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Abstract.  The dams are huge structures storing a large amount of water and failures of them cause 

especially irreparable loss of lives during the earthquakes. They are named as a group of structures 

subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on 

the dam should be reflected more accurately in the structural analyses to determine the real behavior as 

soon as possible. Different mathematical and analytical modelling approaches can be used to calculate 

the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the 

dynamic response of concrete gravity dams using different water modelling approaches such as 

Westergaard, Lagrange and Euler. For this purpose, Sarıyar concrete gravity dam located on the 

Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main 

principals and basic formulation of all approaches are given. After, the finite element models of the 

dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To 

determine the structural response of the dam, the linear transient analyses are performed using 1992 

Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the 

Gauss numerical integration technique. The Newmark method is used in the solution of the equation of 

motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, 

maximum displacements, maximum-minimum principal stresses and maximum-minimum principal 

strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches. 
 

Keywords:  concrete gravity dam; euler; dam-reservoir-foundation interaction; hydrodynamic pressure; 

lagrange; westergaard 

 
 
1. Introduction 

 

Dams have contributed to the development of civilization for a long time. They will continue to 

keep their importance in satisfying the ever increasing demand for power, irrigation and drinking 

water, the protection of man, property and environments from catastrophic floods, and in 

regulating the flow of rivers (Akkose and Simsek 2010). Several factors, which affect the dynamic 

response during earthquake, can be remarked such as interaction of dam-reservoir interaction and 

consistencies of the hydrodynamic pressures on dam body. Beside these parameters, hydrodynamic 

pressures acting on dam faces is one of the most important and influential. So, the calculation of 
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this parameter is very important especially during dynamic loads such as earthquake. 

Some papers can be obtained in literature about the static and dynamic behavior of dams 

considering dam-reservoir-foundation interaction using different water modelling approaches. 

Westergaard (1933) carried out the first hydrodynamic analysis on the dam-reservoir system. 

Samii and Lotfi (2007) performed a study about the comparison of coupled and decoupled modal 

approaches in seismic analysis for concrete gravity dams. Fathi and Lotfi (2008) investigated the 

effects of reservoir length on the dynamic analysis of concrete gravity dams. In the analysis, the 

reservoir is considered by a combination of fluid finite elements and two-dimensional fluid 

hyper-elements. Bayraktar et al. (2009, 2010) aimed to determine the reservoir length effect on 

seismic performance of gravity dams subjected to near and far fault ground motions. Akköse et al. 

(2010) studied on the nonlinear seismic response of concrete gravity dams subjected to near and 

far fault ground motions including dam-water-sediment-foundation rock interaction using 

Lagrangian approach. Wood et al. (2010) offered a computational partitioned coupling strategy for 

the modelling of large deformation fluid-structure interaction. Gogoi and Maity (2010) produced a 

unique method to evaluate the hydrodynamic pressure on the upstream face in concrete dams due 

to seismic excitation. Degroote et al. (2010) performed a stability analysis of Gauss-Seidel 

coupling iterations for partitioned simulation of fluid-structure interaction. Sevim et al. (2011) 

presented the water length and height effects on the earthquake behavior of arch 

dam-reservoir-foundation systems using Lagrangian approach. Heydari and Mansoori (2011) 

discussed on dam-reservoir interaction modelling approaches using different finite element 

software’s considering dynamics earthquake loads. Shariatmadar and Mirhaj (2011) displayed the 

dam-reservoir-foundation interaction effects on the modal characteristics of concrete gravity dams. 

Chen and Yuan (2011) presented a simple approximate formula after hydrodynamic pressure 

analysis of arch dam. Wang et al. (2012) practiced on the nonlinear seismic analyses of concrete 

gravity dams using 3D dam model considering hydrodynamic effects of the impounded water. Lin 

et al. (2012) developed an efficient approach for the hydrodynamic analysis of dam–reservoir 

systems. Miquel and Bouaanani (2013) proposed a new practical and efficient procedure to 

investigate the seismic response of gravity dams. Samii and Lotfi (2013) studied on the absorbing 

boundary conditions for dynamic analysis. Wick (2013) carried out a study about the coupling of 

fully eulerian and arbitrary lagrangian-eulerian methods for fluid-structure interaction 

computations. From these studies, it is seen that there is no enough studies about the determination 

and comparison of dynamic response of gravity dams using different reservoir modelling 

approaches such as Westergaard, Lagrange and Euler. 

