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Abstract. Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses
after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been
proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service
load. The proposed model has been embedded in a typical cracked span length beam element. The
element is visualized to consist of at the most five zones (cracked or uncracked). Closed form
expressions for flexibility and stiffness coefficients and end displacements have been obtained for the
cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical
procedure has been developed for nonlinear analysis of RC flexural members using the proposed
tension-stiffening model. The procedure yields deflections as well as redistributed bending moments.
The proposed model (and developed procedure) has been validated by the comparison with
experimental results reported elsewhere and also by comparison with the Finite Element Method
(FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC
structures.
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1. Introduction

Reinforced Concrete (RC) flexural members are widely used in building and bridge
construction. At service load, cracking may occur in a zone of a member where the stress at tensile
face exceeds the tensile strength of concrete. For example, in a RC continuous member, cracking
may occur within the span and near the supports as shown in Fig. 1. In a cracked zone of a RC
flexural member, the concrete between the cracks carries tensile stresses owing to bond between
steel bars and concrete and this phenomenon is known as tension stiffening. The tension-stiffening
effect mainly depends on reinforcement content, type/nature of loadings, member dimensions,
number of steel bar layers etc.

The cracking may result in an increase in deflections, considerable moment redistribution along
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Fig. 1 A typical intermediate span of a RC member with loads, bending moment, and possible cracked-
uncracked zones

the member length, and stress redistribution across the cross-sections. The tension-stiffening has
significant influence on the deflections, moment redistribution and stress redistribution
(Sahamitmongkol and Kishi 2011, Parrotta et al. 2014). The appropriate tension-stiffening model
for nonlinear analysis of RC structures subjected to service load is therefore important for accurate
evaluation of cracking.

A large number of tension-stiffening models are available in the literature for the analysis of
RC structures considering concrete cracking. These models may be categorized in two types: Type
A and Type B. Type A models are those which discretize the members into a number of elements
along length and across the cross-section and Type B models are those in which use is made of
effective moment of inertia and the transformed section properties of members.

Type A models can be further subdivided in two categories: Category 1 (macroscopic models)
and Category 2 (microscopic models). First, consider category 1 or microscopic models. In these
models, the constitutive (average stress-strain) equation of steel or concrete is modified to account
for tension stiffening effect. Some researchers (Smadi and Belakhdar 2007, Salys et al. 2009) have
modified the constitutive equation for steel, whereas others (Balakrishnan and Murray 1988,
Massicote et al. 1990) have modified the constitute equation for concrete. Next, consider Category
2 or microscopic models. In these models, bond-slip relationships is proposed at the interface of
concrete and steel bar in a cracked zone using fracture mechanics principles (Lackner and Mang
2003, Borosnyo6i and Balazs 2005, Ruiz et al. 2007, Vollum et al. 2008, Shayanfar and Safiey
2008, Dai et al. 2012). The microscopic models are complex than the macroscopic models
(Stramandinoli and Rovere 2008). Both category 1 and 2 tension-stiffening models of Type A are
accurate but require too large computational effort owing to discretization of members into number
of elements. The models are therefore not appropriate for use by everyday design engineers.

Now, consider Type B models. As stated earlier, these models are generally based on effective
moment of inertia and the transformed section properties of members. Cosenza (1990) used
different such tension stiffening models for the analysis of RC beams. Ning et al. (1999) proposed
probability based effective stiffness model to take into account cracking and tension-stiffening.
These models are appropriate for use in everyday design since the required computational effort is
small. However, a constant value of moment of inertia (same moment-curvature relationship) is
assumed along the member lengths in Type B models. This assumption can lead to errors in case
of common types of construction: slab-beam construction of a RC structure. The middle portion
(where sagging moment occurs) and at the ends (where hogging moment occurs) of a beam would
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Fig. 2 Typical cross-section of a RC member and strain distribution

have different cross-section (rectangular or T) depending on whether the neutral axis lies within or
outside the flange (Patel et al. 2014).

In codes of practice (ACI 318 2005, CEN-Eurocode 2 2004), simplified expressions (based on
Type B models) are available for estimation of deflections in flexural members. However, these
expressions are not appropriate since under-estimation of deflections for lightly reinforced
members has been reported (Ghali 1993, Scanlon et al. 2001, Bischoff 2005, Gilbert 2006, Patel et
al. 2015). Further, no -expressions for redistributed moments, resulting from cracking and tension-
stiffening effect, are available (Patel et al. 2014). Therefore, for application to large RC structures,
a computationally efficient tension-stiffening model is desired to be developed.

