
 

 

 

 

 

 

 

Computers and Concrete, Vol. 16, No. 3 (2015) 357-380 

DOI: http://dx.doi.org/10.12989/cac.2015.16.3.357                                            357 

Copyright ©  2015 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=cac&subpage=8         ISSN: 1598-8198 (Print), 1598-818X (Online) 
 
 

 

 
 
 
 

Strut-tie model for two-span continuous RC deep beams 
 

H.S. Chaea and Y.M. Yun* 
 

Department of Civil Engineering, Kyungpook National University, 
80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea 

 
(Received September 2, 2011, Revised January 19, 2015, Accepted February 11, 2015) 

 
Abstract.  In this study, a simple indeterminate strut-tie model which reflects complicated 

characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was 

proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a 

vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the 

analysis and design of continuous reinforced concrete deep beams by using the strut-tie model 

approaches of current design codes. In the determination of the load distribution ratio, a concept of 

balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical 

steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the 

primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, 

and compressive strength of concrete were reflected upon. To verify the appropriateness of the present 

study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was 

evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate 

strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also 

estimated by the experimental shear equations, conventional design codes that were based on 

experimental and theoretical shear strength models, and current strut-tie model design codes. The 

validity of the proposed strut-tie model and load distribution ratio was examined through the comparison 

of the strength analysis results classified according to the primary design variables. The present study 

associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate 

strength of the continuous deep beams fairly well compared with those by other approaches. In addition, 

the present approach reflected the effects of the primary design variables on the ultimate strength of the 

continuous deep beams consistently and reasonably. The present study may provide an opportunity to 

help structural designers conduct the rational and practical strut-tie model design of continuous deep 

beams. 
 

Keywords:  continuous deep beam; indeterminate strut-tie model; load distribution ratio; ultimate 

strength 

 
 
1. Introduction 

 

Continuous reinforced concrete deep beams are fairly common structural elements. They are 
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used as load distribution elements such as transfer girders, pile caps, and foundation walls, often 

receiving many small loads and transferring them to a small number of reaction points. Continuous 

reinforced concrete deep beams differ from either simply supported reinforced concrete deep 

beams or continuous reinforced concrete shallow beams. In continuous deep beams, the regions of 

high shear and high moment coincide and failure usually occurs in these regions. In simply 

supported deep beams, the region of high shear coincides with the region of low moment. 

the failure mechanisms of continuous and simply supported deep beams are different. Despite the 

different failure mechanisms, the current design codes of practice for shear in continuous deep 

beams are based entirely on tests of simply supported deep beams because there have not been 

theoretical and experimental studies on continuous deep beams.  

A strut-tie model approach, known as a design method for structural concrete with disturbed 

regions, has been accepted in the current design codes including the BS8110 (1997), CSA (2005), 

NZS 3101 (2006), FIB (2010), AASTHO-LRFD (2010) and ACI 318M-11 (2011). And, the 

approach has mainly been applied to the analysis and shear design of simply supported reinforced 

and prestressed concrete deep beams (Hwang et al. 2000, Yun 2000, Foster and Malik 2002, 

Hwang and Lu 2002, Matamoros and Wong 2003, Yun 2005, 2006, Quintero-Febres et al. 2006, 

Park and Kuchma 2007, Tjhin and Kuchma 2007, Ashour and Yang 2008, Yun and Kim 2008, 

Kim and Yun 2011, Chetchotisak et al. 2014). However, even though excluding the subject of 

continuous deep beams, an appropriate strut-tie model that represents a true load transfer 

mechanism for simply supported deep beams and reflects the effects of the primary design 

variables on shear behavior has not been provided. Though the studies about the strut-tie model 

analysis and design of continuous deep beams were conducted by Alshegeir (1992) and 

MacGregor (1997), a simple determinate truss type of strut-tie model which seems to be incapable 

of representing appropriate load transfer mechanisms of continuous deep beams was presented. 

In this study, a simple internally and externally indeterminate strut-tie model reflecting all 

characteristics of the ultimate strength and complicated nonlinear structural behavior was proposed 

for the design of continuous deep beams. In addition, a load distribution ratio, defined as the 

fraction of applied load carried by one of ties in the internally indeterminate model, was proposed 

to help structural engineers employ the strut-tie model approaches of the current design codes in 

practice by transforming the internally indeterminate model into an internally determinate model. 

In the determination of the ratio, numerous finite element material nonlinear analyses of a single 

type of internally indeterminate strut-tie model with changeable primary design variables were 

conducted to reflect the effects of primary design variables, and a concept of balanced shear 

reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie 

of an internally indeterminate strut-tie model was introduced as well to ensure the ductile shear 

strength design of continuous deep beams. The appropriateness of the present study was examined 

through the strength analysis of 58 continuous deep beams tested to shear failure by using the ACI 

318M-11's strut-tie model approach. 

 

 
2. Strut-tie models and load distribution ratios of previous studies 

 

The development of strut-tie models for continuous deep beams has not been the subject of 

much attention, and any indeterminate strut-tie models for the beams have not been proposed yet. 

However, a few determinate and indeterminate strut-tie models for simply supported deep beams 

have been suggested. The CSA (2005) and AASHTO-LRFD (2010) have suggested a basic 
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concept of a strut-tie model that satisfies equilibrium and constitutive relationships, and they have 

allowed the design of simply supported deep beams with the determinate strut-tie model shown in 

Fig. 1(a). This has influenced the ACI 318M-11 (2011) to allow the same model for simply 

supported deep beams with the requirement that the angle between a concrete strut and a tie be 

greater than 25 degrees. When the requirement on the angle is considered, the strut-tie model 

shown in Fig. 1(a) can be used for simple deep beams with a shear span-to-effective depth ratio 

da /  of less than 93.1 ( 14.2/ za , dz 9.0 , hd 9.0 , h depth). Thus, the simply 

supported deep beams with 93.1/ da  can be designed by using the determinate strut-tie model 

shown in Fig. 1(b) (ACI 445 2002).  

