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Abstract.    The present paper aims at developing a method to accommodate multi-surface concrete 
plasticity from the point of view of a consistency concept applied to general tangent operators. The idea 
is based on a Taylor series expansion of the actual effective stress at the stress point corresponding to the 
previous accumulated true stresses plus the current increment values, initially taken to be elastic. The 
proposed algorithm can be generalized for any multi-surface criteria combination and has been tested 
here for typical cement-based materials. A few examples of application are presented to demonstrate the 
effectiveness of the multi-surface technique as used to a combination of Rankine and Drucker-Prager 
yield criteria. 
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1. Introduction 

 
Elastoplastic problems are typically worked out by finite elements using Newton’s like methods, 

in which a number of linear problems are sequentially solved. For rate-independent plasticity, the 
most commonly adopted numerical technique is the return mapping method proposed by Wilkins 
(1964). The classic operator methodology is based on an elastic prediction and a plastic correction. 
Different formulations have been proposed and extended to several constitutive equations models, 
comprising inelastic behavior, as can be seen in Krieg and Krieg (1977), Simo and Taylor (1985), 
Hofstetter et al. (1993) and Crisfield (1997). 

Many works have used typical return mapping ideas in elastoplastic problems. Peng and Chen 
(2012) generalized the return mapping algorithm for isotropic plasticity in the principal stress 
space and Kassiotis et al. (2012) studied the stability and convergence parameters of particular 
plasticity cases. Even though these algorithms can be efficient for certain criteria, an adaptation 
procedure is still required to model materials with pronounced differences between compression 
and tension behavior. Such a behavior is found in cement-based materials and cannot be described 
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by single surface plasticity models.  
Concrete behavior in compression may be described by a single yield surface, whereas for 

tension, alternative models need to be used. Most of the research involving concrete models 
combines a single yield surface with a fracture model (Galic et al. 2011, Cervenka and 
Papanikolaou 2008, Grassl and Jirasek 2002, Benkemoun et al. 2011), but evidence has shown that 
degradation due to tensile cracking can be negligible when tensile cracking is not yet fully 
developed (Feenstra and De Borst 1995). 

As an alternative procedure, Miers and Telles (2004) extended the concept of tangent operator 
without need for any yield criteria particularization. Although developed for boundary element 
analysis, this concept is the basis of the present work, which is here expanded to implicit 
elastoplastic finite element solution schemes including multi-surface criteria. 

In this paper a return mapping algorithm for multi-surface plasticity is presented. The algorithm 
is quite general and can be specified including different yield criteria. Herein, Rankine and 
Drucker-Prager surfaces, commonly used in concrete plasticity problems, have been adopted to 
solve the examples discussed. 

 
 

2. Constitutive equations 
 
Within the context of small strains, isotropic material behavior and applying standard Cartesian 

tensor notation for Roman letter subscripts, the total strain tensor ij is assumed to be decomposed 

into elastic and plastic components 

p
ij

e
ijij                                  (1) 

where e
ij  is the elastic strain tensor and p

ij  the plastic strain tensor.  

In general, plastic behavior existence depends on the following condition 

( , ) ( ) ( ) 0ij ijF k f k                               (2) 

where ( )ijf  is a scalar function of stress that can also be considered as an equivalent or 

effective stress e , ij  is the stress tensor, k  is the work hardening parameter and   

represents here the uniaxial yield stress.  

Considering the work hardening hypothesis, an effective plastic strain p

e  can be defined as an 

equivalent strain whose increment produces an increase in the plastic strain energy as 

p p

e e ij ijd d dk                                 (3) 

To obtain the stress-strain relationship, this hardening hypothesis can be used as follows 

 p

ij ijkl kl kld C d d                              (4) 

where ijklC  denotes the fourth-order tensor of elastic constants.  

Within the context of associated plasticity, the normality principle can be written as 
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p

ij

ij

F
d d 







                             (5) 

in which d  is a proportionality factor known as plastic multiplier. The substitution of Eq. (5) in 
Eq. (4) results in 

 ij ijkl kl kld C d a d                               (6) 

Where 

                    kl

ij

F
a







                                  (7) 

The flow function differentiation leads to 

0ij ij

d
dF a d dk

dk


                              (8) 

or  

 0p

ij ij ij ij

d
dF a d d

dk


                              (9) 

Applying the normality principle, one obtains 

0ij ij ij ij

d
a d a d

dk


                              (10) 

Substituting Eq. (6) in the above expression and solving for d  results in 

1

'
ij ijkl kld a C d 


                             (11) 

where  

' ij ijkl kl ij ij

d
a C a a

dk


                            (12) 

and since ( )ijf   is homogeneous of first order,  

( )ij ij e

ij

f
f  




 


                          (13) 

Substituting Eqs. (3)-(13) in Eq. (12)  

 ' ij ijkl kl p

e

d
a C a

d





                             (14) 

where  
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'
p

e

d
H

d




                                 (15) 

with 'H  being the slope of the uniaxial curve plotted as stress versus plastic strain. Here, 
negative strain-softening behavior can be accommodated, provided scale dependency is properly 
taken into account (Lackner and Mang 2004). 