Herein, a tension-stiffening model has been proposed and a hybrid procedure has been
developed for nonlinear analysis of RC flexural members (one-way slabs, beams and bridges)
taking into account cracking of concrete. Using the proposed tension stiffening model, a typical
span length flexural member is considered as a single element and is visualized to consist of at the
most five zones (cracked or uncracked). The element is therefore designated as cracked span
length beam element. The average interpolation coefficients have been further obtained for
cracked zones to keep the procedure analytical at the element level. Closed form expressions for
flexibility and stiffness coefficients and end displacements have been obtained for the cracked
span length beam element. The proposed model (and developed procedure) has been validated by
comparison with experimental results reported elsewhere and also by comparison with Finite
Element Method (FEM) results. The hybrid procedure yields deflections as well as redistributed
moments. The procedure requires a computational effort which is a fraction of that required in the
procedures employing Type A models.

2. Cross-sectional analysis

Fig. 2 shows a typical cross-section of a RC member along with the strain distribution.
Following assumptions are made for the cross-sectional analysis:

(i) It is assumed that plane cross-section remains plane after the bending of the member.

(ii) It is also assumed that there is no slip at the interface of the steel reinforcement and
concrete.

(iii) Before cracking of concrete, under service load, the stress-strain relationship of concrete is
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assumed to be linear in both compression and tension.

(iv) The concrete portion between the neutral axis and tensile face, across the cross-section, is
assumed to be completely cracked, when the stress at tensile face exceeds the tensile strength of
concrete, f;.

(v) A linear stress-strain relationship is assumed for steel in both tension and compression and
the stresses are assumed to be below the yield stress.

The curvature p, strain g, at a distance y from the reference axis, strain at reference axis ¢, and
stress at reference axis oo due to applied bending moment M, and axial force N at a cross-section
(see Fig. 2) are given as

p=p"+p" 1
Ey =& —Yp 2
& =& +¢& 3)
o, =E.& 4)
where,
p"=S*M ®)
p"=S*N (6)
& =S"M (7
g =S'N (8)

where, the superscripts, m, n here and subsequently in other gquantities indicate that the quantity
corresponds to moment M, and axial force N, respectively. In Egs. (5) and (7), the moment M at a
section in the counter clockwise direction on the face with normal in the positive X-axis is taken as
positive. The quantities S, S, $%, S’ are given as

A M ©
E. (Al -B?)
Xy _Q¥x_ B
°d ~ E.(AI-B?) (10)
y |
> ~E(AI-B?) (11)

where E.= modulus of elasticity of concrete at 28 days; A= area of the transformed cross-section;
and B, | = first and second moment of area of the transformed cross-section about the reference
axis respectively. The reference axis for the cross-section is assumed to be at the top fiber since the
location of neutral axis varies for the cracked and uncracked cross-section along the member.
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Assuming that there is no axial force in continuous members, p and ¢, are given as

p=SM (12)
g, =S"M (13)
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Fig. 3 Possible zones, cracked or uncracked, in a typical span of a member
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Fig. 4 A span length beam element (a) typical zones (cracked or uncracked); (b) degrees of freedom;
(c) releases; and (d) loads and end forces
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3. Cracked span length beam element

In a typical intermediate span of a continuous member, cracking may occur at the middle
portion and at the ends if the tensile stress at bottom fiber or top fiber of a cross-section exceeds
the tensile strength of concrete respectively. Fig. 3 shows possible zones, cracked or uncracked, in
a typical intermediate span of a continuous member. There may be maximum five zones in a span,
three cracked zones (one at in-span and two at ends) and two uncracked zones between the cracked
zones. Fig. 4(a) shows the position of a typical zone of length, L; (cracked or uncracked) in a span
of a member. The entire span is modeled as a single element and is therefore designated as a
cracked span length beam element.

3.1 Tension stiffening model

First, consider a cross-section in the cracked zone. The tension stiffening effect is taken into
account by considering the cross-section in two states, uncracked and cracked. The properties of
the cross-section incorporating tension stiffening are arrived at by suitably combining the
uncracked and cracked cross-section properties. The transformed properties A,B,l of cross-section
in cracked state are obtained by neglecting the concrete between the neutral axis and tensile face
and taking moments of area about the reference axis.

The curvature, pis and the top fiber strain, ¢y Of a cross-section in a cracked zone (the subscript,
ts here and subsequently in other quantities indicates that the tension stiffening effect has been
taken into account) are equal to #put Eper aNd e unt Ceoor respectively (the subscripts, un and cr
here and subsequently in other quantities indicate that the quantities are evaluated using uncracked
and cracked cross-sectional properties respectively), where, & = interpolation coefficients, which
are defined as (Ghali 1993)

E=1-n=1-(xf /o, ) (14)

where, x = coefficient representing influence of duration of application or repetition of loading; 0.8
for initial/first loading and 0.5 for long-term loading or for a large number of load cycles and o,,=
stress at tensile face. The interpolation coefficients &, are dimensionless and they represent the
extent of cracking. At the start of cracking, {=0 and its value tends to 1 (corresponding # tends to 0)
with increasing applied stresses (Ghali et al. 2002).