FIB (2010) suggested the determinate and indeterminate strut-tie models of Figs. 1(a)-1(c) for 

simply supported deep beams, representing respectively an arch load transfer mechanism 

(hereinafter, arch mechanism) for 5.0/ za , a truss load transfer mechanism (hereinafter, truss 

mechanism) for 0.2/ za , and a combination of arch and truss mechanisms for 0.2/5.0  za . 

As the strut-tie model in Fig. 1(c) is the first-order indeterminate truss structure, a load distribution 

ratio was proposed to calculate the cross-sectional forces of struts and ties by simply employing 

the force equilibrium equations at nodes. With the load distribution ratio   of Eq. (1), varying 

linearly as a function of za / , the cross-sectional force of a vertical steel tie wP  in the truss 

mechanism of Fig. 1(a) is directly obtained from the following equation 

PN

za

P

P

sd

w

/3

1/2




                              (1) 

where P  is a vertically applied load and sdN  is a horizontally applied axial load.  

Similar to the FIB's strut-tie models, Foster and Gilbert (1998) suggested the determinate and 

indeterminate strut-tie models of Figs. 1(a)-1(c) for simply supported deep beams, respectively for 

use in the ranges of 1/ za , 3/ za , and 3/1  za . The load distribution ratio   for 

the indeterminate strut-tie model was proposed as follows 

13
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P

Pw                               (2) 

 

 

 
(a) Determinate Strut-Tie Model 

representing Arch Mechanism 

( 5.0/ za ) 

 
(b) Determinate Strut-Tie Model 

representing Truss Mechanism 

( 0.2/ za , 8.1/ da ) 

 
(c) Indeterminate Strut-Tie Model 

representing Combined Arch and 

Truss Mechanisms 

( 0.2/5.0  za ) 

Fig. 1 Strut-tie models for simply supported deep beams 
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Kim and Yun (2011) proposed a single type of indeterminate strut-tie model of Fig. 1(c) for 

whole range of simply supported deep beams, and they proposed a load distribution ratio   as 

follows 
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(3) 

where b  is the balanced flexural reinforcement ratio,   is the value of da /  that decides the 

type of governing failure mechanism between the arch and truss mechanisms, and   is the 

parameter that considers the variation of the load distribution ratio according to primary design 

variables. Detail explanations of the parameters are given in the reference. 

 

 

 
 

(a) Externally indeterminate strut-tie model 

representing arch mechanism 

 
 

 (b) Externally indeterminate strut-tie model 

representing truss mechanism  

 

 
 

(c) Internally and externally indeterminate strut-tie model representing  

combined arch and truss mechanisms 

Fig. 2 Indeterminate strut-tie models for two-span continuous deep beams 
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3. Strut-tie model and load distribution ratio of present study 
 
3.1 Indeterminate Strut-Tie model 
 
The ultimate behavior of continuous deep beams is highly nonlinear in accordance with the 

design variables including the shear span-to-effective depth ratio, flexural and shear reinforcement 

ratios, load and support conditions, and material properties, as the case of simply supported deep 

beams. Therefore, similar types of the strut-tie models suggested for simply supported deep beams, 

such as an internally determinate strut-tie model of Fig. 2(a) in which an external concentrated 

load is directly transferred to the supports by an inclined strut to represent an arch mechanism, an 

internally determinate strut-tie model of Fig. 2(b) in which an external concentrated load is 

transferred to the supports by the combination of inclined struts and a vertical tie to represent a 

truss mechanism, and an internally indeterminate strut-tie model of Fig. 2(c) representing a 

combination of arch and truss mechanisms, can be extended to continuous deep beams. In this 

study, an internally and externally indeterminate strut-tie model of Fig. 2(c) is proposed for the 

rational design of the continuous deep beams with 0.1/ da  by considering the effects of 

primary design variables on the ultimate strength and behavior and by satisfying the fundamental 

concept that the load acting on top of a continuous deep beam must be transferred to supports by 

concrete and reinforcing bars. In the proposed model, the role of horizontal shear reinforcing bars 

is not reflected upon because, according to the research by Rogowsky et al. (1986) and Ashour 

(1997), the effect of horizontal shear reinforcing bars on shear strength is not significant when the 

deep beams with 0.1/ da  do not contain plenty of horizontal reinforcing bars. 

 

3.2 Reaction distribution ratio 
 

To perform the strut-tie model design of structural concrete by using current design codes of 

practice, the indeterminate strut-tie model of Fig. 2(c) needs to be transformed to a determinate 

strut-tie model. In this study, the indeterminate strut-tie model was transformed to an externally 

determinate strut-tie model by using the reaction distribution ratio. In design practice, the reactions 

at exterior and interior supports of a two span continuous deep beam are generally determined by a 

linear elastic analysis. They are 16/5P  and 16/11P , respectively, where P  is an external load 

acting at each mid-span of the deep beam. However, the reactions at ultimate state are different as 

shown in Fig. 3, where the exterior reactions obtained from Bernoulli’s beam theory and the tests 

of Rogowsky et al. (1986) and Ashour (1997) are plotted. In this study, linear elastic finite element 

analyses of the strut-tie model of Fig. 2(c), with a varying shear span-to-depth ratio of 1.0~3.0 and 

assumptions of dz 9.0  and unit axial stiffness of all struts and ties, were performed. The 

reactions obtained from the analyses showed to be very similar to experimental ones, as shown in 

Fig. 3. Thus, through the curve fitting of the analysis results, an equation of reaction distribution 

ratio that traces the experimental support reactions satisfactory was developed as follows 

34.03011.01

2

21 









d

a

P

R

P

R
                    (4) 

where, 1R  and 2R  are the reactions at exterior and interior supports, and a  and d  are the 

shear span and effective depth of a two span continuous deep beams. 
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Fig. 3 Reaction distribution ratio of externally indeterminate strut-tie model for two-span 

continuous deep beams 

 

