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Abstract. In this paper, the flexural strength (ffs) and splitting tensile strength (fsts) of concrete containing
different proportions of fly ash have been modeled by using gene expression programming (GEP). Two GEP
models called GEP-I and GEP-II are constituted to predict the ffs and fsts values, respectively. In these
models, the age of specimen, cement, water, sand, aggregate, superplasticizer and fly ash are used as
independent input parameters. GEP-I model is constructed by 292 experimental data and trisected into 170,
86 and 36 data for training, testing and validating sets, respectively. Similarly, GEP-II model is constructed
by 278 experimental data and trisected into 142, 70 and 66 data for training, testing and validating sets,
respectively. The experimental data used in the validating set of these models are independent from the
training and testing sets. The results of the statistical parameters obtained from the models indicate that the
proposed empirical models have good prediction and generalization capability.
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1. Introduction

Concrete has become the most preferred building material in the rapidly developing and
industrializing world. Fly ash (FA), which is a by-product of thermal power plants burning coal, is
the material that contributes the durability and service life of concrete when used together with
Portland or blended cement. Besides, the use of FA is both economical and changes the properties
of concrete, improving workability, heat of hydration, segregation, strength, sweating, shrinkage
and creep (Haque et al. 1984, Atiş 2003). Moreover, the storage and disposal problem of FA that is 
an industrial waste or by-product, is also eliminated by the use of FA instead of cement in
concrete; else, FA has to be got rid of in landfills at a considerable cost (Atiş 2005).

The flexural strength (ffs) and splitting tensile strength (fsts) are the fundamental and important
properties of concrete containing FA. These properties may be important in structural design of
some specific applications like road, pavement and airport runway slabs. These properties are also
usually determined by the experimental studies. These experimental studies can take a lot of time
and are not very economical. Therefore, various artificial intelligent methods (neural networks,
fuzzy logic, GEP, etc.) are used to determine these properties. The ffs and fsts values of concrete
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containing FA can be predicted in a very short time thanks to models developed on the basis of
experimental data in the aforementioned methods. Therefore, artificial neural networks, fuzzy
logic and GEP methods can be used to contribute experimental studies.

The purpose of this study is to predict the FA effect on the ffs and fsts values of concrete by the
models built in the GEP, which is a more advanced version of genetic programming method.
Therefore, two empirical models named as GEP-I and GEP-II are developed to predict the ffs and
fsts values of concrete containing different proportions of FA. In the GEP-I model, 292
experimental data, belong to 54 different mixtures of concrete containing FA used for training,
testing and validating sets in GEP, were collected from the available papers Atiş 2005, Siddique 
2003 and 2004, Sekhar and Rao 2008, Jerath and Hanson 2007 and Kumar et al. 2007 to predict
the ffs values. Similarly, in the GEP-II model, 278 experimental data, belong to 111 different
mixtures of concrete containing FA used for training, testing and validating sets in GEP, were
collected from the available papers (Atiş 2005, Siddique 2003, 2004 and 2011, Sekhar and Rao 
2008, Lam et al. 1998, Mohammed and Fang 2011, Haque and Kayalı, 1998, Bharatkumar et al.
2005, Kim et al. 1998, Mittal et al. 2006, Sukumar et al. 2008, Jau et al. 2004 and Yaprak et al.
2004) to predict the fsts values. In the training, testing and validating sets of these models; age of
specimen (AS), cement (C), water (W), sand (S), aggregate (A), superplasticizer (SP) and fly ash
(FA) are used as input variables, whereas the ffs and fsts values in the training set are used as output.
While the GEP-I and GEP-II models were trained with 170 and 142 of experimental data, it was
also tested with 86 and 70 of them which were not used in the training phase, respectively. After
the GEP-I and GEP-II models were trained, the equations depending on the input variables were
obtained. These equations were verified with using the experimental data independent from the
training and testing sets. The equation obtained from GEP-I model was validated with using the 36
experimental data obtained from the available paper Siddique 2003 independent from the training
and testing sets. Similarly, the equation obtained from GEP-II model was verified with using the
66 experimental data obtained from the available papers Sekhar and Rao 2008 and Lam et al. 1998
independent from the training and testing sets. As the results of statistical parameters, it was
observed that the ffs and fsts values evaluated from the training, testing and validating sets in the
empirical models are close to experimental results.

