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Abstract. The present paper aims at developing a method to accommodate multi-surface concrete
plasticity from the point of view of a consistency concept applied to general tangent operators. The idea
is based on a Taylor series expansion of the actual effective stress at the stress point corresponding to the
previous accumulated true stresses plus the current increment values, initially taken to be elastic. The
proposed algorithm can be generalized for any multi-surface criteria combination and has been tested
here for typical cement-based materials. A few examples of application are presented to demonstrate the
effectiveness of the multi-surface technique as used to a combination of Rankine and Drucker-Prager
yield criteria.
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1. Introduction

Elastoplastic problems are typically worked out by finite elements using Newton’s like methods,
in which a number of linear problems are sequentially solved. For rate-independent plasticity, the
most commonly adopted numerical technique is the return mapping method proposed by Wilkins
(1964). The classic operator methodology is based on an elastic prediction and a plastic correction.
Different formulations have been proposed and extended to several constitutive equations models,
comprising inelastic behavior, as can be seen in Krieg and Krieg (1977), Simo and Taylor (1985),
Hofstetter et al. (1993) and Crisfield (1997).

Many works have used typical return mapping ideas in elastoplastic problems. Peng and Chen
(2012) generalized the return mapping algorithm for isotropic plasticity in the principal stress
space and Kassiotis et al. (2012) studied the stability and convergence parameters of particular
plasticity cases. Even though these algorithms can be efficient for certain criteria, an adaptation
procedure is still required to model materials with pronounced differences between compression
and tension behavior. Such a behavior is found in cement-based materials and cannot be described
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by single surface plasticity models.

Concrete behavior in compression may be described by a single yield surface, whereas for
tension, alternative models need to be used. Most of the research involving concrete models
combines a single yield surface with a fracture model (Galic et al. 2011, Cervenka and
Papanikolaou 2008, Grassl and Jirasek 2002, Benkemoun et al. 2011), but evidence has shown that
degradation due to tensile cracking can be negligible when tensile cracking is not yet fully
developed (Feenstra and De Borst 1995).

As an alternative procedure, Miers and Telles (2004) extended the concept of tangent operator
without need for any yield criteria particularization. Although developed for boundary element
analysis, this concept is the basis of the present work, which is here expanded to implicit
elastoplastic finite element solution schemes including multi-surface criteria.

In this paper a return mapping algorithm for multi-surface plasticity is presented. The algorithm
is quite general and can be specified including different yield criteria. Herein, Rankine and
Drucker-Prager surfaces, commonly used in concrete plasticity problems, have been adopted to
solve the examples discussed.

2. Constitutive equations

Within the context of small strains, isotropic material behavior and applying standard Cartesian
tensor notation for Roman letter subscripts, the total strain tensor &;; is assumed to be decomposed

into elastic and plastic components
— o8 P
& = &; T & (1

where & is the elastic strain tensor and ¢ the plastic strain tensor.

In general, plastic behavior existence depends on the following condition
F(o,.k)=f(o,)-w(k)=0 ()
where f(O'ij)is a scalar function of stress that can also be considered as an equivalent or

effective stress o,, o is the stress tensor, k is the work hardening parameter and ¥

represents here the uniaxial yield stress.
Considering the work hardening hypothesis, an effective plastic strain & can be defined as an
equivalent strain whose increment produces an increase in the plastic strain energy as

odg! =o,de’ =dk (3)
To obtain the stress-strain relationship, this hardening hypothesis can be used as follows
do, =C,, (de, —de}) (4)

where C,, denotes the fourth-order tensor of elastic constants.