 
3.3 Load distribution ratio 
 

In the present study, a load distribution ratio is determined by conducting a finite element 

material nonlinear analysis of the internally indeterminate strut-tie model. A state of simultaneous 

failure of the inclined concrete strut and vertical steel tie, defined as a state of balanced shear 

reinforcement ratio, is used as a condition for determining the load distribution ratio. It was 

assumed that the horizontal strut and ties A, B, C, L, M and N that could guarantee ductile 

structural behavior of deep beams by using the concept of balanced flexural reinforcement ratio 

and the struts and tie D, F, G, and E placed at the exterior shear span of a continuous deep beam of 

Fig. 2(c) had no direct relations with the failure of the deep beam. Instead, the struts and tie H, I, K, 

and J placed at the interior shear span of the deep beam were regarded as the main elements 

composing a shear resistant mechanism and were assumed to fail ahead of the other elements at 

ultimate state. At the balanced shear reinforcement ratio, a simultaneous failure of concrete strut I 

and steel tie J (denoting a failure of arch mechanism) or a simultaneous failure of concrete strut H 

(or K) and steel tie J (denoting a failure of truss mechanism) was assumed to occur. To determine 

the load distribution ratio at the state of balanced shear reinforcement ratio, the finite element 

material nonlinear analysis of the internally indeterminate strut-tie model was conducted by 

changing the magnitude of the applied load P  and the amount of the vertical shear reinforcement 

area AJ tie, according to the procedure shown in Fig. 4. In Fig. 4, the maximum value of P, Pmax, 

was determined from the flexural strength of deep beams, and the maximum value of AJ tie, AJ tie, max, 

is the vertical shear reinforcement area required for Pmax. The initial values of P  and AJ tie, Pinitial 

and AJ tie, initial, respectively, were chosen as 1% and 0.5% of their maximum values. With the load 

distribution ratio, an optimum design of a continuous deep beam may be ensured by deciding the 

cross-sectional areas of reinforcing bars at a state of the simultaneous failure. Additionally, the 

ductile structural behavior caused by the yield of the steel tie before the crushing of the inclined 

concrete strut may be assured in design practice by using a smaller load distribution ratio than the 

one obtained at a state of the simultaneous failure.  
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Strut-tie model for two-span continuous RC deep beams 

 

Fig. 4 Algorithm for determining load distribution ratio of internally indeterminate strut-tie 

model for two-span continuous deep beams 

 

 

Since the load distribution ratio of the present study was determined by the nonlinear analysis 

of internally indeterminate truss structure, the axial stiffness of struts and ties EA (E=modulus of 

elasticity, A =cross-sectional areas) associated with the stress states of struts and ties must be 

considered. In this study, the cross-sectional areas of struts and ties were decided as the maximum 

areas of struts and ties that they could contain, as the method of conventional strut-tie model 

approaches. As shown in Fig. 5, the cross-sectional areas of struts A, B and C placed at the biaxial 

compression region were decided by multiplying the width of the strut ws (which is the same as the 
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depth of the equivalent rectangular stress block) by the beam thickness b, as in Eq. (5)  

c

by

c

sy

strutCBA
f

df

bf

Af
cw







85.085.0
1,,


                       (5) 

where, 1  is the coefficient of the equivalent rectangular stress block, c  is the distance from 

the top of the beam to the neutral axis, sA ( bdb ) is the cross-sectional area of flexural 

reinforcement, d  is the effective depth of the beam, b  is the balanced flexural reinforcement 

ratio, and   is the variable of flexural reinforcement (in the case of maximum flexural 

reinforcement ratio max , 75.0 ). The cross-sectional areas of inclined struts D, F, G, H, I, and 

K placed at the shear span were decided by multiplying the beam thickness b  by the smaller 

width of the strut and nodal zone boundary, as expressed in the following 

21,2 sinlcosww  btieLstrutD                        (6a) 

)sinθl0.5cosθw,sinθlcosθ(wminw 14b,1strutA11b,1tieLstrutF            (6b) 

24b,2strutAstrutG sinθl0.5cosθww                      (6c) 

24b,2tieBstrutH sinθl0.5cosθww                      (6d) 

)sinθl0.5cosθw,sinθl0.5cosθ(wminw 14b,1tieB17b,1tieNstrutI          (6e) 

          27b,2tieNstrutK sinθl0.5cosθww                       (6f) 

where, strutDw  and tieLw  are the widths of strut D and tie L, i ( i =1,2) is the angle between 

inclined struts and horizontal axis, and ibl ,  is the width of the bearing (or loading) plate of nodal 

zone i . In the present study, the width of the bearing or loading plate bl  was determined to 

satisfy the ACI 318M-11's (2011) strength requirement of nodal zone, as expressed in the 

following 

bf

RorP
l

cn

b



85.0

)(
                             (7) 

where, n  is the coefficient of the effective strength of nodal zone. For nodal zones 1 and 4 

which are classified as CCT nodal zone, the values of 0.8 was taken as the coefficient. For nodal 

zone 7 which is classified as CCC nodal zone, the values of 1.0 was taken as the coefficient. The 

cross-sectional areas of horizontal ties B, C, L, M, N placed at the top and bottom of the beam 

were decided as bdA btie  , the cross-sectional area of flexural reinforcing bars. The 

cross-sectional area of vertical tie J was obtained by changing its area repeatedly in order to reach 

the state of simultaneous failure of the inclined concrete strut and vertical steel tie. 