2. Gene expression programming

Gene expression programming (GEP) is an expansion to genetic programming, which also
develops computer programs of various forms and sizes; however, the developed programs are
encrypted in a linear chromosome of constant length (Ferreira 2001). The chromosomes in the
GEP are made up of multiple genes, every one gene encrypting a smaller sub-program. The
chromosomes with length 27 are made up of three genes as shown in Fig. 1. In addition, three open
reading frames (ORFs) and ORF codes for a sub-expression tree (Sub-ET) are shown in Fig. 1.
Moreover, the functional and constructional organization of the linear chromosomes enables the
free operation of significant genetic operators like mutation, crossover, recombination and
transposition. First, the strength of the GEP is excessively simplicity in creating of genetic variety
as the operators’ study at the chromosome level. Second, the strength of GEP is made up of its
matchless, multi-genic nature, which enables the development of more complex programs
comprised of various sub-programs (Ferreira 2001, 2002 and 2003). There are two languages in
the GEP called as the language of expression trees (ETs) and genes. In the GEP, in view of the
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Fig. 1 Mathematical expression of GEP genes as sub-expression trees

Fig. 2 Distribution of input variables and ffs for GEP-I model

simple rules, which define the construction of ETs and their interplays, it is feasible to conclude
the phenotype given the succession of a gene and the opposite. This bilingual and unique system is
named as Karva language. The detailed information about GEP and this language is given in the
papers (Ferreira 2001, 2002, 2003, Çevik and Cabalar 2009, Sarıdemir 2011, 2014).

3. Empirical modeling of flexural and splitting tensile strengths of concrete
containing fly ash

In the present study, two empirical models have been developed for predicting the (1, 3, 7, 14,
28, 56, 90, 91, 180, 256 and 365 days) ffs and the (1, 3, 7, 14, 28, 56, 90, 91, 180 and 365 days) fsts

values of concrete containing different proportions of FA. While the first empirical model named
as GEP-I are developed to predict the ffs values of concrete containing FA, the second empirical
model named as GEP-II are developed to predict the fsts values of concrete containing FA. The
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Fig. 3 Distribution of input variables and fsts for GEP-II model

Table 1 The limit values used in GEP models

Input variable and meaning
Minimum Maximum Minimum Maximum

GEP-I GEP-II

d0 AS Age of specimen (day) 1 365 1 365

d1 C Cement (kg/m3) 120 450 120 681

d2 W Water (kg/m3) 112 195 112 252

d3 S Sand (kg/m3) 280 898 280 910

d4 A Aggregate (kg/m3) 760 1339 590 1228

d5 SP Superplasticizer (kg/m3-l/m3) 0 11 0 13

d6 FA Fly ash (kg/m3) 0 280 0 377

Output variable and meaning

ffs Flexural strength (MPa) 1.24 8

fsts Splitting tensile strength (MPa) 0.67 7.62

distributions of input and output values used in these models are shown in Figs. 2 and 3. Besides,
the limit values of input and output variables are given in Table 1. For generalization usability of
these models, all experimental data were trisected into training, testing and validating sets for
GEP. After that, the fitness function was selected, and the function set, the head size, the number
of chromosomes, the number of genes and connection function were determined. The empirical
models given the best results were obtained by the iteration running computer program. Finally,
after the models were trained and tested, the ETs and equations depending on the input variables
were obtained. These equations were verified with using the experimental data independent from
the training and testing sets. So, the equations obtained from these models are used to predict the ffs

and fsts values of concrete containing different proportions of FA.
In the development of GEP models, fundamental mathematical symbols (+, -, ×, /) and some

mathematical functions (x3, Tan, Sin, Sqrt, 1/x (Inv), Ln, 3 , Mul3, Add3, Sub3) were utilized as
shown in Table 2. Besides, the mutation, transposition and recombination were used as set of
genetic operators. The Sub-ETs were connected by multiplication. After many tries, the head size
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Table 2 GEP parameters used in proposed equations for ffs and fsts