Next, consider a cross-section in the uncracked zone. The curvature, p,, and the top fiber strain,
&o,un IN this zone are equal to their respective values in the uncracked state only (¢=0 and =1).

In order to take into account tension stiffening effect without discretising the member, an
average interpolation coefficient, & is considered for each cracked zone. For this purpose first,
average stresses, oiuni, obuni fOr cracked zones are obtained as

2
Gt,un,i ZLL _[ Gt,undx (15)
L

1 2
Opuni =7 _[ Gb,undx (16)
e
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where, ayun, opun= Stresses at tensile face (at top fiber and at bottom fiber respectively), and L; =
length of the cracked zone.

The average interpolation coefficient, & for the all cracked zones are then evaluated from Eqg.
(14) on replacing oy, by either oyy; Or opun; Further, in case of initial/first loading, for a
concentrated load, the value of x (in Eq. (14)) is recommended as 0.55, since oy, is farther away
from oy yni OF opun,i than for other loadings such as uniformly distributed load or two point loading
for which as stated earlier, the value of x is 0.80.

3.2 Shear deformation model
The effect of shear deformation can be significant for a member with small span/depth ratio.

The shearing rigidity K of uncracked section, K, and of cracked section, K, are given as (Park and
Paulay 1975)

GB.d
K, =—" 7)
f
v, E.B d
K — \i S W
“ 1+4ny, (18)

where, shear modulus of concrete, G=E/2(1+u); modular ratio, n=EJ/E.; E;=modulus of elasticity
of steel; « = Poisson’s ratio of concrete; B,~=width of web; d=effective depth of section; f=shear
coefficient (taken as 1.2 for rectangular section and 1.0 for T section); shearing steel content v,=A,
1sB; A= shearing steel area; s= spacing of reinforcements.
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Fig. 5 (@) ma (bending moment), v, (=my/L, shear force); and (b) mg (bending moment), vg (=mg/L,

shear force) diagrams

3.3 Stiffness matrix

The stiffness matrix, [K] of a cracked span length beam element with four degrees of freedom
(see Fig. 4(b)) is of interest. First, consider an element with releases 1, 2 corresponding to degrees
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of freedom 1, 2 introduced at the ends (of released span length beam element) as shown in Fig.
4(c). The flexibility matrix coefficients corresponding to these releases are derived by the principle
of virtual work using m, (bending moment), v, (=m4/L, shear force), mg (bending moment) and vg
(=mg/L, shear force) diagrams (see Fig. 5), which are obtained by applying unit forces
corresponding to releases 1 and 2 respectively, as

L X pan 2 V/ZX
f,, = jo Smy + - |dx (19)
. V,V
f, = fy =j0 (S m,mg + %Bjdx (20)
L
f,, = jo (s m? +—de (21)

Eqgs. (19)-(21) are to be integrated for a cracked span length beam element. For a cross-section
in a typical zone, considering the tension stiffening effect, S* is to be replaced by &;S*.. i+ 7:S"n.

The closed form expressions for flexibility matrix coefficients of a cracked span length beam
element, assuming constant transformed cross-section properties in a typical zone are obtained as

1

f, 12|_22(§' X+, un)(12|_2|_ —24CLL, + L} +12C? L)+K (22)
1
f,="f, 12L22(<§, X+, un)(L3+1ZC L, —12C, LL) i (23)
1
22 12L2 Z(é cr,i +n| un)(L3+12C L) KL (24)

where, L=length of the span; Li=length of the typical zone, C;=distance from end A to center of the
typical zone.

The coefficients of stiffness matrix, [k] corresponding to degrees of freedom 1, 2 are now
obtained by inverting the flexibility matrix coefficients corresponding to degrees of freedom 1, 2
(on using the readily available expressions for inversion of 2x2 matrix). Remaining terms
corresponding to degrees of freedom 3, 4 are obtained by applying the equilibrium conditions
(Ghali et al. 2002, 2003) and the stiffness matrix, [k] corresponding to all degrees of freedom (1 to
4) is obtained as

- 1 2 3 4 —
1 k11 klz (kll + k12 )/ L _(kll + k12 )/L
k21 kzz (kZl + kzz )/L _(kZl + kzz )/ L

2
k]=
[ ] 3 (k11+k12)/L (k21+k22)/|‘ (k11+k12 +k21+k22)/|‘ _(k11+k12 +k21+k22)/|‘

4 __(kll Ky )/L —(Ky +Ky )/l —(ky +K, +Kyy +Kyp ) /L (Kyy Ky, +kyy +kyp)/ Lz_

(25)
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where, Ki1=f5o/ (f11f20-F12f21); Kio=Kor=-F1o/ (fiafoo-f1ofa1); Kao=f11/(frafar-fiof21).
3.4 End rotations and deflection