Within the context of associated plasticity, the normality principle can be written as
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oF
def =di—o (5)
oo,
in which dA is a proportionality factor known as plastic multiplier. The substitution of Eq. (5) in

Eq. (4) results in

do, =C,, (dg, —a,d2) (6)
Where
am=25' (7
oo

The flow function differentiation leads to
d
szaideij—d—l:dkzO @®)
or
dy o

dF =a,do; —EO'Udgij =0 )

Applying the normality principle, one obtains

dy
8,do, —— ~0,8,d2=0 (10)

Substituting Eq. (6) in the above expression and solving for dA results in

1
dl=—'aijcijk|d8kl (11)
4
where
. dy
V= a‘ijCijkI a +d_ko-ijaij (12)

and since f (o) 1is homogeneous of first order,

of
o, —=f(oy) =0, 13)
i
Substituting Egs. (3)-(13) in Eq. (12)
\ dy
Vo= aijCijkI & +d_gp (14)

e

where
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dy '
7 =H (15)

e

with H' being the slope of the uniaxial curve plotted as stress versus plastic strain. Here,
negative strain-softening behavior can be accommodated, provided scale dependency is properly
taken into account (Lackner and Mang 2004).

Eq. (11) can now be used to substitute for dA in Eq. (6) to generate the required incremental
stress-strain relations

do, =Cj de, (16)

ijki
For improved computer efficiency, Eq. (16) can be further manipulated to allow for
computation of true stress increments as a function of “elastic” or fictitious stress increments doy

in the form

ijmn ~"mn ~"op

1
da”.=da§—;c a,a,do, (17)

Where

dof =C,, ds, (18)

ijki
3. Implementation procedures

3.1 Single surface criteria

Starting with the general conditions describing the plastic behavior, computed values of stress

and internal variables must satisfy a Taylor series expansion of the consistency condition described
by Eq. (2). Hence,

=F(f,p) Ae+6F(—f,y/) A&l +..=0 (19)
gij+Ac; 6‘9”!) )
aij+Ao'§

F(f.p)

oij+Acj

where AO'; is the current (trial) “elastic” stress increment, o is the accumulated true stress
from the previous load history and iterations and Agi;) is the current plastic strain increment.
Substituting Eq. (2) for the derivative of F in Eq. (19) leads to
oF(f,y) of oy oy

P P p . “ikm% T 4
0g; Og;  0¢g; og;

(20)

And
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oy :61//.asep:H.ﬁ 1)
og; 0g! Og o,

U]

Thus, substituting Eqs. (20) and (21) in Eq. (19) lead to

o,
F(fal//)gwo.e _(Cijklakl +H '_”]Agif =0 (22)
ij ij O-e
So,
o,
F(F.w)l, ... —(Cijk,akI +H '—'J a;A1=0 (23)
ij ij o-e
or remembering Eq. (13)
FOE)], 0 — (a,Cua, +H')AL=0 (24)
Finally, Eq. (24) can be reordered
F( f ? W) o +AC;
= — (25)
(aijcijkl a, + H ) oy +0
and the current true stress increment AO'U- , to be accumulated, can be calculated as
Ao, =Ac; —AAC,, a, o+ (26)
For the new iteration, adopting d; =C,, a, , the plastic multiplier is defined as follows,
F( f 2 l//) o +AC;
AM=—"""—7- 27
(a,d,+H")

Ty +Aa”

Iterations are carried out until F(f,y)=0 is obtained within a prescribed tolerance.

3.2 Multi-surface criteria

Solving the problem for two surfaces, the previous equations can be rewritten assuming that
there are two yield conditions F (f,y,)and F,(f,,y,) which must be satisfied simultaneously.
Hence, considering that the plastic strain increment can be defined as

Asd =alal +aar’ =(Ag) +(Ag)) (28)

the general yield condition F,( fa, ¥,) can be expanded in Taylor series as follows
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oF | oF 2
~ LT N - (AP F +..=0
lojj+Acy; a|o'ij+AO'ij + a(gijp )1 Uij+Ao-§ ( 8” ) + a(gijp )2 aij+Ao-§ ( 8” ) + (29)