This paper present the dynamic response of concrete gravity dams using different water 

modelling approaches such as Westergaard, Lagrange and Euler. Sarıyar concrete gravity dam is 

selected for application. The finite element models of the dam are constituted considering 

dam-reservoir-foundation interaction. To determine the structural response of the dam, the linear 

transient analyses are performed using 1992 Erzincan earthquake ground motion record. From the 

analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses 

and maximum-minimum principal strains are attained and compared with each other for 

Westergaard, Lagrange and Euler approaches. 

 
 
2. Formulation 

 

2.1 Westergaard (Added Mass) approach 
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Fig. 1 Distribution of the hydrodynamic pressure on finite mesh 
 
 
Added mass approach is firstly presented by Westergaard in 1933. In this approach, the dam is 

accepted as rigid, semi-infinite and have vertical upstream surface. Surface waves in fluid are 

neglected. The distribution of hydrodynamic pressure occurred along upstream surface after 

earthquake takes into account as mass distribution pulsed with the dam. Individual masses 

calculated with distribution of hydrodynamic pressure are added on the nodes of the finite element 

mesh along upstream surface of the dam. Fig. 1 shows the changing of water mass according to the 

depth. 

Individual masses are given according to the Fig. 1 as following 

7 w
m(z) = Hz

8 g
                              (1) 

where m(z) , w , g, H and z are distribution of mass depend on depth of reservoir water, unit 

weight of water, acceleration of gravity and depth of water as from surface, respectively. 

 

2.2 Lagrange approach 
 

In the Lagrange approach, the response of the dam and reservoir is expressed with 

displacements. For using same variables, specific interface equations are not essential (Calayır 

1994, Calayır 1996). The formulation of the fluid system based on the Lagrange approach can be 

found in literature (Wilson and Khalvati 1983). In this approach, the fluid is assumed to be linearly 

elastic, inviscid and with irrotational flow field. For a general three-dimensional fluid, stress-strain 

relationships can be written in matrix form as follows 

11 v

x 22 x

y 33 y

z 44 z

P C 0 0 0 ε

P 0 C 0 0 w
=

P 0 0 C 0 w

P 0 0 0 C w

     
     
       

    
         

                      (2) 
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In this equation, Px, Py, Pz are the rotational stresses; C22, C33, C44 are the constraint parameters 

and wx, wy and wz are the rotations about the cartesian axis x, y and z, respectively, where P, C11, 

and v are the pressures which are equal to mean stresses, the bulk modulus and the volumetric 

strains of the fluid, respectively. Since irrotationality of the fluid is considered like penalty 

methods (Bathe 1996), rotations and constraint parameters are included in the stress-strain 

equation (Eq. (2)) of the fluid. 

In this study, the equations of motion of the fluid system were obtained using potential and 

kinetic energy principles. Using the finite element method, the total strain energy of the fluid 

system may be written as 

          
ff

T

fe
2

1
UKU

 
(3) 

where 
fU  and 

fK  are the vectors of nodal displacements and the stiffness matrix of the fluid 

system, respectively. 
fK  is obtained by summing the stiffness matrices of the fluid elements in 

the following 

e
f f

e eT e e
f f f f

V

dV











K K

K B C B
                           (4) 

where fC  is the elasticity matrix consisting of diagonal terms in Eq. (2). 
e

fB  is the 

strain-displacement matrix of the fluid element. 

An important behavior of fluid systems is the ability to displace without a change in volume. 