Now, consider the end displacements of the released span length beam element subjected to
loads, end moments and forces (see Fig. 4(d)). For this purpose, first, the moment M;(x’) and shear
force Ri(x") in a typical zone may be obtained, assuming the moment, and shear force variation to
be parabolic (see Fig. 4(d)), as

Mi(x')zé[(Zx'— L)(X'= LM =4x'(x'= L )M +x'(2x"= L )M ] (26)

R (¥) =3[ (2= L) (XL, RE =4 (=L, )RY +x'(2X- L )R] @)

where, M{, M®, M¢= the moment at C, D, E, respectively, R, R%, R¢= the shear force at C, D, E,
respectively and x'= distance of cross-section from C in a typical zone (see Fig. 4(d)).

The rotation 6, may be expressed in closed form as summation of integration of ma (bending
moment) diagram and v, (=ma/L, shear force) diagram with p(x) and (Ri/K)(X) respectively. The
value of p can be obtained from Eq. (12) on substitution of M by M;. Similarly, the rotation 6 may
be obtained using mg (bending moment) diagram and vg (=mg/L, shear force) diagram. The
expressions for 6, and dg, assuming constant transformed cross-section properties in a typical zone

are obtained as
) IC7L, (G, —L)-36M{ G LE(C - L)
) ZL&(. "'S“”){ 6MPL3(C L)+ MIC L —3M/ L] H

-~ (28)
T .1{6L [RPLE +R'C2L, —6R Ch}}

o, - 13 . \JomrciL, -semicL

= LIZ|:36L| ( iYer,i nisun){+6MipCiLi3+ MiinL?_BMirLAil}:| (29)

5
L . —{RPL} +RIC?L, -6R'C,LS}
LK &6l

where, MP=7M{ -2MA+M§; M1=12Mf-24M2+12M¢; and M] =3M{-4MI+M¢.
The mid-span deflection, d, of a cracked span length beam element subjected to loading and
end forces may be expressed as

d :%[ [ pooxax+ L[ p(x)(l—%)dx} (30)

and may be obtained either analytically or numerically.
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4. Hybrid analytical-numerical procedure for analysis of RC continuous members

An iterative process is required to establish the zone lengths and stiffness coefficients that is
initiated by assuming the entire element to be uncracked. For a typical iterative cycle, a
displacement analysis is carried out for the residual force vector, {P*} of the element. The revised
force vector {p}({p} ={Ma,Mz}) and the revised displacement vector of the element (see Fig.
4(d)), {d'} {d}'={6;, 6;}) are obtained by adding the force vector and displacement vector
evaluated in the present cycle to the force vector and displacement vector at the end of previous
cycle respectively.

Based on the revised force vector, {p} , the revised zone (cracked and uncracked) lengths, L; of
a element are established by locating the cross-sections where either o, Or oy is equal to —f.
The stresses oy un, opun fOr a cross-section at a distance x from end A are obtained from Eqg. (4), on
substitution of M by revised M, as

O =E& =E(SIM,) (31)

Gpun = Ec (8, = Dp) = E,((S3 - DS )M, ) (32)

Once the revised zone lengths L; are established, the revised average interpolation coefficients
& are obtained from Eq. (14) on replacing o, by either oiuni Or opuni (Egs. (15)-(16)),
corresponding to revised cracked zone lengths.

In particular, the closed form expressions of revised cracked zone lengths and corresponding
average interpolation coefficients are given below for:

4.1 Concentrated load (see Fig. 6(a))

For evaluating the cracked zone lengths L, and Ls (see Fig. 3), the positions of cross-sections
with top fiber stress equal to tensile strength are identified. The parameters, o, and My in Eq. (31)
are substituted by —f; and Rax-Mp (if x<p) or Rax—Ma—W(x—p) (if x>p) (where, W=concentrated
load, and p=distance between concentrated load and end A) respectively to yield

—f, =E.Siy {RX =M, } (if x<p) (33)
—f, =E.SY {RX=M, =W (x=p)} (if x>p) (34)
M W
AN
nB £
L > L
R R R
B A4 B
(a) (b)

Fig. 6 A typical span of a continuous member with (a) concentrated load; and (b) uniformly distributed
load
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The cracked zone length L; (see Fig. 3) is obtained from Eq. (33) as
—b.
L =—1 35
a (35)

where, a,=S, > E.Rx; and ;= =S, E.Mp+f,.
The length L—Ls (see Fig. 3) is obtained from Eq. (34) as

L-L,=—> (36)
—cXy . _cXy
where, as=S,,;, Ec(Ra-W); and bs=S,,;, Ec(Wp-Ma)+f:.