Eq. (11) can now be used to substitute for d  in Eq. (6) to generate the required incremental 
stress-strain relations 

ep

ij ijkl kld C d                                (16) 

For improved computer efficiency, Eq. (16) can be further manipulated to allow for 

computation of true stress increments as a function of “elastic” or fictitious stress increments e

ijd  

in the form 

1

'
e e

ij ij ijmn mn op opd d C a a d  


                         (17) 

Where 

e

ij ijkl kld C d                             (18) 

 
 

3. Implementation procedures 
 
3.1 Single surface criteria 
        
Starting with the general conditions describing the plastic behavior, computed values of stress 

and internal variables must satisfy a Taylor series expansion of the consistency condition described 
by Eq. (2). Hence, 

0...
),(

),(),( 








p
ijp

ij e
ijij

e
ijijijij

fF
fFfF 







         (19) 

where 
e

ij  is the current (trial) “elastic” stress increment, ij  is the accumulated true stress 

from the previous load history and iterations and 
p

ij  is the current plastic strain increment. 

Substituting Eq. (2) for the derivative of F in Eq. (19) leads to 

( , )
ijkl klp p p p

ij ij ij ij

F f f
C a

  
   

   
    

   
                   (20) 

And 
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'
p

ije

p p p

ij e ij e

H
 

   
 

  
  

                         (21) 

Thus, substituting Eqs. (20) and (21) in Eq. (19) lead to 

( , ) ' 0e
ij ij

ij p

ijkl kl ij

e

F f C a H
 


 


   
 
 
 

                 (22) 

So, 

( , ) ' 0e
ij ij

ij

ijkl kl ij

e

F f C a H a
 


 


   
 
 
 

                (23) 

or remembering Eq. (13) 

 ( , ) ' 0e
ij ij

ij ijkl klF f a C a H
 

 


                      (24) 

Finally, Eq. (24) can be reordered 

 
( , )

'

e
ij ij

e
ij ij

ij ijkl kl

F f

a C a H

 

 








 


                       (25) 

and the current true stress increment ij , to be accumulated, can be calculated as 

e
ij ij

e

ij ij ijkl klC a
 

  


                             (26) 

For the new iteration, adopting ij ijkl kld C a , the plastic multiplier is defined as follows, 

  
( , )

'
ij ij

ij ij
ij ij

F f

a d H

 

 








 


                       (27) 

Iterations are carried out until ( , ) 0F f    is obtained within a prescribed tolerance. 
 
3.2 Multi-surface criteria 
 
Solving the problem for two surfaces, the previous equations can be rewritten assuming that 

there are two yield conditions 1 1 1( , )F f  and 2 2 2( , )F f   which must be satisfied simultaneously. 
Hence, considering that the plastic strain increment can be defined as 

   1 21 1 2 2p p p

ij ij ij ij ij
a a                               (28) 

the general yield condition ( , )F f    can be expanded in Taylor series as follows 

333



 
 
 
 
 

Ana Beatriz C.G. Silva et al. 

        0...
2

2

1

1















p

ijp
ij

p
ijp

ij e
ijij

e
ijij

e
ijijijij

FF
FF 












    (29) 

But, similarly to Eq. (20), one has (summation not implied over repeated Greek letter indices) 

     
 

 

'

ijkl kl ij
p p p

eij ij ij

F f H
C a

   
   


 

  

  
    

  
          (30) 

where   stands for the Kronecker delta symbol. 