For reservoir and storage tanks, this movement is known as sloshing waves in which the 

displacement is in the vertical direction. The increase in the potential energy of the system due to 

the free surface motion can be written as 

 T
s sf f sf

1
π

2
U S U                              (5) 

where sfU  and 
fS  are the vertical nodal displacement vector and the stiffness matrix of the 

free surface of the fluid system, respectively. fS is obtained by the sum of the stiffness matrices of 

the free surface fluid elements in the following 

e
f f

e T e
f f s s

A

g dA



 







S S

S h h
                            (6) 

where sh  is the vector consisting of interpolation functions of the free surface fluid element. f 

and g are the mass density of the fluid and the acceleration due to gravity, respectively. Also, the 

kinetic energy of the system can be written as 

 T
f f f

1
T

2
U M U                               (7) 
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where fU  and 
fM  are the nodal velocity vector and the mass matrix of the fluid system, 

respectively. 
fM  can be obtained by summing the mass matrices of the fluid elements in the 

following 

e
f f

e T e
f f

V

dV



 







M M

M H H
                            (8) 

where H  is the matrix consisting of interpolation functions of the fluid element. If Eqs. (3), (5) 

and (7) are combined using the Lagrange’s equation (Clough and Penzien, 1975); the following set 

of equations is obtained 

fffff RUKUM  
                           (9) 

where 


fK , fU  and 
fR  are the system stiffness matrix including the free surface stiffness, the 

nodal acceleration vector and time-varying nodal force vector for the fluid system, respectively. In 

the formation of the fluid element matrices, reduced integration orders were utilized.  

The equations of motion of the fluid system, Eq. (9), have a similar form with those of the 

structural system. To obtain the coupled equations of the fluid-structure system, the determination 

of the interface condition is required. Because the fluid is assumed to be inviscid, only the 

displacement in the normal direction to the interface is continuous at the interface of the system. 

Assuming that the positive face is the structure and the negative face is the fluid, the boundary 

condition at the fluid-structure interface is 

  nn UU                                (10) 

where 
nU  is the normal component of the interface displacement (Akkas et al. 1979). Using the 

interface condition, the equations of motion of the coupled system to ground motion including 

damping effects are given by 

  c c c c c c cM U C U K U R                     (11) 

in which cM , cC , and cK are the mass, damping and stiffness matrices for the coupled system, 

respectively. cU , cU , cU  and cR are the vectors of the displacements, velocities, 

accelerations and external loads of the coupled system, respectively. 

 

2.3 Euler approach 
 

Euler approach is widely used in the finite and boundary element analysis for dams considering 

fluid-structure interaction. In this approach, the structure and fluid motions are expressed with 

displacements and pressures, respectively. Structure and fluid moves together based on 

fluid-structure interface. Hence, specific interface equations must be identified. 

Three dimensional motion of a linear compressible, nonviscous and nonrotational fluid under 

small displacements are given as wave equation in literature (Cook et al. 1989, Zeinkiewicz and 

Taylor 1991) 
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, xx , yy , zz , tt2

1
P P P P

C
+ + =                    (12) 

where x, y and z are cartesian coordinates. T, C and expressed as time, pressure wave velocity 

of fluid and second derivative of hydrodynamic pressure for variable i, respectively. 

Hydrodynamic pressures formed by any effect in fluid are obtained from appropriate boundary 

conditions for Eq. (12). This boundary conditions 

P = 0  (if not surface waves on free surface)               (13) 

sfP = ρgu  (if there are surface waves on free surface)            (14) 

, n nP = ρu  (for fluid-structure interface)                  (15) 

where ρ , g, n, 
nu  and sfu are mass density of fluid, gravity acceleration, normal to fluid 

surface for fluid-structure interface, acceleration in direction of normal and displacement of fluid 

free surface in vertical direction. 