The corresponding average interpolation coefficients, ; and {5 are further obtained from Egs.
(14)-(15) as

Y

£ =1 K(—aicl o fj (37)
i)

5=l K[ascs b, - ft] (38)

where, as stated earlier in section 3.3, C;= distance from end A to center of a typical zone of length
L;.

Now, for evaluating the cracked zone length L; (see Fig. 3), the positions of cross-sections with
bottom fiber stress equal to tensile strength are identified. The parameters, o,,, and My in Eq. (32)
are substituted by -fy and Rax-Ma (if x<p) or Rax-Ma-W(x-p) (if x>p) (where, W = concentrated load
and p = distance between concentrated load and end A) respectively to yield

—f,=E. (S} -DS}, ){RX=M,} (if x<p) (39)

—f, =E, (S} = DS}, ){RX=M, =W (x-p)} (if x>p) (40)

The length Ly+L,, which defines the left end of cracked zone of length L; (see Fig. 3), is
obtained from Eq. (39) as

-b
L+L,=—2 (41)
a'2
where, a,=E.Ra(S;2 — DS,); and b,=—EMa(S; — DS%,)+.
The length L;+L,+L3 (see Fig. 3), which defines the right end of cracked zone of length L, is
obtained from Eq. (40) as

-b
L+L,+L,=—= (42)
a2
where, a,=E(S;;y — DS%,) (Ra—W) and b= Ec(S,y — DS,)(Wp—Mp)+f;
The cracked zone length, L is obtained from Egs. (41)-(42) and the corresponding average
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interpolation coefficient, & is further obtained from Eqgs. (14) and (16) as

2
f

I R 43
% K(a2C3+b2—fJ (43)

4.2 Uniformly distributed load (see Fig. 6(b))

For evaluating the cracked zone lengths Ly, Ls (see Fig. 3), the positions of cross-sections with
top fiber stress equal to tensile strength are identified. The parameters o, and My in Eq. (31) are
substituted by —f; and Rax—Ma—wx?/2 (w = uniformly distributed load) respectively to yield

—f, =ES”(Rx—M, -wx’/2) (44)
The cracked zone lengths, L; and Ls (see Fig. 3) are obtained from Eq. (44) as

— 2 _
L= b, +./bZ —4ac, (45)

28,

b +./bZ —4ac
L =L+ T o (46)
2a,
where, a;=—0.5S,» E.w; by= S Y E.Rx; and ¢;=—S; 2 EMa + f; .

The corresponding average interpolation coefficients (3, {; are further obtained from Eqgs. (14)-
(15) as

&=1-x (47)

2
121,
a(Lf +12C7)+12b,C, +12(c, - f,)

2
12f
=1— t 48
& K[ai(Lg +12C2)+120,C, +12(c, - ft)J “9)

Now, for evaluating the cracked zone length, L; (see Fig. 3), the positions of cross-sections
with bottom fiber stress equal to tensile strength are identified. The parameters, oy, and My in Eq.
(32) are substituted by —f, and Rax—Ms—wx?/2 respectively to yield

—f,=E,(S” —=DS*)(Ryx—=M, —wx’/2) (49)
The cracked zone length, L; (see Fig. 3) is obtained from Eq. (49) as
L (50)
a3

where, , a;=—0.55, 2 Ew; bs= (S;12—DS%,)EcRa and c;=—(S;1» — DS¥,)EMa+ f; .
The corresponding average interpolation coefficient & is further obtained from Egs. (14) and
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(16) as

2
12f
=1-x t 51
& [az(l_g +12C;)+12b,C, +12(c, - ft)J 1

Revisions in L; and corresponding average interpolation coefficient & and thereby in end
displacements of the element lead to the difference between the displacement vector {d’}, and the
displacement vector evaluated based on integration of curvature and strain. The error (or
difference in displacement vector), {d*}, corresponding to releases 1, 2 is now given as

0, -0,
{d”}={ } (52)

QB _9;

where, the rotations 6, and &g are obtained from Egs. (28)-(29) respectively. The terms of residual
force vector {p*'}, of the member, corresponding to this difference in displacement vector are
given as —[K]{d*}, where [K] refers to the part of the stiffness matrix corresponding to degrees of
freedom 1, 2. The remaining terms of {p®}, corresponding to the degrees of freedom 3, 4 are
obtained by using the equilibrium conditions.

The residual force vector, {p®} of the elements is assembled to form the residual force vector,
{p*}of the RC member. {p*'} should be within some permissible limit (Ghali et al. 2002) for the
iterative process to terminate, typically

/2

[Py (e ] < a[{Pe) (P (53)

where, 4 = tolerance value (taken as 0.001), {P°}= fixed end force vector of the uncracked element.
Otherwise, a new cycle is started.

