundation is described by the Winkler foundation model with spring
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Fig. 1 Geometry of the concrete column resting on foundation

constant Kw and Pasternak foundation model with shear constant Gp.

2.1 Displacement fields

The concrete column is modelled with beam. The displacements of an arbitrary point in the
beam are (Brush and Almroth 1975)
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where U(x, t) and W(x, t) are displacement components in the mid-plane, ψ is the rotation of

beam cross-section. Noted that f(z)=0 and f(z)=1 are related to Euler-Bernoulli and Timoshenko
beam models. The von Karman type nonlinear strain–displacement relations are given by
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2.2 Stress-strain relations

For a beam structure, the constitutive relations can be approximated to one-dimensional form as
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2.3 Energy method

The strain energy of the structure can be expressed as
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Submitting Eqs. (2) and (3) into (6) gives
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where the resultant force (Nx, Qx) and bending moment Mx, are defined as

∫= A
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where Ks is shear correction factor. The work done by the foundation is denoted by (Ghorbanpour
Arani et al. 2015, Kolahchi et al. 2015a)
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2.4 Governing equations

The governing equations of structure can be derived from the Hamilton’s principle as
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Using above relation, the governing equations may be derived as
• Euler-Bernoulli beam model
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•Timoshenko beam model
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where M
xN is the axial load applied to the concrete column. Substituting Eqs. (4) and (5) into Eqs.

(8)-(10) yields
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Substituting Eqs. (18)-(20) into the governing equations yields
• Euler-Bernoulli beam model
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• Timoshenko beam model
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Introducing the following dimensionless quantities
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The governing equations may be written as
• Euler-Bernoulli beam model
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• Timoshenko beam model
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The associated boundary conditions can be expressed as
• Clamped-clamped boundary condition (C-C)
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• Clamped-simply boundary condition (C-S)
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• Simply-Simply boundary condition (S-S)
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3. Mixture rule

According to mixture rule, the effective Young and shear moduli of structure can be written as
(Kolahchi et al. 2015b)

,)1(11111 mrrr EcEcE −+=η (35)

,
)1(

2222

2

m

r

r

r

E

c

E

c

E

−
+=

η
(37)

,
)1(

1212

3

m

r

r

r

G

c

G

c

G

−
+=

η
(37)

where Er11, Er22 and Gr11 indicate the Young’s moduli and shear modulus of SWCNTs, respectively,
and Em, Gm represent the corresponding properties of the isotropic matrix. The scale-dependent
material properties, η j (j= 1, 2, 3), can be calculated by matching the effective properties of
structure obtained from the MD simulations with those from the rule of mixture. cr and Vm are the
volume fractions of the CNTs and matrix, respectively, which the sum of them equals to unity.

4. DQM

There is a lot of numerical method to solve the initial-and/or boundary value problems which
occur in engineering domain. Some of the common numerical methods are finite element method
(FEM), Galerkin method, finite difference method (FDM), DQM and etc. FEM and FDM for
higher-order modes require to a great number of grid points. Therefore these solution methods for
all these points need to more CPU time, while the DQM has several benefits that are listed as
below (Kolahchi and Moniribidgoli 2016)

DQM is a powerful method which can be used to solve numerical problems in the analysis of
structural and dynamical systems.

1. The accuracy and convergence of the DQM is higher than FEM.
2. DQM is an accurate method for solution of nonlinear differential equations in approximation

of the derivatives.
3. This method can easily and exactly satisfy a variety of boundary conditions and require

much less formulation and programming effort.
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4. Recently, DQM has been extended to handle irregular shaped.
Due to the above striking merits of the DQM, in recent years the method has become

increasingly popular in the numerical solution of problems in engineering and physical science.
The main idea of the DQM is that the derivative of a function at a sample point can be
approximated as a weighted linear summation of the function value at all of the sample points in
the domain. The functions f={u, w, ψ } and their kth derivatives with respect to x can be

approximated as (Ghorbanpour Arani et al. 2015)
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where N is the total number of nodes distributed along the x-axis and Cij is the weighting
coefficients, the recursive formula for which can be found in (Ghorbanpour Arani et al. 2013,
2015b). The cosine pattern is used to generate the DQ point system
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Using DQM, the governing equations can be expressed in matrix form as
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where KL is the linear stiffness matrix; KNL is the nonlinear stiffness matrix and Kg is geometric
stiffness matrix. Also, db and dd represent boundary and domain points. Noted that n and NN are 6
and 2N for Euler and 8 and 3N for Timoshenko beam model. Finally, based on an iterative method
and eigenvalue problem, the buckling load of structure may be obtained.