Fluid surface waves are negligible in the solutions (Chopra 1967), but these waves are 

considered the effect of surface waves in this study. Then, the finite element equation of motion for 

the fluid system 

       Tp p

f f fsM P + K P = -ρ R U                       (16) 

where p

fM   ,  P , p

fK   ,  P ,  R  and  fsU  are mass matrix, second derivative of 

hydrodynamic pressure vector for time, stiffness matrix, hydrodynamic pressure vector, matrix for 

fluid-fluid interface and structure accelerations in fluid-structure interface, respectively. Finite 

element equations for dynamic motion of medium 

               s s s s s s fsM U + C U + K U = F + F             (17) 

where  sM ,  sC ,  sK ,  sU ,  sU ,  sU ,  F  and  fsF  are mass matrix, damping 

matrix, stiffness matrix, acceleration vector, velocity vector, displacement vector, external load 

vector and additional external load vector on structure for hydrodynamic pressures occurred in 

fluid, respectively.  fsF  is expressed and the equations of motion for fluid-structure system are 

expressed. 

     fsF = R P                               (18) 

   

 

 

 
   

   

 

 

   

 

 

 

 

 

s ss s

p

fs f

s fs s

p

f

U UM 0 C 0
+ +

0 0M M P P

K K FU
=

0P0 K

         
      

             

     
     

       

               (19) 

   
T

fsM = ρ R                              (20) 
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Fig. 2 Sarıyar concrete gravity dam 

 

 

   fsK = - R                               (21) 

 
 

3. Numerical example 
 
The focus of this paper is to determine and compare the structural dynamic behavior of 

concrete gravity dams including dam-reservoir-foundation interaction using different water 

modelling approaches such as Westergaard (added masses), Lagrange (displacement-based) and 

Euler (pressure-based) to imply the hydrodynamic pressure. Sarıyar concrete gravity dam (Fig. 

2(a)) is chosen as an application. Sarıyar dam is located on the Sakarya River, 120 km to the 

northeast of Ankara, in Turkey. The dam is constructed to supply the electric power. The crest 

length and width are 257 m and 7 m, respectively. Maximum reservoir height is 85 m. The 

dimensions of the dam are given in Fig. 2(b). 

The finite element models of the dam including dam-reservoir-foundation interaction using 

Westergaard, Lagrange and Euler approaches are constituted in ANSYS program and given in Figs. 

3(a)-3(c), respectively. In these models, dam body and foundation are represented by solid 

elements. Reservoir effect is represented by using added masses on dam body for Westergaard 

approach. But, in the Lagrange and Euler approaches, fluid elements are used to define the 

reservoir water and its hydrodynamic pressures. It can be easily seen from the Fig. 3 that the 

modelling of the water using Westergaard approach is very simply. Only additional masses are 

defined at special nodes. When the all approaches compared with each other, it is seen that 

modelling of the water using Lagrange and Euler approaches more difficult from the Westergaard 

approach. But, there is not any difference between Lagrange and Euler approaches. Only, element 

type and structural options should be changed to obtain the good and reliable solutions. In the 

finite element model, Plane182 element is used for dam body and foundation. Also, MASS21, 

Fluid79 and Fluid29 (structure absent) elements are selected to represent the reservoir water for 

Westergaard, Lagrange and Euler Approaches, respectively.  

Massless foundation is used in all dam-reservoir-foundation models. At the dam-reservoir and 

reservoir-foundation interface, coupling elements with length of 0.001 m is used to hold the 

displacements equal between two reciprocal nodes for Lagrange approach. Between the dam and 

reservoir faces, the thickness of Fluid 29 element, which shows the hydrodynamic pressures effect 

on dam body, is chosen as 3.125 m for Euler approach. The length of the reservoir in the upstream  
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(a) Westergaard approach 

 
(b) Lagrange approach 

 
(c) Euler approach 

Fig. 3 Two dimensional finite element models of Sarıyar concrete gravity dam including 

dam-reservoir-foundation systems using Westergaard, Lagrange and Euler approaches 

 

 

direction is taken to be as much as three times the dam height in all models. It is assumed that the 

reservoir has constant depth. In addition, foundation depths are taken into account as much as the 

dam heights. In the upstream direction, foundation length is considered as the reservoir length and 

in the downstream direction, foundation length is considered as the dam height (Bayraktar et al. 