Thus, 

 
 

 

 
 

  0
2

22

'

1

11

'























p
ijij

e

klijkl

p
ijij

e

klijkl

H
aC

H
aCFF e

ijijijij















        (31) 

or 

   
 

   

   
 

    022
22

'
2

11
11

'
1





































ijij

e

ijklijkl

ijij

e

ijklijkl

a
H

aaC

a
H

aaCFF e
ijijijij

    (32) 

which provides 

      

      

1 1'

1

2 2'

2 0

e
ij ij

ijkl kl ij

ijkl kl ij

F C a a H

C a a H



   



 

 

 


    

   
                (33) 

Therefore, one obtains the following system of equations for the plastic multipliers 

             1 1 1 21 2'

1 1 0e
ij ij

ij ij ij ijF d a H d a
 

 


                   (34) 

             2 1 2 21 2'

2 2 0e
ij ij

ij ij ij ijF d a d a H
 

 


         

and the current true stress increment ij , to be accumulated, can be calculated as 

       1 21 2

e
ij ij

e

ij ij ij ijd d
 

   


       
                (35) 

As before, for each new iteration, system of Eq. (34) is solved again for  1 and  2  until 
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approximate satisfaction of the yield conditions is observed. 
 
3.3 Concrete multi-surface plasticity 
 
Concrete plasticity is commonly based on two different yield criteria, simultaneously applied. 

These are Rankine (Galic et al. 2010) for (tension) positive stress limitation, tf   - uniaxial 

tensile strength, and Drucker-Prager (Lackner et al. 2002) for compression, cf   - uniaxial 
compressive strength; they are defined as 

Rankine: 1
2

sin
cos ( ) 0

33

I
J k


    

 
  

                  (36) 

Drucker-Prager: 1 2 ( ) 0I J k                         (37) 

The stress invariants are calculated by 

1 kkI                                      (38) 

2

1

2
ij ijJ S S                                    (39) 

3

2
1 3

2

1 3
sin

6 3 2 6

J

J

 
     

        

                         (40) 

in which 1

3
ij ij ij

I
S     and 3

1

3
ij jk kiJ S S S .  

Also, the Drucker-Prager parameters   and   can be obtained by the following 
expressions 

 
1

3 2 1










                             (41) 

 3 2 1





                              (42) 

where the parameter   is a constant defined as 

bc

c

f

f
                                  (43) 

and bcf  represents the biaxial compressive stress.  
Rankine criterion is generally used in terms of its formulation in the principal-stress space due 

to its trivial geometric representation of three planes perpendicular to the reference axes. However, 
since this formulation demands laborious transformation of stresses from the general reference 
stress space to the principal-stress space (Lackner et al. 2002), it has not been adopted here.  

In addition, another alternative criterion can also be adopted, as seen in the literature (Hofstetter 
et al. 1993, Hellmich et al. 1999), to substitute Rankine's in the tension limitation range. This is the 
Tension Cut-off criterion defined as follows 
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Table 1 Multi-surface plasticity algorithm 

1. One starts with the trial elastic stress Δોୣ assuming that the strain increment is elastic; 
2. Initialize i = 0 (iteration number) and σ୬ାଵ଴ ൌ σ୬ ൅ Δσ୬ାଵ

ୣ ; 
3. Calculate Fଵ and Fଶ and check convergence: 

If Fଵ ൏ 0 and Fଶ ൏ 0 ⟶ The trial elastic stress is the actual correct solution. Go to 7. 
Elseif Fଵ ൒ 0 or Fଶ ൒ 0 ⟶ Proceed as in a single surface algorithm for the surface activated during 
the iteration. 
Elseif Fଵ ൒ 0 and Fଶ ൒ 0 ⟶ Proceed to the multi-surface algorithm below; 

4. Calculate the plastic multiplier Δλଵ
୧
 and Δλଶ

୧
; 

5. Update solution σ୬ାଵ୧ାଵ ൌ σ୬ାଵ୧ െ ሺΔλଵ
୧
ሺdଵሻ୧ ൅ Δλଶ

୧
ሺdଶሻ୧ሻ; 

6. Increase iteration counter: i = i + 1 and go to 3. 
7. End of algorithm. 

 

1 ( ) 0I k                               (44) 

The above criterion includes the influence of compression stresses, in the other stress planes, to 
simulate the tension cut-off behavior. Since this somewhat undesirable influence is not present in 
Rankine's, the latter has been found preferable for actual approximation of concrete behavior under 
mixed stress states. 

Finally, the structure of the numerical solution algorithm at a generic load step n+1, considering 
the discussed multi-surface criteria, is described in Table 1.  

 
 

4. Results 
 
In order to validate the technique presented, a simple example was first developed to test the 

multi-surface plasticity formulation, in different stress situations, including the activation of two 
yield criteria simultaneously. Then, a simulation of the Brazilian split cylinder test has been carried 
out in plane strain, plane stress and in a full three-dimensional model. All examples have been 
solved using a general finite element program developed in the Laboratory of Structures and 
Materials of the Civil Engineering Programme of COPPE/UFRJ (Ribeiro and Ferreira 2007). 