But, similarly to Eq. (20), one has (summation not implied over repeated Greek letter indices)

oF of oy « H,
= VAR —=-Cy(a,) -—%0, (30)
o) o) o) T () T
where O,; stands for the Kronecker delta symbol.
Thus,

~

. H,
F oy +A0% _(Cijkl(akl) +—57056, j’(Agijp)l -

0‘|0'iJ+Aa,j - a (o_e)l ij7al

| G31)
o H
[Cijkl (akl) +—azo-ij§a2j : (AgijP )2 =0
(o)
or
« H,
Fa|0ij+Mij = FaL,”_Mgﬁ _(Cijkl (akl) (aij)l +(O_—)lo-ij§al(aij)lj'(Aﬂ’)l -
| : (32)
o H
(Cijkl (akl ) (aij )2 + ﬁaijé‘aZ (aij )ZJ : (Al)z =0
which provides
Fa oy +h0% _(Cijkl (akl )a (aij )1 + H;é‘a])'(Aﬂ“)l -
(33)

« 2 ,
(Cijkl (akl) (aij) +Ha5a2)'(Aﬂ“)2 =0
Therefore, one obtains the following system of equations for the plastic multipliers

(00 ) 1) (a2 (@) (&) ) (a2 =0 o
(0 ()} (92 (@) () ) (a2) =0

and the current true stress increment Ao, to be accumulated, can be calculated as

g, =0y [ (44) (0,) +(42)' (4, )]

F

1

F

2

(35)

e
Tjj +Ao—ij

As before, for each new iteration, system of Eq. (34) is solved again for (A1) and(AZ)" until
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approximate satisfaction of the yield conditions is observed.
3.3 Concrete multi-surface plasticity

Concrete plasticity is commonly based on two different yield criteria, simultaneously applied.
These are Rankine (Galic et al. 2010) for (tension) positive stress limitation, ¥ = f, - uniaxial

tensile strength, and Drucker-Prager (Lackner et al. 2002) for compression, ¥ = f, - uniaxial
compressive strength; they are defined as

in 6
Rankine: /3, [cose—sinf
3

Drucker-Prager: apfl, +,8\/I—1//(k) =0 (37)

The stress invariants are calculated by

}'—g—w(k):o (36)

l, =0y (38)
1
3L=288, (39)
2
_Zg Hzlsinfl _i i gﬁ (40)
6 3 24, 6

. . | 1
in which S, =0 _?15”_ and J, =§sijsjkski.
Also, the Drucker-Prager parameters o and [ can be obtained by the following

expressions

xK—1
o=— 41)

\/§(2K—1)
V3 (2 1)

p= (42)
K
where the parameter x is a constant defined as
fbc
K= (43)

and f, represents the biaxial compressive stress.

Rankine criterion is generally used in terms of its formulation in the principal-stress space due
to its trivial geometric representation of three planes perpendicular to the reference axes. However,
since this formulation demands laborious transformation of stresses from the general reference
stress space to the principal-stress space (Lackner et al. 2002), it has not been adopted here.

In addition, another alternative criterion can also be adopted, as seen in the literature (Hofstetter
et al. 1993, Hellmich et al. 1999), to substitute Rankine's in the tension limitation range. This is the
Tension Cut-off criterion defined as follows
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Table 1 Multi-surface plasticity algorithm

1. One starts with the trial elastic stress Ao® assuming that the strain increment is elastic;
2. Initialize i = 0 (iteration number) and 0,,:° = 6, + AcS,;;
3. Calculate F; and F, and check convergence:
If F; <0 and F, < 0 — The trial elastic stress is the actual correct solution. Go to 7.
Elseif F; =0 or F, = 0 — Proceed as in a single surface algorithm for the surface activated during
the iteration.
Elseif F; >0 and F, > 0 — Proceed to the multi-surface algorithm below;

4. Calculate the plastic multiplier Akli and Akzi; _

5. Update solution 411" = 0p4q! — (AMY (A1) + ANZ' (d2)1);
6. Increase iteration counter: i =i+ 1 and go to 3.

7. End of algorithm.

I1 -y (k) =0 (44)
The above criterion includes the influence of compression stresses, in the other stress planes, to
simulate the tension cut-off behavior. Since this somewhat undesirable influence is not present in
Rankine's, the latter has been found preferable for actual approximation of concrete behavior under
mixed stress states.
Finally, the structure of the numerical solution algorithm at a generic load step n+1, considering
the discussed multi-surface criteria, is described in Table 1.