5. Validation

The proposed tension stiffening model (and developed procedure) has been validated with the
experimental results available in literature for one-way slabs and beams and also with the finite
element method (FEM) results.

5.1 Simply supported rectangular beams

First, in order to validate the proposed tension stiffening model (and developed procedure) for
highly reinforced members under mid-span concentrated load, three simply supported beams
(B36L-1, B44-1, B18-2) of rectangular cross-section are considered, for which experimental
results were reported by Kalkan (2010). The percentage tensile reinforcement and other relevant
data are given in Table 1. Further, E; was taken as 200,000 N/mm?>.

Mid-span deflections, for beams B36L-1, B44-1, and B18-2, from the proposed procedure,
experiments (Kalkan 2010), Bischoff (2005) and ACI 318 (2005) are compared in Fig. 7 under
increasing concentrated load, W. Close agreement between the results from the proposed
procedure, experiments (Kalkan 2010), Bischoff (2005) and ACI 318 (2005) is observed.
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Table 1 Properties of simply supported beams and one-way slabs

Properties
Beams/Slabs L B;=B, D dy p E, f,
(mm) (mm) (mm)  (mm) (%) (N/mm?) (N/mm?)

B36L-1 11890 76 914 139 3.46 29650 2.62
B44-1 11890 76 1118 165 2.81 30700 3.16
B18-2 3660 38 457 68 4.06 34450 4.56

S1 3500 850 110 18 0.18 26800 3.39

S2 3500 850 110 19 0.29 26800 3.39

S3 3500 850 110 20 0.46 26800 3.39

S8 3500 850 110 21 0.45 30700 4.16

5.2 Simply supported rectangular one-way slabs

Further, in order to ensure the applicability of the proposed tension stiffening model (and
developed procedure) for lightly reinforced members under mid-span concentrated load, four
simply supported one-way slabs (S1, S2, S3, S8) of rectangular cross-section are considered, for
which experimental results were reported by Gilbert (2006). The percentage tensile reinforcement
and other relevant data are given in Table 1. Further, Eswas taken as 200,000 N/mm?.
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Fig. 7 Comparison of mid-span deflections in beams: (a) B36L-1; (b) B44-1; and (c) B18-2
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Mid-span deflections, for slabs S1, S2, S3, and S8, from the proposed procedure, experiments
(Gilbert 2006), ACI 318 (2005) and Bischoff (2005) are compared in Fig. 8 under increasing
concentrated load, W. Close agreement between the results from the proposed procedure,
experiments (Gilbert 2006) and Bischoff (2005) is observed, whereas, significant error is observed
in results from ACI 318 (2005).
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5.3 Simply supported T beams

Next, results from the proposed tension stiffening model (and developed procedure) for beams
with T cross-section have been compared with the experimental results (mid-span deflections)
reported by Yu and Winter (1960) for six simply supported beams (A-1, B-1, C-1, D-1, E-1, F-1)
under uniformly distributed loads. The cross-section and material properties along with span
lengths and uniform distributed loads for all beams are given in Table 2.

The experimental results (mid-span deflections, dexp) (Yu and Winter 1960) and those obtained
from the proposed procedure (dpp) are shown in Table 3. Close agreement between the results
from the proposed procedure and experiments is again observed.

Table 2 Properties of simply supported beams with T cross-section

. Beams
Properties
A-1 B-1 C-1 D-1 E-1 F-1
B¢ (mm) 304.87 304.87 304.87 609.74 304.87 304.87
D¢ (mm) 63.52 63.52 63.52 63.52 63.52 50.81
By(mm) 152.44 152.44 152.44 152.44 152.44 152.44

Dy, (mm) 241.36 241.36 241.36 241.36 241.36 152.44
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Table 2 Continued
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d; (mm) - 39.63 39.63 - - -
dy (mm) 45.98 45.98 45.98 58.94 55.64 45.98
Ay (mm?) - 200.09 400.19 - - -
Ay (mm?) 400.19 400.19 400.19 774.56 400.19 400.19
fc' (N/mm?) 25.37 26.77 24.27 25.37 29.36 29.36
E. (N/mm?) 25286 25975 24732 25286 27202 27202
E, (N/mm?) 205000 205000 205000 205000 205000 205000
w (N/mm) 6.42 6.44 6.41 11.73 12.29 3.79
f (N/mm?) 2.78 2.66 2.73 2.78 3.06 3.06
L (mm) 6098 6098 6098 6098 4268 6098
Table 3 Comparison of mid-span deflections
. . Beams
Mid-span deflections A B1 i D1 E1 F1
dpp (Mm) 28.35 28.25 28.03 31.04 13.60 50.57
dexp (Mm) 34.04 31.50 30.23 32.23 12.96 55.89

5.4 Continuous rectangular beams

The results from proposed tension stiffening model (and developed procedure), have been
compared with the experimental results (deflections) reported by Washa and Fluck (1956) for nine
sets of two span continuous beams: X1,X4; X2,X5; X3,X6; Y1,Y4; Y2,Y5; Y3,Y6; Z1,74;
Z72,75; Z3,Z6 subjected to uniformly distributed loads, w (see Fig. 9 and Table 4). Additionally,

E,=206,843 N/mm?” and f=0.623 \/E N/mm? (ACI 318 2005) were taken. Two beams in a set are

identical.