2008, Bayraktar et al. 2010, Sevim et al. 2011a,b). Element matrices are computed using the 

Gauss numerical integration technique (Bathe 1996). The Newmark method is used in the solution 

of the equation of motions. Rayleigh damping is considered in the analyses and damping ratio is 

selected as 5%. 
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Fig. 4 The time history of the 1992 Erzincan earthquake strong ground motion 

 
Table 1 The material properties used in the analyses 

Material 
Material Properties 

Modulus of elasticity 

(N/m) 

Poisson’s ratio 

(-) 
Mass per unit vol. 

(kg/m3) 

Dam (Concrete) 35.0E9 0.15 2400 

Foundation 30.0E9 0.2 - 

Reservoir 20.7E8 - 1000 

 

 
(a) Westergaard approach 

 
(b) Lagrange approach 

 
(c) Euler approach 

Fig. 5 The time histories of horizontal displacements at the crest point for Westergaard (a) 

Lagrange (b) and Euler (c) approaches 
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Fig. 6 Maximum horizontal displacements by height of Sarıyar concrete gravity dam 

 

 

The material properties used in the analyses is given in Table 1. The ERZIKAN/ERZ-EW 

component of the Erzincan earthquake occurred on March 13, 1992, Erzincan, Turkey is chosen as 

strong earthquake ground motion record (Fig. 4). 

 
3.1 Displacements 
 

The time histories of the horizontal displacements (upstream-downstream direction) at the crest 

point of Sarıyar concrete gravity dam obtained from linear transient analysis for three different 

approaches under ERZIKAN/ERZ-EW component of Erzincan Earthquake (1992) ground motion 

is presented Figs. 5(a)-5(c). The maximum displacements are attained as 75.61 mm, 67.63 mm and 

35.62 mm for Westergaard, Lagrange and Euler approaches, respectively. 

The changing of maximum displacements by the height of dam body for Westergaard, 

Lagrange and Euler approaches are given in Fig. 6. It is clearly seen from the figure that the 

displacements increase by height of the dam body for all modelling approaches and maximum 

displacements attained for Westergaard model. The maximum horizontal displacements contours 

for all approaches are shown in Figs. 7(a)-7(c). This represents the distribution of the peak values 

reached by the maximum displacement at each point within the sections. 

 

3.2 Principal stresses 
 

The changing of maximum compressive and tensile principal stresses by the height of dam 

body for Westergaard, Lagrange and Euler approaches are given in Fig. 8. It is seen from the figure 

that the maximum values of both principle stresses are attained at 3.215 m height from the base 

point of the dam body. The time histories of the maximum and minimum principal stresses (at 

3.125 m) for each approaches are plotted in Figs. 9(a)-9(c). The maximum tensile stresses are  
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(a) Westergaard approach 

 
(b) Lagrange approach 

 
(c) Euler approach 

Fig. 7 Maximum displacement contours of the dam-reservoir-foundation system for 

Westergaard (a) Lagrange (b) and Euler (c) approaches 

 

 

attained as 12.57MPa, 12.37MPa, 5.30MPa; the maximum compressive stresses are attained as 

14.58 MPa, 15.50 MPa, 6.81 MPa for Westergaard, Lagrange and Euler approaches, respectively. 

The maximum stresses contours are shown in Figs. 10(a)-11(c). This represents the distribution 

of peak values reached by maximum stresses at each point within the sections. 

 
3.3 Principal strains 
 

The changing of maximum compressive and tensile principal strains by the height of dam body 
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(a) (b) 

Fig. 8 Changing of maximum tensile (a) and compressive (b) principal stresses by height of the 

changing Sarıyar concrete gravity dam 

 

  
(a) Westergaard approach 

  
(b) Lagrange approach 

Fig. 9 The time histories of maximum and minimum principal stresses at the 3.125 m Westergaard 

(a), Lagrange (b) and Euler (c) approaches 
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(c) Euler approach 

Fig. 9 Continued 

 

 
(a) Westergaard approach 

 
(b) Lagrange approach 

Fig. 10 Maximum compressive principle stresses contours of the dam-reservoir-foundation system for 

Westergaard (a), Lagrange (b) and Euler (c) approaches 
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(c) Euler approach 

