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Abstract.    In this study, linear and non-linear response of a masonry wall that includes an opening was 
presented. The masonry wall was modeled with two-dimensional finite elements. Smeared crack model 
that includes the strain softening behavior was selected to the masonry wall material. For the numerical 
application, linear and non-linear analyses of the masonry wall were carried out using east-west and 
vertical components of the 1992 Erzincan and 2003 Bingöl earthquake acceleration records. Linear and 
non-linear solutions were compared each other. The displacement and stress results at the selected points 
of the masonry wall and crack propagation in the masonry wall were presented for both earthquake 
acceleration records. 
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1. Introduction 

 
A substantial percentage of Turkey’s surface area is located on a seismic belt; therefore the 

majority of Turkey’s population lives in structures that are located in first- and second- degree 
seismic zones. According to the building census performed by the State Institute of Statistics in the 
year 2000, masonry structures constitute 51% of the buildings in Turkey (Building Census 2000).  
Substantial number of these structures is in rural regions and the outskirts of cities. Masonry 
structures are more economical and preferred over other structure systems because the relevant 
materials can be easily obtained and their construction and workmanship are easier. For this reason, 
the ratio of masonry structures increase to 82% in rural regions (Erdik and Aydınoğlu 2003). 
Masonry structures are construction systems where walls, comprised of mortar and masonry units 
such as briquette, brick, stone and adobe, are used as the load-bearing system. Most of these 
buildings were constructed without receiving any engineering services and were severely damaged 
during earthquakes. Many studies concerning the about failure of masonry buildings have been 
conducted by many researchers, such as Klingner (2006), Bayraktar et al. (2007), Naseer et al. 
(2010), Ingham and Griffith (2011), Calayır et al. (2012), Sayın et al. (2013) and Sayın et al. (2014). 
Fig. 1 presents the failure mode of masonry walls with an opening.  

The most important structural elements for masonry structures are the load-bearing walls. Three 
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Comparison of linear and non-linear earthquake response of masonry walls 

2. Smeared crack approach 
 
In fracture mechanics, cracks are investigated using two different approaches: discrete and 

smeared. In the discrete crack approach, a crack occurs when the calculated tensile stresses exceed 
the material tensile strengths, and in the finite element system, the calculation is continued by 
taking two nodal points instead of one by opening the gap between two elements where the crack 
has occurred. New node points to be added in the finite element system with the crack formation, 
increasing number of freedom degree in the system and extension of the band width are the 
disadvantages of the method (Skrikerud and Bachmann 1986). In the smeared crack model, cracks 
occur normal to principal tensile stress, if the maximum principal tensile stress of an element, 
calculated in Gauss integration point, exceeds its tensile strength. It is assumed that tensile 
strengths perpendicular to crack cannot be compensated after crack formation at the integration 
point; the matrix between stress and strain at that point has been modified. This matrix is 
expressed according to local axes set defined on the crack plane. The dimension of the stiffness 
matrix remains constant because no new nodes are defined in the system. This is an advantage of 
the smeared crack model. The disadvantage of this model is that detailed information about the 
geometry of the cracks cannot be obtained. Nonlinear properties, such as shear and cracking of an 
element, can be considered in this approach. The smeared crack model separates into two models: 
fixed and rotating smeared crack models (Rots 1988). Because the crack direction remains stable 
at the integration point during the analysis in the fixed model, the crack direction exhibits a 
constant change at the relevant integration point in the rotating model. Although the smeared crack 
model was first developed for the numerical modeling of concrete structures, it can also be used in 
the analysis of masonry structures (Rots 1991, Lofti and Shing 1991, Shing and Cao 1997). In this 
study, the smeared crack model that considers strain softening for material behavior has been used. 
It is possible to determine the material behavior in this model as that before the strain softening, 
during the strain softening and after the strain softening. 

