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Abstract.  Employing discrete elements for considering bond-slip effects in reinforced concrete 
structures is very time consuming. In this study, a new modified embedded element method is used to 
consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A 
comprehensive parametric study of RC slabs is performed to determine influence of different variables 
on structural behavior. The parametric study includes a set of simple models accompanied with 
complex models such as multi-storey buildings. The procedure includes the decrease in the effective 
stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental 
results demonstrates that the model is capable of considering the bond-slip effects in embedded 
elements. Results demonstrate the significant effect of bond-slip on total behavior of structural 
members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and 
reinforcement ratios are the parameters considered in the parametric study. Results revealed that the 
overall behavior of slab is significantly affected by bar diameter compared with other parameters. 
Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect 
in cyclic behavior is important. 
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1. Introduction 

 
Structural behaviour of reinforced concrete (RC) slabs is a function of many parameters. 

Compressive strength of concrete, yield strength of reinforcing bar and the interfacial effects 
influence the bearing capacity and also ductility of a reinforced concrete slab. Bond strength 
between steel reinforcement and concrete plays a major role in determining failure displacement. 
Several factors can affect the bond behavior between reinforcement and surrounding concrete. 
Reinforcement diameters, compression strength of concrete and concrete coverage for reinforcing 
steel, are important factors that affect the interaction behavior between reinforcement and concrete 
in reinforced concrete slabs. In addition, different loading conditions such as flexural and lateral 
loadings affect the behaviour of RC slab. Understanding the influence of these parameters can lead 
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to predict the ultimate behavior of RC slab and have an optimal methodology for design 
consideration. 

So far, many researches have been accomplished on the behavior of reinforced concrete slabs 
under different loading conditions. In these researches, the ultimate displacement and loading 
capacity of reinforced concrete slabs have been considered. 

Ingerslev (1923) is a pioneering researcher who analyzed the behavior of the concrete slab. He 
has presented the classic yield line theory. The yield-line theory is a method for predicting the 
ultimate load-carrying capacity of slabs. In this field, Wood (1961) has presented the theoretical 
yield line load for slabs subjected to a uniformly distributed load. 

In addition, Johansen and Johansen (1962) and Wood and Jones (1967) developed the yield line 
theory for different edge conditions. Bailey and Moore (2000) have investigated the structural 
behaviour of steel framed buildings withcomposite floor. They have presented the failure 
displacement of slab under fire condition. Yield stress and modulus of elasticity of reinforcement 
are the only parameters that have to be considered in their research for predicting failure 
displacement. 

Bailey (2001) presented the new design method that allows the membrane action of a 
composite floor slab to be estimated when subjected to a fire. Membrane action is in-plane 
behavior of reinforced concrete slabs that can considerably enhance the load-carrying capacity 
compared to estimates obtained from classical yield line theory. 

Elghazouli and Izzuddin (2004) have performed a parametric study with the use of new 
numerical analysis into the factors influencing the failure of lightly reinforced members. They 
have presented a direct relationship between the failure deflections and effective parameters. They 
have shown that the bond strength has considerable effect on failure displacement of a reinforced 
concrete slab. 

Gilbert (2005) investigates the influence of both normal and low ductility reinforcement on the 
failure mode and ductility of RC slabs. In addition, Gilbert and Sakka (2007) have conducted 
experimental tests to determine the influence of reinforcement ductility on the response of RC 
slabs. They have confirmed that slabs with low ductility reinforcement fail in a brittle manner by 
fracture of the tensile reinforcement. 

Shayanfar and Safiey (2008) developed an algorithmic procedure for producing the 
tension-stiffening curve of RC elements to be used in nonlinear finite element analysis of 
reinforced concrete structures with corroded reinforcements.  

Cashell et al. (2010a, b, 2011) have investigated the failure conditions of reinforced concrete 
slabs. The importance of interaction effect in reinforced concrete slabs is shown in their researches. 
Dominguez et al. (2010) utilized a new kind of finite solid element for prediction of realistic 
behavior of reinforced concrete structures with bond-slip.  

Chang et al. (2012) studied pullout behaviors of stiff fiber reinforced cementitious composites. 
They have reported that the embedded length and bond strength affect the load-loaded end 
displacement curves significantly. 