Table 4 Properties of two span continuous beams

B.XD E ’ L=L, d=d = AE, FC
W = =
Beam (mrT:vx mm) (N/ mcmz) (N/{%mz) (kN/m) Em) ’ (tmm)b Asp ZAst Asp ZAs:
(mm?) (mm?)
X1,X4 152.4%203.2 23235 25.34 2.770 6.10 40 600 684 400 400
X2,X5 152.4%203.2 23235 25.34 2.770 6.10 40 600 684 400 200
X3,X6 152.4%203.2 23235 25.34 2.770 6.10 40 600 684 400 -
Y1,Y4 304.8%127.0 23270 27.51 2.131 6.34 24 1000 1000 516 516
Y2,Y5 304.8%127.0 23270 27.51 2.131 6.34 24 1000 1000 516 258
Y3,Y6 304.8%127.0 23270 27.51 2.131 6.34 24 1000 1000 516 -
71,74 304.8%76.2 22994 25.92 0.993 5.33 16 645 516 284 284
72,75 304.8%76.2 22994 25.92 0.993 5.33 16 645 516 284 142
73,76 304.8%76.2 22994 25.92 0.993 5.33 16 645 516 284 -
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Fig. 9 Two span continuous beam

For FEM results, modeling has been done in the ABAQUS (2011) software (Thevendran et al.
2000, Baskar et al. 2002, Shanmugam and Baskar 2003, Ramnavas et al. 2015). The beam is
modelled using B21 elements (2-node linear Timoshenko beam element in plane). Under service
load, the stress-strain relationship of concrete is assumed to be linear in compression. Concrete is
considered as an elastic material in tension before cracking and softening behavior is assumed
linearly after cracking (see Fig. 10). Tension stiffening is defined in the model using post-failure
stress-strain data. In order to define the smeared crack model, the absolute value of the ratio of
uniaxial tensile stress at failure to the uniaxial compressive stress at failure is obtained using
concrete properties. In view of moderate tensile reinforcements, the plastic strain (e,— &) is taken
as 0.0009. Further, at service load, the stress in reinforcement is assumed to be in the linear range.

Stress, o

&t Strain, g, Eu

Fig. 10 Tension stiffening model

Table 5 Comparison of results from the proposed procedure, experiments and FEM

Deflection at D (mm)

X1,X4 14.5226 14.2240 14.4608
X2,X5 14.7747 14.4780 14.6436
X3,X6 15.0774 15.7480 15.0278
Y1,Y4 23.3311 22.6060 22.1316
Y2,Y5 23.9296 23.6220 22.9430
Y3,Y6 24.6651 25.4000 23.9422
71,74 28.5579 26.4160 26.8351
722,75 29.0868 28.7020 27.6168
73,726 29.7183 30.4800 27.6548
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Fig. 11 Comparison of bending moments of beam 71,74

The experimental results (deflections) and those obtained from the proposed procedure are
shown in Table 5 along with the results obtained by FEM. In FEM, convergence was achieved
with 16 elements in a span. Close agreement between the results from the procedure, experiments
and FEM is observed. Further, bending moment at the centre of span AB and at support B for the
beam Z1,Z4 obtained from the proposed procedure and FEM are shown in Fig. 11. Also shown,
for comparison, are the bending moments obtained neglecting cracking. Close agreement between
the results obtained from the proposed procedure and FEM is observed.

OO Yy
Al F G Bl H I ¢t K bl L M [E
16 m > 22 m < 22 m >l 16 m—>

Fig. 12 Four span continuous bridge VB with T cross-section

5.5 Continuous T bridge

Further, in order to validate the proposed tension stiffening model (and developed procedure)
for a four span continuous bridge with T cross-section VB, results (deflections) from the proposed
procedure have been compared with FEM results (see Fig. 12). The cross-section dimensions of
flange (Bf x Dy) and web (B,, x D,;) are 1000x125 mm and 700x1400 mm respectively. The other
properties are: E.=31,176 N/mm? E=206,000 N/mm? f=4.13 N/mm? The areas of
reinforcements are shown in Table 6. The effective concrete covers d; = d, = 75 mm have been
taken. Results from the proposed procedure and FEM have been obtained for varying magnitude of
uniformly distributed loads, w. In FEM, convergence was achieved with 32 elements in a span. Fig.
13 presents comparison of mid-deflections at the center of span AB and BC and again, close
agreement is observed.
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Table 6 Reinforcement detailing data of bridge VB