 
2.1 Behavior before strain softening 
 
The following relation holds between the plane stress and strain anywhere in the material in the 

finite element analysis (Eq. (1)) 

     D                                    (1) 

Here,    and    are the vectors of stress and strain, respectively.  D  represents the 

constitutive matrix. For a plane stress,  D  matrix for a plane stress can be expressed in the 
following form for a linear elastic and isotropic material (Eq. (2)). 
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In this form, E is the modulus of elasticity, and   is Poisson’s ratio. 
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Fig. 3 Stress-deformation behavior of various materials (Rots 1997) 
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2.2 Behavior during strain softening 
 
When the tensile stresses approach to maximum strength, micro cracking is initiated in the 

material. After the maximum strength limit is exceeded, a gradual decrease in the stress occurs 
with the extension and conjunction of the current cracks. This behavior of the material is called as 
strain softening. The stress-deformation behavior of various materials is given in Fig. 3. 

The smeared micro crack band occurs perpendicularly to principal tensile strain direction (Fig. 
4). The material reference axes, which are called the local axes, are chosen in the same direction as 
the principal strain. 

The stress-strain matrix in the local axes is defined as Eq. (3) (Lubliner et al. 1989) 
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In this equation,   (0 ≤  η ≤  1) parameter represents the ratio of the softened modulus of 

elasticity ( nE ) perpendicular to the crack plane to the initial elastic modulus of elasticity ( E ). In 
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addition,   is the shear resistance factor and can be defined as in Eq. 4 in the rotating crack 
model. 
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Here n  and p  represent normal strains perpendicular and parallel to the fracture plane, 

respectively. [ npD ] matrix, obtained using the local axes, is converted into a matrix [ xyD ] (Eq. (5)) 

in the global axes via a transformation matrix. 

]][[][][ TDTD np
T

xy                             (5) 

In Eq. (5), [T ] is the transformation matrix, and this matrix is given by Eq. (6). In this equation, 
  represents maximum principal strain direction.  
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2.3 Behavior after strain softening (closing and reopening of cracks) 
 
Softening behavior is a typical characteristic for semi-brittle materials, such as brick, mortar, 

ceramic and concrete. With the increase of strain in the softening zone, the softened modulus of 
elasticity ( nE ) as well as   and   gradually decrease and may become zero after complete 

fracturing ( crn   ). At this stage, Eq. (3), which defines the stress-strain matrix in the local axes, 
is updated using the new values of the above parameters. The closing and reopening of cracks are 
shown in Fig. 5. 
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Fig. 5 Closing and reopening of cracks
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The following equations (Eqs. (7a) and (7b)) are used in the stress-strain curve given in Fig. 5 

  oE   ,                               (7a) 

       cro
aa

t
oo eef     ,2 2              (7b) 

The value of n , the normal strain value, may either increase or decrease under seismic loading 
calculated at the relevant integration point. Therefore, opening or closing may occur at the crack. 
The state of being open or closed of crack is determined based on the calculated value of n  
perpendicular to the crack plane at the relevant integration point of an element that was also 
previously cracked. Accordingly, when the calculated normal strain value is greater than zero, it is 
accepted that the crack is open. If the calculated normal strain value is less than or equal to zero, 
then it is accepted that the crack is closed, and the softened modulus of elasticity varies with the 
initial modulus of elasticity E . During unloading/reloading, if n  strain value perpendicular to 
the crack plane at the relevant integration point of an element, which was previously cracked, does 
not exceed max value, which is indicated in Fig. 5, then a new secant modulus value nE  is not 

recalculated, and the previous value is considered. However, if this value exceeds max  value, a 

new nE  value is calculated, and the procedure continues in this manner. For all of the situations 

mentioned above, [ npD ] constitutive matrix is updated. In Fig. 5, cr indicates completely 

fractured strain. cr is defined as in Eq. (8) in finite element calculations. 
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In this equation,   is taken to be equal to tf02.0 . Therefore, Eq. (8) transforms into the 
following (Eq. (9)). 

aocr
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Here, a  value is a non-dimensional constant and can be defined with the equation below 
(Lubliner et al. 1989). 
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In Eq. (10), chl  represents the characteristic element dimension, fG  represents fracture 

energy, and tf  represents the tensile strength of the materials. The uniaxial stress–strain is shown 
in Fig. 6.  