For the finite element material nonlinear analysis of the internally indeterminate strut-tie model, 

the tangential modulus of elasticity of a concrete strut, as expressed in Eq. (8), was evaluated by 

differentiating the stress-strain relationship of Pang and Hsu (1995) with the strain of a concrete 

strut 
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where, c  is the compressive strain of a concrete strut,   is the softening coefficient of 

concrete, and 0  is the compressive strain that corresponds to the peak compressive stress of a 

concrete strut defined as cc Ef /20
  where cE  is the initial modulus of elasticity of concrete 

(for MPafc 30 , cc fE  4700 ; for MPafc 30 , 77003300  cc fE ). Following the ACI 

318M-11's suggestion for the effective strength of concrete struts, the softening coefficient of 

85.0  was employed for concrete strut A located at the biaxial compression region, and 

 75.085.085.0638.0  s  was employed for bottle-shaped concrete struts D, F, G, H, I, 

and K located at the biaxial compression-tension region. In the nonlinear analysis, it was assumed 

that the failure of nodal zones did not occur. The tangential modulus of elasticity of a steel tie, as 

expressed in Eq. (9), was evaluated by assuming a bi-linear stress-strain relationship of steel 

yss

t
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yss

t

s

EE

EE









for        001.0

for                
                         (9) 

where sE  is the initial modulus of elasticity of steel. 

Fig. 6 shows the load distribution ratios of the internally indeterminate strut-tie model of Fig. 

2(c) with geometric properties of a = 200~1200mm, b = 100mm, d = 400mm, L = 

800~4800mm and design variables of da / =0.5~3.0, b / =0.15~0.75, cf  = 20~70MPa, yf

=400MPa. The ratios were determined according to the algorithm of Fig. 4. It is shown that the 

applied load transferred by the arch mechanism becomes greater as in the case of Foster and 

Gilbert (1998) when the shear span-to-effective depth ratio da /  decreases, and the load 

transferred by the truss mechanism increases when the ratio da /  increases. However, unlike the 

results of earlier studies by the FIB (2010) and Foster and Gilbert (1998) where 100% of the 

applied load is transferred by the truss mechanism when the ratio da /  is greater than 1.80 and 

1.56, respectively, the present study reveals that more than 25% of the applied load is still carried 

by the arch mechanism when the ratio da /  is greater than 2.50. This indicates that the 

shear-resistant capacity by the concrete struts making up the arch mechanism exists although the 

ratio da /  increases, as proven to be true in the previous studies of simply supported deep beams 

(Leonhardt 1965, Park and Paulay 1975, Kim et al. 2003). Fig. 6 also shows that the range of 

da /  where deep beams fail due to the failure of the arch mechanism decreases because the 

load-carrying capacity of the arch mechanism improves by the increase of the flexural 

reinforcement ratio. This result is similar to the previous studies (Zsutty 1971, Okamura and Higai 

1980, Niwa et al. 1986, Bazant 1997, ACI 318-99 1999) expressing that the load transferred by the 

arch mechanism in simply supported deep beams increases as the flexural reinforcement ratio 

increases. 

Through the curve fittings of Fig. 6, an equation of load distribution ratio associated with the 

primary design variables was developed in order that structural engineers could employ the  
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Fig. 5 Maximum cross-sectional widths (Areas) of struts and ties in indeterminate strut-tie model 

for two-span continuous deep beams 

 

 
(a) 

b 75.0
 

 
(b) 

b 15.0  

Fig. 6 Load distribution ratios of internally indeterminate strut-tie model associated with primary 

design variables 

 

 

equation directly to the design of continuous deep beams. The developed equation is as follows 
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where,   is the reaction distribution ratio and b  is the balanced flexural reinforcement ratio of 

the beam.  , expressed in terms of b / , is defined as follows 


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1
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Table 1 Geometries and material properties of continuous RC deep beams tested to failure 

Investigators 
No. of 

Beams 

bw  

( mm)
 

d 

( mm) 

h 

( mm) 
cf   

(MPa) 

yf

(MPa) 
da /   (%) b /  

Rogowsky et al. 

(1986) 
16 200 445-975 

500- 

1000 
14.5-46.8 363-594 

1.16- 

2.47 

0.46- 

1.13 

0.173- 

0.855 

Ashour (1997) 8 120 226-609 
425- 

625 
22.0-39.2 347-480 

1.19- 

2.02 

0.33- 

1.02 

0.138- 

0.546 

Subedi (1998) 3 50-75 370-570 
400- 

600 
44.7-56.5 340-527 

1.35- 

1.47 

0.53- 

1.47 

0.309- 

0.502 

Asin (1999) 13 150 550-950 1000 28.2-37.1 569-586 
1.26- 

2.18 

0.32- 

0.95 

0.196- 

0.464 

Yang et al. (2007) 12 160 565 600 32.1-68.2 483-562 1.06 0.95 
0.314- 

0.463 

Yang et al. (2007) 6 160 355-653 
470- 

720 
32.1-68.2 562 

1.06- 

1.13 

0.97- 

1.10 

0.320- 

0.534 

Total 58 50-200 226-975 
400- 

1000 
14.5-68.2 347-594 

1.06- 

2.47 

0.32- 

1.47 

0.138- 

0.855 

 

 

4. Validity evaluation 
 

In this study, the ultimate strength of 58 two-span continuous reinforced concrete deep beams 

tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated 

with the proposed indeterminate strut-tie model and load distribution ratio. The ultimate strength 

of the deep beams was also estimated by using the experimental shear strength models (Zsutty 

1971, ACI 318-99 1999, EC2 2004), the theoretical shear strength models (CEB-FIP 1993, 

AASHTO-LRFD 2010), and the strut-tie model design codes (FIB 2010, AASHTO-LRFD 2010, 

ACI 318M-11 2011). The ultimate strength evaluated by each method and classified according to 

the primary design variables was compared to verify the appropriateness of the proposed 

indeterminate strut-tie model and load distribution ratio. 

 

4.1 Experimental results 
 

The 58 two-span continuous reinforced concrete deep beams with 0.3/0.1  da , tested to 

shear failure by Rogowsky et al. (1986), Ashour (1997), Subedi (1998), Asin (1999), and Yang et 

al. (2007a, 2007b) were selected to prove the validity of the present study. The ranges of the shear 

span-to-depth ratio, flexural reinforcement ratio, and compressive strength of concrete of the 

selected deep beams are 47.2/06.1  da , 
855.0/138.0  b , and MPafMPa c 2.685.14  . 