 
4.1 Theoretical return mapping test example 
 
To assess the return mapping algorithm of the multi-surface plasticity model, a simple example 

was selected. The problem consists of a 3-D hexahedral geometry, measuring 1m x 1m x 1m, 
simply supported over three faces and subjected to a plane stress condition, as depicted in Fig. 1. 
Ideal plasticity has been assumed and solutions for different single step x and y prescribed 
displacements have been obtained. The main purpose has been to elastically violate the 
multi-surface (Rankine and Drucker-Prager) criterion under different 2-D stress conditions 
obtained by varying the imposed values of the prescribed displacements. Material properties are 
Young modulus 30.0 GPa, Poisson's ratio 0.2, compressive strength 30.0 MPa, tensile strength 3.0 
MPa and biaxial compressive strength 36.0 MPa. The displacement imposed elastic solutions and 
the respective converged elastoplastic final stresses can be seen in Fig. 2. In all cases, entirely 
acceptable results, corresponding to satisfaction of the multi-surface criterion, have been obtained, 
also including elastic stress points violating the multi-surface right at the intersection of the 
Rankine and Drucker-Prager surfaces. 
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uniaxial tensile strength of concrete materials (e.g. Olesen et al. 2005). The loading of the cylinder 
produces a tensile stress normal to the loading plane inducing a mode one tension crack observed 
during the test (Rocco et al. 1999). Here, the multi-surface criterion has been used to model the 
behavior of the cylinder, including the discussed Rankine and Drucker-Prager criteria. In addition, 
since this is not a limit load analysis; i.e. the maximum load bearing, considerably higher than that 
required for cracking the vertical diameter, is dictated by the resistance to the vertical compression 
stresses, the experiment has been simulated by comparing the resultant applied load (or 
displacement for that matter) versus progress of the plastic zone over the vertical diameter surface 
area. Namely, the percentage of the diametral plane plastic area versus the total diametral plane 
area has been used to predict the experimental splitting, via the elastoplastic multi-surface criterion. 
Bearing in mind that the Rankine surface dominates the plastic zone evolution there, tension stress 
limitation is seen actively present in the numerical simulation. 

Due to symmetry, the finite element model considers only a quarter of the cylinder (Fig. 3) with 
a 100.0 mm diameter ( D ), a length ( L ) of 200.0 mm and a loading strip ( 2a ) of 10.0 mm. A 
threefold modeling strategy has been adopted, comprising plane strain, plane stress and 
three-dimensional models. After some trial convergence tests, the final mesh for the 
two-dimensional models was composed by 9405 four-node quadrilateral elements, as can be seen 
in Fig. 4(a). For the three-dimensional model 90168 eight-node hexahedral elements were adopted 
Fig. 4(b). 

For the concrete material, a Young modulus of 30.0 GPa, a Poisson's ratio of 0.2, a tensile 
strength of 2.0 MPa, a uniaxial compression strength of 30.0 MPa and a biaxial compression 
strength of 36.0 MPa have been adopted. The loading strip is modeled as a linear elastic material 
with a young modulus of 1.0 GPa. To simulate the vertical load applied to the loading strip, 
vertical displacements at the top layer of the loading strip have been prescribed. 

Fig. 5 shows the results of the split cylinder test for plane stress, plane strain and 
three-dimensional formulations. The horizontal axis indicates the prescribed displacement and at 
the average value of u=0.08 to 0.1 mm, the resultant vertical P  load could be seen to match the 

theoretical value eP  (Olesen et al. 2005), defined as 

3
2 22

1
2
t

e

f D a
P

L D




 
  
  

  
                         (45) 

Hence, at roughly 0.09 mm and at the onset of the horizontal 100% response, the resultant 
normalized vertical load was found to approach 1.0eP P  , as expected. As an illustration, the 
corresponding displacement versus vertical load curve is depicted in Fig. 6 to confirm the vertical 
compression load bearing capacity has not yet been achieved at 1.0eP P  . 

The plastic zone evolution is presented in Figs. 7-9 for plane strain, plane stress and 
three-dimensional problems. A monochromatic scheme is used to represent the different yield 
criteria: light-gray represents the elastic zone, gray represents the Ducker-Prager plastic zone, 
dark-gray indicates violation of the two criteria simultaneously and black represents the single 
Rankine plastic zone. An interesting aspect of the three simulations is that over the mid length 
section of the 3-D results, good plane strain agreement can be observed, whereas plane stress 
behavior is clearly identified over the end extremities. 

The plastic evolution for the three different models illustrate the exact moment when the 
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