The characteristic element dimension is the ratio of the fracture energy ( fG ) to the energy per 

unit volume ( fg ) (Bazant and Cabot 1989). Here, fg  defines the total area that remains under 
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stress–strain curve (Eq. (11)). 

ch

f
f l

G
g                                  (11) 

 
 
3. Numerical solution of the equation of motion 

 
The non-linear equation of motion for damped structural systems can be written as follows (Eq. 

(12)) 

       FFvCaM i  ][][                        (12) 

Here, ][M  and ][C  represent the mass and damping matrixes, respectively. In addition, 

 iF  and  F  represent the resisting and external force vectors, respectively. In case of 
earthquake ground motion, the external force vector is expressed as below (Eq. (13)). 

     g
sta aMFF ][                          (13) 

In this equation,  staF  represents the static load vector of the system, and  ga  represents 

the ground motion acceleration vector. Stiffness proportional damping is considered in the 
structural system. In this case, the damping matrix is written as (Eq. (14)), 

   KbC                                (14) 

Here  K  is the stiffness matrix, and b  is the proportion factor that is based on the damping 
ratio used in the fundamental mode of the structure. The HHT-α algorithm, suggested by Miranda 
et al. (1989), was used to numerically solve the equation of motion. This algorithm is based on 
Newmark’s average acceleration method. With i the time step in Newmark’s method, Eqs. (15) and 
(16) are used for the displacement and velocity at the (i+1) th time step, respectively.  

]2)21[(
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2
1   iiiii aatvtuu                  (15) 

])1[( 11   iiii aatvv                       (16) 

In these equations, u , v  and a  are the displacement, velocity and acceleration, respectively; 
  and   are Newmark’s coefficients; and t  is the integration time step. Using the integration 
algorithm, the equation of motion of the system given by Eq. (12) can be rewritten as follows Eq. 
(17) (Rots 1997). 

             iii
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Here, α is a parameter that controls the numerical damping. The coefficients should be chosen 
as below, thereby controlling the unconditional stability and second order accuracy (Eq. (18)).  
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Fig. 7 Dynamic analysis flow diagram 
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Fig. 8 Dynamic analysis flow diagram (cont.) 
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To solve the non-linear equations of motion, predictor corrector method is used together with 
the Newton-Raphson method. If the solutions at time step i are known, the estimated displacement 
and velocity vectors for time step i+1 are calculated as follows: (Eqs. (19) and (20)) 

       iiii atvtuu )21(
2

1~ 2
1                    (19) 

     iii atvv )1(~
1                        (20) 

Here,  u~  and  v~  are the estimated displacement and velocity vectors, respectively. Eqs. (21) 
and (22) are obtained by substituting Eqs. (19) and (20) into Eqs. (15) and (16).  

      1
2

11
~

  iii atuu                       (21) 

      111
~

  iii atvv                        (22) 

After these equations are substituted into Eq. (17), the numerical integration is performed. The 
procedure for the numerical integration algorithm and the flow diagram for the dynamic analysis 
of the structural system are presented in Figs. 7 and 8.  

 
 

4. Numerical application 
 
A program that can perform linear and non-linear dynamic analyses of masonry walls was 