4. Results

In order to validate the technique presented, a simple example was first developed to test the
multi-surface plasticity formulation, in different stress situations, including the activation of two
yield criteria simultaneously. Then, a simulation of the Brazilian split cylinder test has been carried
out in plane strain, plane stress and in a full three-dimensional model. All examples have been
solved using a general finite element program developed in the Laboratory of Structures and
Materials of the Civil Engineering Programme of COPPE/UFRIJ (Ribeiro and Ferreira 2007).

4.1 Theoretical return mapping test example

To assess the return mapping algorithm of the multi-surface plasticity model, a simple example
was selected. The problem consists of a 3-D hexahedral geometry, measuring Im x 1m x Im,
simply supported over three faces and subjected to a plane stress condition, as depicted in Fig. 1.
Ideal plasticity has been assumed and solutions for different single step x and y prescribed
displacements have been obtained. The main purpose has been to elastically violate the
multi-surface (Rankine and Drucker-Prager) criterion under different 2-D stress conditions
obtained by varying the imposed values of the prescribed displacements. Material properties are
Young modulus 30.0 GPa, Poisson's ratio 0.2, compressive strength 30.0 MPa, tensile strength 3.0
MPa and biaxial compressive strength 36.0 MPa. The displacement imposed elastic solutions and
the respective converged elastoplastic final stresses can be seen in Fig. 2. In all cases, entirely
acceptable results, corresponding to satisfaction of the multi-surface criterion, have been obtained,
also including elastic stress points violating the multi-surface right at the intersection of the
Rankine and Drucker-Prager surfaces.
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Fig. 2 Elastic and elastoplastic solutions
4.2 Brazilian split cylinder test
The Brazilian split cylinder test is an experiment in which a cylindrical specimen is

diametrically compressed along its top and bottom generators until mid plane vertical diameter
normal splitting is identified. It is internationally considered a standard method for assessing the
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uniaxial tensile strength of concrete materials (e.g. Olesen et al. 2005). The loading of the cylinder
produces a tensile stress normal to the loading plane inducing a mode one tension crack observed
during the test (Rocco et al. 1999). Here, the multi-surface criterion has been used to model the
behavior of the cylinder, including the discussed Rankine and Drucker-Prager criteria. In addition,
since this is not a limit load analysis; i.e. the maximum load bearing, considerably higher than that
required for cracking the vertical diameter, is dictated by the resistance to the vertical compression
stresses, the experiment has been simulated by comparing the resultant applied load (or
displacement for that matter) versus progress of the plastic zone over the vertical diameter surface
area. Namely, the percentage of the diametral plane plastic area versus the total diametral plane
area has been used to predict the experimental splitting, via the elastoplastic multi-surface criterion.
Bearing in mind that the Rankine surface dominates the plastic zone evolution there, tension stress
limitation is seen actively present in the numerical simulation.

Due to symmetry, the finite element model considers only a quarter of the cylinder (Fig. 3) with
a 100.0 mm diameter ( D), a length (L) of 200.0 mm and a loading strip (2a) of 10.0 mm. A
threefold modeling strategy has been adopted, comprising plane strain, plane stress and
three-dimensional models. After some trial convergence tests, the final mesh for the
two-dimensional models was composed by 9405 four-node quadrilateral elements, as can be seen
in Fig. 4(a). For the three-dimensional model 90168 eight-node hexahedral elements were adopted
Fig. 4(b).