In addition, so far, different methods have been employed for considering bond-slip effects in 
finite element analysis. Arslan and Durmuş (2014) employed a rule based Mamdani type fuzzy 
logic model for prediction of slippage for lightweight concretes. They have finally reported fuzzy 
logic as a practical method for predicting slippage at maximum tensile strength and slippage at 
rupture of structural lightweight concretes. 

Recently, Golafshani et al. (2014) have used multi-gene genetic programming (MGP) 
technique for modeling the bond strength of ribbed steel bars in concrete. They have eventually 
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concluded that MGP model predictions of the bond strength are more reliable than those obtaining 
from the existing building codes equations.  

 
1.1 Research significance 
 
In this study, a modified embedded model is presented and a parametric study is performed to 

provide a fundamental insight into performance of RC slabs under static and cyclic loading. In 
addition, concrete frames with RC slabs are modeled to determine bond-slip effects in macro 
analysis. Verification of the proposed new method is undertaken by comparison against selected 
experimental results to illustrate the accuracy of modeling. 

Although the importance of interfacial effect between reinforcing bar and surrounding concrete 
has been considered in many previous works, it is essential to study the direct assessment of bond 
effect in structural behaviour of RC slabs. According to the simplicity of the proposed method, 
large complex composite structures such as multiple story building can be analyzed. 

 
 

2. Description of the modified reinforcing bar model 
 
The interfacial bond behavior of steel bars and surrounding concrete play a major role in 

structural behavior of RC members. Cashell et al. (2010a, b, 2011) have shown that the bond stress 
controls the failure displacement and strength capacity by enhancing the ductility of members. In 
addition, cracking pattern, strain localization in steel bar and energy dissipation of RC members in 
flexural condition are affected by the bond phenomena. Therefore, it is essential to consider the 
interfacial behavior in numerical investigation for proper and reliable results. There are two main 
techniques in finite element software to model steel bar in concrete structures. In an accurate 
model denoted by discreet element, steel bar and concrete bulk are modeled separately with two 
different elements and an interfacial layer is defined. The bond property can be assigned to 
interfacial layer. The second one is embedded element that consider perfect bond between steel bar 
and concrete. Although the discreet element is more accurate than the embedded technique, the 
convergence of the model is time-consuming and the procedure is not applicable for large systems. 
Thus, embedded element is usually used in the analysis of reinforced concrete members. In this 
study, a new efficient model introduced by Dehestani and Mousavi (2015) is employed to consider 
the bond effect in embedded method. The steel bar model is modified and the new elastic 
modulusis substituted with equivalent elastic modulus. The modified elastic modulus of steel 
reinforcing bar can be written as 

∗௦ܧ 	ൌ 	
∗

ೞ		ା	್
                                (1) 

Where ௬݂
∗ is the modified yield stress of steel bar which has presented by Belarbi and Hsu (1994). 

They have determined that the real yield strength of steel bar with surrounding concretecan be 
obtained from 

∗


	ൌ 1 െ 1.5 √


	൬
ೝ

൰
ଵ.ହ

                                            (2) 

where r is the reinforcement ratio and ݂ represent the tensile cracking stress of concrete at 
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cracking strain of about 8’ 10-5·es is the strain of the steel bar corresponding to the stress of ௬݂
∗ in 

steel bar model and ݁ is the effective bond strain of steel rebar which is obtained from 

 eୠ	 ൌ 	
ௗ


     (3) 

where	݀ is the maximum slip of the steel bar. Wu and Zhao (2012) have presented a precise 
estimation of the maximum slip, which is obtained as follows 

 ݀ ൌ 	
.ଷଵହା

ହ.ଵା.ଷଷଷଷ
 (4) 

where 

ܭ  ൌ ܭ	   ௦௧ (5)ܭ33	

ܭ  ൌ 	


ௗ್
 (6) 

௦௧ܭ  ൌ 	
ೞభ
ௌೞ

 (7) 

 is the area of one leg of the	௦௧ଵܣ .݀ are concrete cover and bar diameter, respectively	and ܥ
stirrup, ܥ is the minimum concrete cover and ܵ௦௧ is the stirrup spacing. 