written in this study. The program was written in MATLAB. In addition, a mesh program that can 
draw walls of the desired dimensions was written in MATLAB and can mesh the wall into the 
desired number of elements. The mesh program can model masonry walls separately as brick and 
mortar. Node coordinates, element and node numbers, element connectivity, restrained nodes and 
material properties are prepared with the mesh program as the input file for the main program. The 
main program begins the analysis using this prepared input file. Quadrilateral elements, with four 
nodal points and two degrees of freedom on each nodal point, were used in the analyses. Element 
stiffness matrixes were found using 2x2 Gauss integration rule. The strain of elements at each 
integration point was calculated, and the principal strain was obtained through this strain. All the 
element dimensions were chosen in a way that does not to exceed the maximum acceptable 
dimension criteria. The characteristic element dimension (lch) was calculated by taking the square 
root of the calculated area at each integration point. The finite element solution process of the 
system was initiated with an uncracked material elastic stiffness matrix. The iteration procedure 
was initiated choosing the integration point of the element that has the highest tensile strain energy 
(σi εi /2) among all element integration points, where softening may occur. The analysis was 
continued using the integration point of the element that has the highest strain among the 
uncracked elements at each iteration. The crack propagation on the wall was obtained using the 
integration point of a newly softening element at each iteration. The linear and non-linear dynamic 
analyses of a masonry wall with window opening were performed. In this study, micro modelling 
technique was used for the analysis of the masonry wall. It is accepted that the potential cracks 
would be occurred in the mortar and brick. The interface is assumed as a bond between mortar and 
brick. In the finite element mesh of the model, 720 nodal points and 648 quadrilateral elements 
were used. Brick with dimensions of 30x13.5x19 cm3 and mortar with a thickness of 1.5 cm were 
used to model the wall. The modulus of elasticity, Poisson’s ratio, mass per volume, tensile 
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strength and fracture energy for the brick to be used in the masonry wall were received set as 
19x105 N/cm2, 0.20, 1.8x10–3 kg/cm3, 220 N/cm2 and 1.5 N/cm, respectively. For the mortar 
material, the values for the modulus of elasticity, Poisson’s ratio, mass per volume, tensile strength 
and fracture energy were 16x105 N/cm2, 0.20, 1.6x10–3 kg/cm3, 180 N/cm2 and 1 N/cm, 
respectively. The degrees of freedoms, in the x and y directions, of all nodal points at the base of 
the model, in the y direction, and the nodal points at the top of the wall were constrained. The 
static solutions under the effect of system’s own weight were considered as the initial conditions in 
the dynamic analyses. The number of studies about damping coefficient is limited (Bayraktar et al. 
2014). A stiffness proportional damping matrix was used in the calculations. The damping 
coefficient was calculated by taking 5% of the damping ratio in the wall’s fundamental mode. For 
the dynamic analysis, the acceleration records of the earthquake that occurred in Erzincan on 13 
March, 1992, with the magnitude of 6.8, were used. The time step of the earthquake acceleration 
records is 0.01 s. Integration time step was chosen as 0.001 s. The numerical damping parameter α 
that is used in the HHT-α method was taken as -0.1. The peak acceleration values of the Erzincan 
earthquake in the east-west, north-south and vertical directions are 0.50g, 0.40g and 0.25g, 
respectively. In Fig. 9, the acceleration records of the earthquake are given, respectively for the 
east-west, north-south and vertical directions. 

In addition, the acceleration records of the Bingöl earthquake, which occurred on 1 May, 2003, 
with a magnitude of 6.1, were also used to investigate different earthquake effects on the model. 
The peak acceleration values of the Bingöl earthquake in the east-west, north-south and vertical 
directions are 0.50g, 0.40g and 0.25g, respectively. The acceleration records of the Bingöl 
earthquake are presented in Fig. 10.  

For the linear and non-linear dynamic analysis, the east-west and vertical acceleration 
components of the Erzincan earthquake were applied in the x and y direction of the model, 
respectively. The finite element mesh of the model is given in Fig. 11. One nodal point (645) and 
four integration points (A, B, C and D) are marked on the finite element mesh of the masonry wall 
to plot the time history of the displacement and principal stress. 

Linear and non-linear solutions of the horizontal and vertical displacement values, obtained at 
nodal point 645, are presented in Fig. 12.  

When linear and non-linear solutions are compared, it can be seen that the values of 
displacement had the same values until t=2.56 s, when the first crack occurred; subsequently, the 
graphs had separated from each other with increased cracking in the model. A comparison of the 
absolute maximums of the horizontal and vertical displacement values, obtained from linear and 
non-linear analyses, illustrates that the non-linear solutions are larger and that the differences 
between them are approximately 12% and 28%, respectively. The time history graphs of the 
maximum and minimum principal stress, obtained at integration points A, B, C and D, are given in 
Figs. 13-16, respectively. As the time history graphs of the stress shows similarity, increases or 
decreases occur at their amplitudes. Examination of the non-linear solutions illustrates that the 
peak values of the maximum principal stress were less than the tensile strength of the material. 