Parameter Definition GEP-I GEP-II

p1 Number of generation 784 741.5

p2 Arithmetic operators +, -, ×, / +, -, ×, /

P3 Mathematical functions
x3, Tan, Sin, Sqrt, 1/x, Ln,

3 , Mul3, Add3

x3, Tan, Sin, Sqrt, 1/x, Ln,
3 , Mul3, Add3, Sub3

P4 Number of chromosomes 30

P5 Head size 10

p6 Number of genes 5

p7 Linking function Multiplication

p8 Mutation rate 0.044

p9 Inversion rate 0.1

p10 One-point recombination rate 0.3

p11 Two-point recombination rate 0.3

p12 Gene recombination rate 0.1

p13 Gene transposition rate 0.1

Fig. 4 Expression trees of GEP-I model proposed for ffs

and number of chromosomes were detected to obtain the best results. The parameters used in the
training of the GEP models are given in Table 2.

The ETs of the developed GEP-I and GEP-II models are seen in Figs. 4 and 5, respectively.
The ETs of very complex problems require very long chromosome structures. Therefore, a large
number of the Sub-ETs were employed in the GEP models. In the GEP-I and GEP-II models, the
numbers of the employed Sub-ETs were five, and the linking functions for the connection of Sub-
ETs were multiplication. The ETs of equations for ffs and fsts are seen in Figs. 4 and 5, where d0, d1,
d2, d3, d4, d5 and d6 imply to AS, C, W, S, A, SP and FA, respectively. For the GEP-I, the constants
in the equation are in the Sub-ET2 c0=2.014, c1=-5.020, and c2=-5.406, in the Sub-ET3 c1=-1.974
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Fig. 5 Expression trees of GEP-II model proposed for fsts

and c2=5.144, in the Sub-ET4 c0=-9.332, c1=-5.799 and c2=9.647, and in the Sub-ET5 c0=6.400
and c2=6.310. Similarly, for the GEP-II, the constants in the equation are in the Sub-ET3 c0=2.372,
c1=0.776 and c2=-8.240, in the Sub-ET4 c0=-2.124, c1=7.818 and c2=-6.245, and in the Sub-ET5
c0=-8.279, c1=5.640 and c2=6.413. The explicit equations of the GEP-I and GEP-II models for ffs

and fsts are modified by Eqs. (2) and (3) depending on Eq. (1) and the above constant values.
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Finally, these modified equations for ffs and fsts are presented as Eqs. (4) and (5).

��� = �Ln�Ln(W)�� × ��
−2.684

Sin(25.20 × S)
+ K

�
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(5)

4. Evaluation of the models

Several statistical parameters have been employed to evaluate the performance of the models.
In the present study, the error uncovered during the training, testing and validating sets in the GEP
models can be described as an R-square (R2) and is calculated using Eq. (6). In addition, in the sets
of models, the mean-absolute-percentage-error (MAPE) and the root-mean-squared-error (RMSE)
are calculated by Eqs. (7) and (8), respectively (Sarıdemir 2011 and 2014).  
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Where, “t” is the experimental result, “o” is the result predicted by the models and “n” is the
total number of experimental data.

The GEP-I and GEP-II models developed in the present study are used to predict the ffs and the
fsts of concrete containing different proportions of FA. In the GEP-I model, as mentioned earlier,
170 and 86 experimental data were used for training and testing the results obtained from the
available papers Atiş 2005, Siddique 2003 and 2004, Sekhar and Rao 2008, Jerath and Hanson 
2007 and Kumar et al. 2007, respectively. In this model, 36 experimental data were also used for
validating the results obtained from the available paper (Siddique 2003) independent from the
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Table 3 Statistical parameters for GEP models