There is no bond stress between concrete and rebar at the cracked section. When the bond 
strength disappears at a section, the strain and also the stress concentration occur. Concrete and 
steel bar have same strain at the middle point and hence, there is no slip at the middle point of the 
member. It can be deduced that the maximum slip is related to the half of the distance between two 
adjacent cracks. Thus, the transfer length l can be determined from 

 Sr(min) = 2l  (8) 

where Sr(min) is the length between two adjacent cracks, which is equivalent to the minimum crack 
spacing. The Eq. (9) shows the average spacing of flexural cracks given by CEB-FIP Model Code 
(1990). 

 ܵ ൌ 	
ଶ

ଷ
	ൈ 	

ௗ್
ଷ.	

  (9) 

Where reff is effective reinforcement ratio and can be obtained from: 

ݎ  ൌ 	
ೄ

,
  (10) 

where Ac,eff is the effective concrete area in tension which is usually obtained by simplified 
approaches, such as those in Eurocode 2 (1991) or CEB-FIP Model Code 1990 [13]. For 
rectangular cross sections, it can be obtained from 

 Ac,eff = 2.5(h - d)b  (11) 

where h is total depth of cross section, d  is effective depth of cross section and b is width of 
cross section. Borosnyoi and Balazs (2005) have evaluated the ratio between the minimum and the 
average crack spacing between 0.67 and 0.77. Now, the minimum crack spacing can be obtained 
and eventually the transfer length is given by 

 ݈ ൌ 	
.

ଶ
   (12)ݏ	
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Table 1 Details of validation specimen 

Specimen r (%) D (mm) ݂
ᇱ (Mpa) fct (Mpa) fsy (Mpa) esu 

R-F60-D6-A r1 = r2 = 0.24 6 32 2.1 553 0.04 
 
 
Table 2 Concrete damage plasticity (CDP) parameters 

Dilation angle  
(y) 

Flow potential 
ccentricity (Ò) 

σb0 /σc0 Kc 
Viscosity 

parameter (m) 
30 0.1 1.16 0.666 0.00001 

 
 
Table 3 Properties of control model 

Specimen r (%) D (mm) C (mm) ݂
ᇱ (Mpa) fct (Mpa) fsy (Mpa) 

Benchmark model r1 = r2 = 0.30 8 30 30.0 2.0 400 
 
 
3. Parametric study 

 
The analytical simulation with new proposed method is used to study the importance of 

bond-slip phenomenon in RC slabs and also overall behavior of the structures. RC slabs are 
studied in micro and macro models under different types of loading. Monotonic and cyclic 
loadings are applied to RC slabs in micro models and effect of different parameters is investigated. 
The loading curves for monotonic and cyclic models are shown in Fig. 2. Multistory buildings are 
also considered in macro models. 

 
3.1 Parametric study in micro modeling 
 
3.1.1 Static loading 
In order to determine the effective parameters, properties of the benchmark specimen with the 

same geometry of validation specimen (R-F60-D6-A) is used in several models. The models are 
varying with different coefficients of 0.75, 1.00, 1.25 and 1.50 relative to the key properties of 
benchmark specimen. Properties of benchmark model are shown in Table 3. Yield stress of steel, 
characteristic strength of concrete, diameter of reinforcing bar, concrete coverage of reinforcing 
bar and reinforcement ratio are the key parameters considered in this study.  

Fig. 3 presents the load-displacement responses of slabs for various characteristic strengths of 
concrete, where the other properties are kept constant. As depicted in Fig. 3, 74 mm of pushing 
displacement is applied to structures and corresponding forces are measured. Results indicate that 
with 50 percent of increase in characteristic strengths of concrete, load capacity increases about 18 
percent indicating an increase in static stiffness of slabs. 

In order to investigate the influences of various parameters such as bar diameter, characteristic 
strength of concrete, yield stress of steel and reinforcement ratio on maximum mid-span deflection, 
13 models have been constructed and analyzed. Load-displacement of each model with different 
values of parameters is obtained. To present the relative influence of parameters, overall results of 
models under base load (60 KN) are illustrated in Fig. 4. In order to facilitate the comparison 
between the results, the effective parameters and maximum deflection of the slab have been 
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S.S. Mousavi and M. Dehestani 

 Increase in stiffness of RC slabs is accompanied by increase in base shear of multistory 
building but the rate of increment is not significant. In fact it is mostly depends on properties of 
beams enclosing the slabs. 

 Due to simplicity of the proposed modified embedded method, it can be used in complex 
composite structures such as multistory building to obtain reliable and precise results in finite 
element model. 
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