All of the deep beams were tested under the two-point concentrated loadings. The characteristics 

of the materials and geometries of the beams are listed briefly in Table 1. 
 

4.2 Strength evaluation by conventional approaches 
 

The evaluation of the ultimate strength by using the experimental shear strength models of the 

ACI 318-99 (1999), EC2 (2004), and Zsutty (1971) was conducted employing the following Eqs. 

(12)-(14), respectively.  
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In the above equations, a , d , wb , cf  , and   are the shear span length, effective depth, 

web width, strength of concrete, and factor reflecting the lower tensile strength of lightweight 

concrete, respectively. w (= dbA ws / , sA area of flexural reinforcing bars), v (= sbA wv / , vA

=area of vertical shear reinforcing bars within a distance s ), and vh (= hwvh sbA / , vhA =area of 

horizontal shear reinforcing bars within a distance hs ) are the ratios of flexural reinforcement, 

vertical shear reinforcement, and horizontal shear reinforcement, respectively. vyf  and vhyf  are 

the yield strength of the vertical and horizontal reinforcing bars, respectively. uM , uV , and nl  in 

Eq. (12) are the factored moment at section, factored shear at section, and clear span measured 

face-to-face of supports, respectively. In Eq. (13), the factor k  is defined as d/2001 , where 

the unit of effective depth d  is 𝑚𝑚. The factor k  should not exceed 2.0. In the strength 

analysis, the value of the strength reduction factor c  was taken as 1.0, and the design strengths 

of steel and concrete, ydf
 

and cdf , were taken as the yield strength of steel yf  and the strength 

of concrete cf  , respectively.  

The ultimate strength of the deep beams by the specifications of the CEB-FIP (1993) and 

AASHTO-LRFD (2010) that were based on a variable truss model and the modified compression 

field theory of Vecchio and Collins (1986), respectively, was estimated by employing the 

following Eqs. (15) and (16).  
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In Eq. (15), sA , d , z  and w (= sbA wv / , vA =area of vertical shear reinforcing bars within 

a distance s , wb =web width) are the area of flexural reinforcing bars, effective depth in mm , 

lever arm between the compression and tension, and ratio of vertical shear reinforcement, 

respectively. The design strength of steel and concrete, ydf  and cdf , were taken as the yield 

strength of steel yf  and the compressive strength of concrete cf  . In Eq. (16), vd , the lever arm 

between the compression and tension, was taken as d9.0 , and   and   represent the factors 

indicating ability of diagonally cracked concrete to transmit tension and the angle of inclination of 

diagonal compressive stresses, respectively. 

The ultimate strength by the strut-tie model specifications of FIB (2010), AASHTO-LRFD 

(2010), and ACI 318M-11 (2011) was evaluated by the methods of ACI 445 (2002) and PCA (2004) 

that examines the requirements of the effective strength of the concrete struts and nodal zones 

specified in each code. In the implementation of the AASHTO-LRFD and ACI 318M-11 

specifications, the internally determinate strut-tie model reflecting an arch mechanism was used 

for the beams with 14.2/ za  to satisfy the requirement for an angle of 25 degrees between the 

strut and the tie. Also, the internally determinate strut-tie model reflecting a truss mechanism was 

used for the beams with 14.2/ za . In the application of the FIB (2010), the internally 

determinate strut-tie models of Figs. 2(a) and 2(b) reflecting arch and truss mechanisms were used 

for the beams with 5.0/ za  and 0.2/ za . Also, the internally indeterminate strut-tie model of 

Fig. 2(c) reflecting the combined arch and truss mechanisms was used for the beams with 

0.2/5.0  za . The support reactions in the strut-tie models of Figs. 2(a)-2(c) were determined 

from Eq. (4). Since the same procedure as the one illustrated in the following section “Strength 

Evaluation by Present Approach” was employed, the illustration of the strength evaluation 

procedure by using an internally indeterminate strut-tie model is omitted here. 

 

4.3 Strength evaluation by present approach 
 

For the evaluation of the ultimate strength of the deep beams by the present approach, the ACI 

318M-11's strut-tie model approach associated with the indeterminate strut-tie model of Fig. 2(c), 

reaction distribution ratio of Eq. (4), and load distribution ratio of Eq. (10) was employed. Since  
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Fig. 7 Strength evaluation procedure of two-span continuous deep beams using indeterminate strut-rie model 

 

 

the indeterminate strut-tie model reflects both the arch and truss load transfer mechanisms at the 

same time, the ultimate strength of a deep beam failing in shear was decided according to the 

sequential failure of both the load transfer mechanisms. The flowchart for evaluating the ultimate 

strength by using the indeterminate strut-tie model is given in Fig. 7. 

In the following, the detailed procedure for evaluating the ultimate strength of the deep beams 

by the present approach is illustrated with Beam 1CB2, one of the deep beams tested by Subedi 

(1998). The reinforcement layout and the selected indeterminate strut-tie model of the beam are 

shown in Figs. 8(a) and 8(b). In the model, the horizontal ties at the upper and lower chords were 

placed at a distance of clear cover from the top and bottom of the beam. Based on the primary 

design variables ( da / = 1.351, cf  = 56.5 MPa , b / = 0.312) of the beam, the reaction 

distribution ratio   and load distribution ratio   of the indeterminate strut-tie model were 

determined from Eqs. (4), (10) and (11) as follows 

(%)0.37370.034.0)3351.1(011.0 2   

746.1312.0
3

1
85.1   

  (%)5.42425.06.0746.1351.1
5.56

25
  
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(a) Reinforcement details of beam 1CB2 

 
 

(b) Indeterminate strut-tie model for beam 1CB2 

 

          
 

               
 

(c) Maximum widths of struts determined by reaction/load distribution ratios and nodal zone shapes 

 

 
 

(d) Maximum cross-sectional widths (areas) of struts and ties  

Fig. 8 Indeterminate strut-tie model of continuous deep beam 1CB2 for implementing present approach 

371



 

 

 

 

 

 

H.S. Chae and Y.M. Yun 

 

 
 

(a) Required cross-sectional widths (areas) 

of struts and ties at the first failure 

 

 

 
 

(b) Remaining capacity of struts and ties 

after the first failure  

 

 
 

(c) Required cross-sectional widths (areas) 

of struts and ties at the second failure  

 

 

 

 
 

(d) Unstable strut-tie model 

after the second failure  

 

 
 

(e) Strength verification of nodal zone at node 7  

Fig. 9 Strength evaluation of continuous deep beam 1CB2 by present approach 
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Table 2 Strength evaluation of beam 1CB2 by present approach 

(a) Struts and ties at the first failure 

Element 

No. 