Statistical parameters
GEP-I GEP-II

Training set Testing set Validating set Training set Testing set Validating set

MAPE 6.8563 7.6802 7.9875 12.7654 12.7931 10.7255

RMSE 0.4102 0.4339 0.4580 0.4696 0.4857 0.4446

R2 0.9251 0.9138 0.9153 0.8801 0.8442 0.7650

(a) (b)

Fig. 6 (a) Comparison of ffs experimental results and GEP-I results, (b) comparison of fsts experimental
results and GEP-II results

training and testing sets. Similarly, in the GEP-II model, 142 and 70 experimental data were used
for training and testing the results obtained from the available papers Atiş 2005, Siddique 2003, 
2004 and 2011, Sekhar and Rao 2008, Lam et al. 1998, Mohammed and Fang 2011, Haque and
Kayalı, 1998, Bharatkumar et al. 2005, Kim et al. 1998, Mittal et al. 2006, Sukumar et al. 2008,
Jau et al. 2004 and Yaprak et al. 2004, respectively. In this model, 66 experimental data were used
for validating the results obtained from the available papers Siddique 2003 and Haque and Kayalı, 
19985 independent from the training and testing sets. The statistical parameter values with
training, testing and validating sets obtained from the GEP-I and GEP-II models are presented in
Table 3.

The performance of the GEP-I and GEP-II models for training, testing and validating sets can
be seen in Figs. 6a-b, respectively. In these figures, the output results of the GEP-I and GEP-II
models are compared with the experimental results. The horizontal axis of the figures are the
experimental results in training, testing and validating sets, and the vertical ones are the output
results of their corresponding GEP-I and GEP-II models. The results of training sets indicate that
the GEP models are successful in learning the relationship between the different input variables
and outputs. Besides, the results of testing sets indicate that GEP-I and GEP-II are able to
generalize for predicting the ffs and fsts of concrete containing FA, and finally the results of
validating sets indicate that the equations obtained from the models have good potential for
predicting the ffs and fsts of concrete containing different proportions FA. In these figures, the R2
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values are separately seen for training, testing and validating sets. As can be seen in Figs. 6(a)-(b),
the predicted results from the training, validating, and testing sets in the GEP-I and GEP-II models
are found to be consistent with the experimental results.

Table 3 gives the statistical parameters of the GEP-I and GEP-II models calculated by the
equations of MAPE, RMSE and R2 for the ffs and fsts of concrete containing FA. It can be seen that
the R2 values in the training, testing and validating sets are 0.9251, 0.9138 and 0.9153,
respectively, while the values of MAPE and RMSE are 6.8563 and 0.4102 in the training sets,
7.6802 and 0.4339 in the testing set, and 7.9875 and 0.4580 in the validating set for the GEP-I
model. Similarly, for the GEP-II model, R2 values in the training, testing and validating sets are
0.8801, 0.8442 and 0.7650, respectively, while the values of MAPE and RMSE are 12.7654 and
0.4696 in the training set, 12.7931 and 0.4857 in the testing set, and 10.7255 and 0.4446 in the
validating set. The results show that the equations obtained from the GEP-I and GEP-II models are
able to predict the ffs and fsts of concrete containing FA close to that of the experimental results.

5. Conclusions

The ffs and fsts values of concrete containing FA are an important problem and a difficult task to
model its behavior. Because of this reason, the GEP is good tool to model the complex problems.
In the present study, an enterprise is made to implement GEP models in predicting the concrete
containing different proportions of FA. Two models named as GEP-I and GEP-II are proposed for
predicting the ffs and fsts values of concrete containing FA. Two widely dispersed experimental
databases made up of the ffs and fsts values are used for developing these models. The results
predicted from training, testing and validating sets in the GEP-I and GEP-II are consistent with the
experimental results. The high R2 and the low RMSE and MAPE values of testing and validating
sets show that the equations obtained from the GEP-I and GEP-II can be used for the prediction of
the ffs and fsts values of concrete containing different proportions of FA. These statistical results
also show that the proposed equations are reliable and accurate. As a result, this study indicates
that the GEP can efficiently predict the ffs and fsts values of concrete containing different
proportions of FA without trying any experimental study in a short time with small error rates.
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