Fig. 10 Continued 

 
 

for Westergaard, Lagrange and Euler approaches are given in Fig. 12. It is seen from the figure that 

the maximum values of both principle strains are attained at 3.215 m height from the base point of 

the dam body. The time histories of the maximum and minimum principal strains (at 3.125 m) for  

 
 

 
(a) Westergaard approach 

 
(b) Lagrange approach 

Fig. 11 Maximum tensile principle stresses contours of the dam-reservoir-foundation system for 

Westergaard (a), Lagrange (b) and Euler (c) approaches 
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(c) Euler approach 

Fig. 11 Continued 
 

Table 2 The maximum values of displacements, maximum-minimum principal stresses and strains 

Material 
Water modelling approaches 

Westergaard Lagrange Euler 

Displacement 75.61 mm 67.63 mm 35.62 mm 

Maximum compressive stresses 14.58 MPa 15.50 MPa 6.81 MPa 

Maximum tensile stresses 12.57 MPa 12.37 MPa 5.30 MPa 

Maximum compressive strains 41.04E-5 44.13E-5 19.15E-5 

Maximum tensile strains 35.47E-5 35.35E-5 14.90E-5 

 

  
(a) (b) 

Fig. 12 Changing of maximum tensile (a) and compressive (b) principal strains by height of the 

changing Sarıyar concrete gravity dam 

 
 

each approaches are plotted in Figs. 13(a)-13(c). The maximum tensile and compressive strains are 

attained as 35.47E-5, 35.35E-5, 14.90E-5; 41.04E-5, 44.13E-5, 19.15E-5 for all approaches, 

respectively. 
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(a) Westergaard approach 

  
(b) Lagrange approach 

  
(c) Euler approach 

Fig. 13 The time histories of maximum and minimum principal strains at the 3.125 m Westergaard (a), 

Lagrange (b) and Euler (c) approaches 
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(a) Westergaard approach 

 
(b) Lagrange approach 

 
(c) Euler approach 

Fig. 14 Maximum compressive principle strains contours of the dam-reservoir-foundation system for 

Westergaard (a), Lagrange (b) and Euler (c) approaches 
 

 

The maximum strains contours are shown in Figs. 14(a)-15(c). This represents the distribution 

of peak values reached by maximum strains at each point within the sections. 
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(a) Westergaard approach 

 
(b) Lagrange approach 

 
(c) Euler approach 

Fig. 15 Maximum tensile principle strains contours of the dam-reservoir-foundation system for 

Westergaard (a), Lagrange (b) and Euler (c) approaches 
 

 

The maximum values of displacements, maximum and minimum principal stresses and strains 

are given in Table 2 to better understanding. 
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4. Conclusions 
 

This paper present the determination and comparison of dynamic response of concrete gravity 

dams using different water modelling approaches such as Westergaard, Lagrange and Euler. 

Sarıyar concrete gravity dam located on in Ankara, Turkey, is selected as a case study. The finite 

element models of the dam are constituted considering dam-reservoir-foundation interaction for all 

reservoir models. Comparing the results of this study, the following observations can be made: 

 The displacements increase by the height of the dam body and maximum displacements 

occur at crest points for each reservoir modelling approaches. Maximum and minimum 

displacements are attained from Westergaard and Euler approaches, respectively. 

 Maximum compressive and tensile principal stresses and strains have a decreasing trend from 

the base to crest point of the dam body for all reservoir modelling approaches. Maximum stresses 

and strains are occurred at the 3.125 m height from the base for Westergaard, Lagrange and Euler 

approaches. 

 It is seen that maximum and minimum principal stresses and strains are nearly equal for 

Westergaard and Lagrange approaches. But, the values attained from Euler approach are different 

and quite lower than the others. 

 MASS21 element type, coupling lines and FLUID29 element using structure present options 

can be considered to dam-reservoir and reservoir-foundation interaction in Westergaard, Lagrange 

and Euler approaches, respectively. 

All approaches are suggested, published and used nearly all researchers (related to 

dam-reservoir-foundation interaction). It can be said from the study parallel to literature that more 

general results can be obtained with Westergaard approach. Besides, Lagrange and Euler 

approaches can be used to determine/attain the real behavior of dam structures. 
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