Element 

Type 
s  cf  (MPa)  cuf (MPa)  reqF (kN) reqw ( mm) provw ( mm) reqprov ww /  Fail/Safe 

S1 Strut 1.00 56.50 56.50 20.3 7 41 5.752 O 

S2 Strut 0.75 56.50 42.38 34.8 16 67 4.060 O 

S3 Strut 0.75 56.50 42.38 66.8 32 36 1.130  O 

S4 Strut 0.75 56.50 42.38 34.8 16 29 1.777 O 

S5 Strut 0.75 56.50 42.38 59.3 28 44 1.556 O 

S6 Strut 0.75 56.50 42.38 113.8 54 53 0.986 X 

S7 Strut 0.75 56.50 42.38 59.3 28 41 1.457 O 

Element 

No. 

Element 

Type 
t  yf (MPa)  

cuf (MPa)  reqF (kN) reqsA ,

( 2mm ) 

provsA ,

( 2mm ) 
reqsprovs AA ,, /  Fail/Safe 

T1 Tie 1.00 493.00 493.00  32.5 66 201 3.049 O 

T2 Tie 1.00 493.00 493.00  67.0 136 201 1.478 O 

T3 Tie 1.00 340.00 340.00  28.3 83 142 1.698 O 

T4 Tie 1.00 340.00 340.00  48.3 142 142 0.997 O 

T5 Tie 1.00 493.00 493.00  75.0 152 201 1.321 O 

T6 Tie 1.00 493.00 493.00  95.3 193 201 1.040 O 

T7 Tie 1.00 493.00 493.00  60.8 123 201 1.631 O 

Effective Strength of Strut cscu ff   ; Effective Strength of Tie ytcu ff  ;
reqF = Cross-sectional Force under Experimental Failure Load; Required 

Strut Width cureqreq bfFw / ; Required Tie Area cureqreqs fFA /,  ; 
provw = Strut Width Provided from Beam Geometry; O: Safe; X: Fail 

(b) Struts and ties at the second failure 

Element 

No. 

Element 

Type 
s  cf  (MPa)  cuf (MPa)  reqF (kN) reqw ( mm) provw ( mm) reqprov ww /  Fail/Safe 

S1 Strut 1.00 56.50 56.50 20.3 7 34 4.766 O 

S2 Strut 0.75 56.50 42.38 34.8 16 51 3.075 O 

S3 Strut 0.75 56.50 42.38 66.8 32 5 0.145 X 

S4 Strut 0.75 56.50 42.38 34.8 16 13 0.791 X 

S5 Strut 0.75 56.50 42.38 139.5 66 16 0.242 X 

S7 Strut 0.75 56.50 42.38 139.5 66 13 0.200 X 

S8 Strut 1.00 56.50 56.50 14.1 5 41 8.251 O 

Element 

No. 

Element 

Type 
t  yf (MPa)  

cuf (MPa)  reqF (kN) reqsA ,

( 2mm ) 

provsA ,

( 2mm ) 
reqsprovs AA ,, /  Fail/Safe 

T2 Tie 1.00 493.00 493.00 67.0 136 67 0.492 X 

T3 Tie 1.00 340.00 340.00 28.3 83 59 0.713 X 

T4 Tie 1.00 340.00 340.00 113.4 334 2 0.005 X 

T5 Tie 1.00 493.00 493.00 75.0 152 51 0.335 X 

T6 Tie 1.00 493.00 493.00 95.3 193 10 0.054 X 

T7 Tie 1.00 493.00 493.00 14.1 29 79 2.774 O 

reqF = Cross-sectional Force under Experimental Failure Load; provw = provw (at First Failure)-0.986× reqw (at First Failure); 

, ,s prov s provA A (at First Failure)-0.986× ,s reqA (at First Failure), See Figs. 9(a) and 9(b) 
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Table 2 Continued (c) Nodal zones 

Node 

No. 

Node 

Type 
n  cf  (MPa)  cuf

(MPa)  
reqF (kN) reqw ( mm) provw ( mm) reqprov ww /  Fail/Safe 

1 CCT 0.80 56.50 45.20 

R 66.0 29 150 5.14 O 

S2 34.5 
44 144 3.29 O 

S3 66.2 

T5 74.3 33 60 1.82 O 

4 CCT 0.80 56.50 45.20 

V 178.3 79 150 1.90 O 

S1 20.1 9 41 4.64 O 

S3 66.2 
44 65 1.48 O 

S4 34.5 

S5 59.2 
75 97 1.30 O 

S6 112.2 

T1 32.0 14 41 2.92 O 

7 CCC 1.00 56.50 56.50 

V 112.4 40 75 1.89 O 

S6 112.2 
60 95 1.58 O 

S7 59.2 

Effective Strength of Nodal Zone cncu ff   ; reqF = Cross-sectional Force under 99.1% of Experimental Failure Load; R= Support Reaction;  V= Applied 

Shear Force (= 99.1% of Experimental Failure Load)); 
provw = Node Width Provided from Beam Geometry; Required Node Width cureqreq bfFw /  

 

 

After determining the reactions 1R (= P , P = external load applied vertically) and the 

cross-sectional force of the vertical steel tie wP (= P ), the maximum widths (or areas) of the 

struts and ties shown in Fig. 8(d) were determined by considering the shapes of nodal zones, the 

reaction distribution ratio, and load distribution ratio, as shown in Fig. 8(c). The shapes of nodal 

zones were constructed based on the ACI 318M-11 that considers the geometry of strut-tie model 

and the size of loading and bearing plates.  