For the concrete material, a Young modulus of 30.0 GPa, a Poisson's ratio of 0.2, a tensile
strength of 2.0 MPa, a uniaxial compression strength of 30.0 MPa and a biaxial compression
strength of 36.0 MPa have been adopted. The loading strip is modeled as a linear elastic material
with a young modulus of 1.0 GPa. To simulate the vertical load applied to the loading strip,
vertical displacements at the top layer of the loading strip have been prescribed.

Fig. 5 shows the results of the split cylinder test for plane stress, plane strain and
three-dimensional formulations. The horizontal axis indicates the prescribed displacement and at
the average value of u=0.08 to 0.1 mm, the resultant vertical P load could be seen to match the

theoretical value P, (Olesen et al. 2005), defined as

3
fxD 2a)’ |2
P =" 1—(—) (45)
2L D
Hence, at roughly 0.09 mm and at the onset of the horizontal 100% response, the resultant
normalized vertical load was found to approach P/ P =1.0, as expected. As an illustration, the
corresponding displacement versus vertical load curve is depicted in Fig. 6 to confirm the vertical

compression load bearing capacity has not yet been achieved at P/ P =10.

The plastic zone evolution is presented in Figs. 7-9 for plane strain, plane stress and
three-dimensional problems. A monochromatic scheme is used to represent the different yield
criteria: light-gray represents the elastic zone, gray represents the Ducker-Prager plastic zone,
dark-gray indicates violation of the two criteria simultaneously and black represents the single
Rankine plastic zone. An interesting aspect of the three simulations is that over the mid length
section of the 3-D results, good plane strain agreement can be observed, whereas plane stress
behavior is clearly identified over the end extremities.

The plastic evolution for the three different models illustrate the exact moment when the
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expected actual crack opening occurs (about u=0.09 mm), under the approximate unit normalized
load, justifying the commonly observed splitting experimental results.

load

4—— loading strip

one quarter of the
4 concrete cylinder

Fig. 1 Brazilian split cylinder model

(b) Three-dimensional mesh-90168 hexahedral

(a) Two dimensional mesh-9405 quadrilateral
elements

elements
Fig. 4 Problem mesh
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Fig. 5 Displacement U versus progress of the plastic zone over the vertical diameter surface area



Ana Beatriz C.G. Silva et al.

340
P/Pe
— = Plane strain
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——Three-dimensional
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Fig. 6 Displacement u versus normalized vertical load P/P,
(a) Displacement u = 0.08 mm (b) Displacement u = 0.09 mm (c) Displacement u = 0.1 mm
Fig. 7 Results of plane strain problem
(a) Displacement u = 0.08 mm (b) Displacement u = 0.09 mm (c) Displacement u = 0.1 mm

Fig. 8 Results of plane stress problem
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. I

(a) Displacement u =0.07 mm (b) Displacement u = 0.08 mm

N l

(c) Displacement u =0.09 mm (d) Displacement u = 0.1 mm

Fig. 9 Results of the three-dimensional problem

5. Conclusions

In this work a return mapping algorithm applied to multi-surface concrete plasticity models has
been presented. The developed algorithm is quite general and can be specified to different
multi-surface yield criteria, including the alternative to simulate hardening/softening slopes, not
included in the examples discussed here. Different test examples illustrate applications of the
proposed technique to model concrete behavior under tensile and compressive stresses, using
Rankine and Drucker-Prager yield criteria.

The proposed algorithm employs a general description of the Rankine criterion, in the standard
current solution stress space, avoiding laborious transformations of stresses to the principal-stress
space. Hence, the Rankine criterion is implemented in line with any other general yield criterion.
Also, the proposed formulation demonstrated its robustness in the simulation of a problem, quite
complex as the Brazilian splitting test, indicating good convergence for the several combinations
of tensile and compressive stresses.
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