Segment (Fig. 12) AF, ME FG, LM GB, DL BH, IC, CJ, KD HI, JK
Length (m) 4.00 8.00 4.00 5.50 11.00
Agt (mmz) 5027 4825 12566 12566 4825
Asp (mmz) 5027 10178 4825 4825 10178
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g 100 T # _‘A{" --&--Proposed Procedure
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Deflection (KNm)

Fig. 13 Comparison of mid-span deflections of bridge VB

Table 7 Half band-width, p and total number of DOF, q for beam Z1,Z4 and bridge VB
Half band width (p) Number of elements in each span Total number of DOF (q)

Beam/Bridge
% FEM pp* FEM PP” FEM
71,24 4 4 1 16 6 66
VB 4 4 1 32 10 258

PP = Proposed procedure

6. Computational efficiency

In order to compare the computational effort required in the proposed procedure and FEM, half
band-width, p, and the total number of degree of freedom (DOF), q are presented in Table 7 for
beam Z1,74 and bridge VVB. The numbers of elements indicated for FEM are those that result in
convergence of deflection within 1%. Noting that the major portion of the computational effort
required in the procedure in an iteration is proportional to qp®/2, the ratio of computational effort
required in the proposed procedure to that in FEM, in an iteration is about 1/11 and 1/26 for beams
Z1,Z4 and bridge VB respectively. Further noting that the number of iterations required in the
proposed procedure is about 1/4 of that required in the FEM for the beam and bridge, the total
computational effort required in the proposed procedure is about 1/44 and 1/103 of that required in
FEM for beam Z1,Z4 and bridge VB respectively.

7. Conclusions

A tension-stiffening model has been proposed for computationally efficient nonlinear analysis
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of RC flexural members (one-way slabs, beams and bridges) subjected to service load. The
proposed model has been further embedded in a typical cracked span length beam element. The
element is visualized to consist of at the most five zones (cracked or uncracked). Closed form
expressions for flexibility and stiffness coefficients and end displacements have been obtained for
the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-
numerical procedure has been developed for nonlinear analysis of RC flexural members using the
proposed tension-stiffening model. The procedure yields deflections as well as redistributed
bending moments. The results obtained from the proposed tension stiffening model (and developed
procedure) are shown to be in reasonable agreement with the experimental and FEM results for
entire practical range of tensile reinforcement in flexural members. Use of the proposed model
(and developed procedure), for the analysis of RC multi-span continuous bridges incorporating
cracking, can save a considerable amount of computational time as the proposed procedure
requires a computational effort, that is a small fraction of that required in the FEM.

The proposed procedure is being further developed for time-effects (creep and shrinkage) in
RC members considering progressive cracking where again a huge reduction in computational
effort would result.
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CcC

Notations

A Bl : area, first moment of area, and second moment of area respectively;
AL A, : area of top, and bottom reinforcements respectively;

A,f : shearing steel area, and shear coefficient respectively;
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: width, total depth, and effective depth of section respectively;

: error or difference in displacement vector, and revised displacement vector respectively;

: mid-span deflection, and span length respectively;

. effective concrete cover at top, and bottom respectively;

: modulus of elasticity, and cylinder compressive strength of concrete at 28 days respectively;
. flexibility, stiffness coefficients, and stiffness matrix of a skeletal member respectively;

: tensile strength, shear modulus, and Poisson’s ratio of concrete respectively;

: determinant of flexibility matrix, [ f |;

: shearing rigidity, and shearing steel content respectively;
: length of the typical zone (cracked or uncracked);

: length of the cracked zone;

: moment, axial force, and shear force respectively;

: cracking moment, and modular ratio respectively;

: fixed end force vector for uncracked beam;

: residual force vector, and revised force vector respectively;

: half band width, and total number of DOF respectively;

: spacing of reinforcements, end rotation, and tolerance value respectively;

: concentrated, and uniformly distributed loads respectively;

: distance of cross-section from C in a typical zone;

: average interpolation coefficients;

: coefficient representing influence of duration of application or repetition of loading on
interpolation coefficient;

: curvature, strain, and stress respectively;

: cracking strain, and maximum tensile strain of concrete respectively; and
: strain at a distance y from the reference axis.

: ends A and B of a cracked span length beam element respectively;
: concrete, and steel respectively;

: cracked state, uncracked state, and tension stiffening respectively;
: flange, and web respectively;

- i zone;

: net, and relative respectively; and

: distance from the reference axis.

: locations in a typical zone; and
: moment, and axial force respectively.