Conducting the strength prediction in accordance with the flowchart of Fig. 7, the initial failure 

of the indeterminate strut-tie model, as explained in Fig. 9(a) and Table 2(a), was caused by the 

concrete strut S6 of an arch mechanism at a load of 177.4kN (98.6% of its experimental failure 

load). After the initial failure, the indeterminate strut-tie model became the determinate one that 

was still able to transfer a fraction of the applied load to the supports by other struts and ties of a 

truss mechanism, as shown in Fig. 9(b). After the initial failure, the element T1 having a tensile 

cross-sectional force before the initial failure was renamed as concrete strut S8 since it was under 

compression. When an additional load of 0.9kN (0.5% of its experimental failure load) was 

applied, the second failure of the strut-tie model occurred due to the steel tie T4, as shown in Fig. 

9(c) and Table 2(b). After the second failure, the strut-tie model became an unstable truss structure 

that could not carry any additional load, as shown in Fig. 9(d). At a load of 178.3kN(=177.4+0.9, 

99.1% of its experimental failure load) that the indeterminate strut-tie model could carry to the 

utmost limit, the strength of nodal zones was examined by the ACI 318M-11's strut-tie model 

approach, as shown in Fig. 9(e). As checked in Fig. 9(e) and Table 2(c), the strength of the nodal 

zones was sufficient to transfer the strut and tie forces through the nodal zones. Therefore, 99% of 

the experimental failure load of Beam 1CB2 was predicted as the ultimate strength of the beam by 

the present approach. 
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Fig. 10 Ultimate strength classified by shear span-to-effective depth ratio 
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Table 3 Ultimate strength evaluated by present and conventional approaches 

(a) Ultimate strength 

Investigators 

Conventional approach ( ./ caltest VV ) Strut-Tie model approach ( ./ caltest VV ) 

Zsutty 

(1971) 

CEB-FIP 

(1993) 

ACI  

318-99 

(1999) 

EC2 

(2004) 

AASHTO 

-LRFD 

(2010) 

FIB 

(2010) 

AASHTO 

-LRFD 

(2010) 

ACI  

318M-11 

(2011) 

Present 

study I 

Present 

study II 

Rogowsky et al. 

(1986) 
1.40 1.16 1.54 1.53 1.73 1.62 1.92 1.37 1.16 1.19 

Ashour (1997) 1.37 1.31 1.27 1.26 1.82 1.48 1.88 1.23 1.09 1.22 

Subedi (1998) 1.27 1.12 1.10 0.79 - 1.98 3.34 1.72 1.31 1.51 

Asin (1999) 1.05 0.85 1.17 0.72 1.15 1.64 1.75 1.47 1.20 1.26 

Yang et al. (2007) 1.02 1.29 1.15 1.20 - 1.68 1.24 1.16 1.08 1.19 

Yang et al. (2007) 1.18 1.27 1.29 1.82 - 1.35 0.93 0.97 0.92 0.92 

Total 

Mean 1.21 1.15 1.29 1.23 1.54 1.61 1.70 1.31 1.12 1.20 

STDEV 0.31 0.36 0.38 0.57 0.51 0.33 0.80 0.38 0.23 0.28 

COV(%) 25.2 31.3 29.8 46.3 33.3 20.6 46.8 28.9 20.4 23.2 

Present Study I: Strength evaluations by using Fig. 2(c) model, Eq. (4), Eq. (10), and ACI 318M-11 strength parameters; 

Present Study II: Strength evaluations by using Fig. 2(c) model, Eq. (4), Eq. (10), and FIB strength parameters 

 

(b) Ultimate strength classified by shear span-to-effective depth ratio 

Design variables 

Conventional approach ( ./ caltest VV ) 
Strut-Tie model approach 

( ./ caltest VV ) 

Zsutty 

(1971) 

CEB-FIP 

(1993) 

ACI  

318-99 

(1999) 

EC2 

(2004) 

AASHTO 

-LRFD 

(2010) 

FIB 

(2010) 

AASHTO 

-LRFD 

(2010) 

ACI  

318M-11 

(2011) 

Present 

study I 

0.2/ da  

(38*) 

Mean 1.10 1.25 1.13 1.18 - 1.64 1.67 1.26 1.13 

COV(%) 19.0 28.6 22.0 49.6 - 19.2 52.4 27.5 21.1 

02.d/a   

(20) 

Mean 1.42 0.95 1.59 1.35 1.54 1.55 1.77 1.40 1.12 

COV(%) 24.9 29.1 26.4 39.6 33.3 23.5 36.0 30.4 19.5 

*: number of specimens 

 

(c) Ultimate strength classified by concrete strength 

Design variables 

Conventional approach ( ./ caltest VV ) Strut-tie model approach ( ./ caltest VV ) 

Zsutty 

(1971) 

CEB-FIP 

(1993) 

ACI  

318-99 

(1999) 

EC2 

(2004) 

AASHTO 

-LRFD 

(2010) 

FIB 

(2010) 

AASHTO 

-LRFD 

(2010) 

ACI  

318M-11 

(2011) 

Present 

study I 

MPafc 35  

(32*) 

Mean 1.16 1.16 1.26 1.18 1.47 1.62 1.65 1.35 1.16 

COV(%) 20.3 30.7 28.4 45.3 34.7 20.4 34.7 21.0 18.6 

MPafc 35  

(26) 

Mean 1.28 1.13 1.32 1.31 1.62 1.59 1.77 1.25 1.08 

COV(%) 28.7 32.8 31.7 46.8 33.0 21.3 57.3 37.6 22.3 

*: number of specimens 
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Table 3 Continued (d) Ultimate strength classified by flexural reinforcement ratio 