5. Numerical results

In this section, a concrete column with elastic modules of Em=20 GPa is considered which is
reinforced with SWCNTs with elastic modules of Er=1 TPa. Based on DQM, the buckling load of
structure is calculated and the effects of SWCNT volume percent, geometrical parameters, elastic
foundation and boundary conditions are showed.

5.1 Accuracy of DQM

The effect of the grid point number in DQM on the buckling load of the concrete column is
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Fig. 2 Accuracy of DQM for Euler-Bernoulli
beam model

Fig. 3 Accuracy of DQM for Timoshenko
beam model

Fig. 4 The effect of SWCNT volume percent on
buckling load for Euler-Bernoulli beam model

Fig. 5 The effect of SWCNT volume percent on
buckling load for Timoshenko beam model

demonstrated in Figs. 2 and 3 for Euler-Bernoulli and Timoshenko beam models, respectively. As
can be seen, fast rate of convergence of the method are quite evident and it is found that 15 DQM
grid points can yield accurate results. In addition, with increasing length of column, the buckling
load decreases due to reduction in stiffness of system.

5.2 The effect of different parameters

The effect of volume percent of SWCNTs on the nonlinear buckling load of concrete column is
illustrated in Figs. 4 and 5 for Euler-Bernoulli and Timoshenko beam models, respectively. It can
be found that with increasing the volume percent of SWCNTs, the nonlinear buckling load
increases. It is due to the fact that with increasing volume percent of SWCNTs, the stiffness of
structure increases. Hence, the SWCNT volume fraction is effective controlling parameters for
buckling of the concrete column. In addition, the buckling load predicted by Euler-Bernoulli
model is higher that Timoshenko one. It is because that the flexibility of Timoshenko model is
higher that Euler-Bernoulli model. Hence, the results predicted by Timoshenko beam model is
more real with respect to Euler-Bernoulli one.
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Fig. 6 Comparison of steel and SWCNT as
reinforcer for Euler-Bernoulli beam model

Fig. 7 Comparison of steel and SWCNT as
reinforcer for Timoshenko beam model

Fig. 8 The foundation effect on buckling load
for Euler-Bernoulli beam model

Fig. 9 The foundation effect on buckling load
for Timoshenko beam model

Comparison of buckling load of concrete column reinforced with steel and SWCNTs is
depicted in Figs. 6 and 7, respectively for Euler-Bernoulli and Timoshenko beam models. As can
be seen, for both models, the buckling load of concrete column reinforced with SWCNT is higher
with respect to concrete column reinforced with steel. However, it can be concluded that the use of
nanotechnology in concrete column may improve the buckling behaviour of system. Hence, using
from SWCNTs as reinforcer can be suggested in concrete structure in further.

Figs. 8 and 9 illustrate the influence of elastic medium on the buckling load along the length
respectively for Euler-Bernoulli and Timoshenko beam models. Obviously, the foundation has a
significant effect on buckling of the column, since the buckling load of the system in the case of
without foundation are lower than other cases. It can be concluded that the buckling load for
Pasternak model (spring and shear constants) is higher than Winkler (spring constant) one. The
above results are reasonable, since the Pasternak medium considers not only the normal stresses
(i.e. Winkler foundation) but also the transverse shear deformation and continuity among the
spring elements.

The effect of boundary condition on the buckling load of structure is showmen in Figs. 10 and
11 for Euler-Bernoulli and Timoshenko beam models, respectively. It can be found that the
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Fig. 10 The boundary condition effect on
buckling load for Euler-Bernoulli beam model

Fig. 11 The boundary condition effect on
buckling load for Timoshenko beam model

maximum buckling load is related to C-C boundary condition. It is reasonable since the stiffness of
C-C structure is higher.

6. Conclusion

The paper presents a new model for the concrete column armed with SWCNT theoretically for
the first time. The Euler-Bernoulli and Timoshenko beam models were used for mathematical
modelling and the characteristics of the equivalent composite being determined using Mixture low.
DQM and a direct iterative approach were employed to obtain the nonlinear buckling load for
different boundary conditions. Results indicate that with increasing the volume percent of
SWCNTs, the nonlinear buckling load increases. In addition, the buckling load predicted by Euler-
Bernoulli model was higher that Timoshenko one. It was also worth to mention that the buckling
load of concrete column reinforced with SWCNT is higher with respect to concrete column
reinforced with steel. Obviously, the foundation has a significant effect on buckling of the column,
since the buckling load of the system in the case of without foundation were lower than other cases.
Furthermore, the maximum buckling load was related to C-C boundary condition. In conclusion,
the nanotechnology has an important role in improving the buckling of concrete column.
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