Design variables 

Conventional approach ( ./ caltest VV ) Strut-tie model approach ( ./ caltest VV ) 

Zsutty 

(1971) 

CEB-FIP 

(1993) 

ACI  

318-99 

(1999) 

EC2 

(2004) 

AASHTO 

-LRFD 

(2010) 

FIB 

(2010) 

AASHTO 

-LRFD 

(2010) 

ACI  

318M-11 

(2011) 

Present 

study I 

4.0/ b  

(33*) 

Mean 1.23 1.16 1.28 1.27 1.71 1.57 1.72 1.23 1.09 

COV(%) 29.0 37.7 32.0 49.2 31.2 22.6 45.2 33.3 22.8 

4.0/ b  

(25) 

Mean 1.19 1.13 1.30 1.19 1.39 1.67 1.68 1.41 1.17 

COV(%) 18.7 20.2 27.3 41.7 33.7 17.8 49.8 22.2 17.0 

*: number of specimens 

 

 

4.4 Results of strength evaluation 
 

The ultimate strength of the 58 deep beams evaluated by the present and conventional 

approaches is summarized in Table 3. The ratios of the experimental failure strength to the 

evaluated strength by the experimental shear strength models of Zsutty (1971), ACI 318-99 

(1999), and EC2 (2004) were 1.21, 1.29, and 1.23, respectively, underestimating the experimental 

failure strength. The coefficients of variation by the experimental models were 25.2%, 29.8%, and 

46.3%. The ratios of the experimental failure strength to the evaluated strength by the theoretical 

shear strength models of CEB-FIP (1993) and AASHTO-LRFD (2010) were 1.15 and 1.54, 

respectively. The coefficients of variation by the theoretical models were 31.3% and 33.3%, 

relatively large leading to questions about their applicability to structural design. The strut-tie 

model approaches of the FIB (2010), AASHTO-LRFD (2010), and ACI 318M-11 (2011) also 

underestimated the experimental failure strength by the ratio of 1.61, 1.70, and 1.31, respectively. 

The coefficients of variation by the design codes were 20.6%, 46.8%, and 28.9%, respectively. The 

ratio of the experimental failure strength to the evaluated strength and the coefficient of variation 

obtained by the present approach associated with the ACI 318M-11’s effective strength values of 

struts and nodal zones were 1.12 and 20.4%. The present approach yielded better results than the 

conventional approaches, proving the necessity of an appropriate strut-tie model and its 

corresponding load distribution ratio for the design of continuous deep beams.  

To examine the effects of the primary design variables on the ultimate strength and behavior of 

the deep beams, the strength analysis results were classified and compared according to the 

primary design variables. The strength analysis results classified in accordance with the shear 

span-to-effective depth ratio a/d are shown in Fig. 10 and Table 3(b). The experimental shear 

strength model of Zsutty (1971), ACI 318-99 (1999), and EC2 (2004) evaluated the ultimate 

strength conservatively more and more as the ratio of a/d became greater. Also, the coefficient of 

variation became greater as the ratio of a/d became greater. These imply that the experimental 

shear strength models may not be implemented appropriately in the design of continuous deep 

beams with relatively large ratio of a/d. The theoretical shear strength model of the CEB-FIP 

(1993) evaluated the ultimate strength critically as the ratio of a/d became greater. Unlike the 

ultimate strength evaluated by the experimental and theoretical shear strength models, the ultimate 

strength evaluated by the strut-tie model approaches of the current design codes was inaccurate in 

the entire range of a/d. This seems to result from the use of an incorrect load distribution ratio and 

the use of only a simple determinate arch or truss mechanism. The present approach yielded 
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accurate and consistent strength analysis results throughout the entire range of a/d by overcoming 

the problems existing in other approaches. 

The strength analysis results classified in accordance with the concrete strength cf   are shown 

in Table 3(c). Also, the strength analysis results classified according to the flexural reinforcement 

ratio   are shown in Table 3(d). The present approach evaluated the ultimate strength of the 

deep beams comparatively well by properly reflecting the effect of the concrete strength and 

flexural reinforcement ratio that influences the depth of rectangular stress block, the 

cross-sectional areas of inclined struts, and the stiffness of steel ties on the nonlinear structural 

analyses of indeterminate strut-tie models conducted for determination of their load distribution 

ratios. 

 

 
5. Conclusions 

 

For the rational strut-tie model design of continuous reinforced concrete deep beams, an 

appropriate strut-tie model reflecting true load transfer mechanisms of the deep beams must be 

presented, and the primary design variables influencing the ultimate strength and behavior of the 

deep beams must be deliberated in the design process as well. In this study, a simple internally and 

externally indeterminate strut-tie model that reflects the characteristics of the ultimate strength and 

behavior was proposed for the design of continuous reinforced concrete deep beams. In addition, 

the equation for the load distribution ratio transforming the proposed indeterminate strut-tie model 

into an internally determinate model was proposed to help structural designers help structural 

designers conduct the practical strut-tie model design of the deep beams by using the strut-tie 

model approaches of current design codes.  

To verify the validity of the present study, the ultimate strength of 58 two-span continuous 

reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11 and FIB 

strut-tie model approaches associated with the proposed indeterminate strut-tie model and load 

distribution ratio. The strength analysis results were also compared with those estimated by the 

experimental shear strength equation, the current design codes of strut-tie model approaches, and 

the design codes that were based on experimental and theoretical shear strength models.  

The present approach evaluated the ultimate strength of the continuous deep beams fairly 

accurately compared with those by other approaches. In addition, the present approach reflected 

the effects of the primary design variables on the ultimate strength of deep beams consistently and 

accurately. The present study may allow the use of an indeterminate strut-tie model with an 

appropriate load distribution ratio for the rational design of continuous reinforced concrete deep 

beams, and provides a proper basis for structural design by reflecting the effects of primary design 

variables on the ultimate strength and behavior of deep beams. 
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