The results of the non-linear dynamic analysis showed that, the first crack in the model 
occurred at the upper-left corner of the window opening on the wall at t=2.56 s. The number of 
cracked elements is increased in later time steps, and the cracks are expanded. Cracked elements 
may become enclosed and reopen at various times during the analysis. Cracks occur at the other 
corners of the window opening at subsequent time steps, and they expanded diagonally. Crack 
propagations at times of t=3.0 and 4.5 s are shown in Fig. 17. An apparent increase was not 
observed in the wall at subsequent time steps. 
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(a) East-west component (b) North-south component 

(c) Vertical component 

Fig. 9 Erzincan earthquake acceleration records 
 
For the second linear and non-linear dynamic analysis, the east-west and vertical acceleration 

components of the Bingöl earthquake were applied in the x and y directions of the model, 
respectively. The acceleration records of the Bingöl earthquake are shown in Fig. 10. The time 
history graphics of nodal point 645 are presented in Fig. 18 based on the results of the linear and 
non-linear analyses. The displacement, in the linear and non-linear solutions, had the same values 
until t=1.70 s, when the first crack occurred; subsequently, the graphs separate from each other 
with increased cracking in the model. A comparison of the absolute maximums of the horizontal 
and vertical displacements obtained from linear and non-linear analyses indicates that the 
differences between them were 31% and 28%, respectively. 

Time histories of the maximum and minimum principal stress, obtained at integration points A, 
B, C and D are given in Figs. 19-22, respectively. The peak values of the maximum principal stress 
were less than the tensile strength of the material when considering the non-linear solutions. 

The results of the non-linear dynamic analysis showed that, the first crack in the model 
occurred at the upper-right corner of the window opening on the wall at t=1.70 s. The number of 
cracked elements increase in later time steps of the analysis, and the crack expands depend on the 
earthquake effect. Cracked elements may close and reopen at various times of the analysis. Cracks 
occur at the other corners of the window opening at later time steps, and they proceed diagonally. 
Crack propagations at times of t=3.0 and 4.5 s are shown in Fig. 23. 

No significant increase in the crack propagation was observed in the subsequent time steps. The 
solutions obtained for the Bingöl and Erzincan earthquakes were compared to each other; 
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variations can be observed in the time history of the displacement (both in frequency and 
amplitude) and crack intensity obtained in damage areas. In addition, the first cracks that occurred 
on the walls exhibit variations with regards to their locations and times.  
 

 

(a) East-west component (b) North-south component 

(c) Vertical component 

Fig. 10 Bingöl earthquake acceleration records 
 

Fig. 11 Finite element mesh of the masonry wall
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5. Conclusions 
 
In this study, linear and non-linear dynamic analysis of a masonry wall that includes an opening 

was performed. For this purpose, a program that can perform linear and non-linear dynamic 
analyses of masonry walls was written. Furthermore, a mesh program was written that can mesh 
the wall into the desired number of elements. Smeared crack model that includes the strain 
softening behavior was selected for the masonry material. For the numerical application, linear and 
non-linear dynamic analyses of the two-dimensional masonry wall were carried out using 
acceleration records obtained from the 1992 Erzincan and 2003 Bingöl earthquake. Crack 
propagation in the wall was investigated. Cracks first occur at the corners of the window openings 
and expand between window openings and wall corners depend on the dynamic effect. When the 
obtained solutions were analyzed, it was seen that the peak values of maximum principal stresses 
in linear state exceeded the tensile strength of the material and could cause tensile fracture in the 
material and the peak values of minimum principal stresses remained under the compressive 
strength of the material. It was seen that linear and non-linear dynamic solutions were the same 
until the first crack was formed on the masonry wall when time histories of the displacement and 
principal stress were investigated for both earthquake acceleration records. The differences 
between the linear and non-linear solutions became apparent with an increasing number of cracks. 
Frequency, amplitude quantities and crack intensity occurred in damage areas show differences 
when the solutions obtained for 1992 Erzincan and 2003 Bingöl earthquakes were compared to 
each other. Finally, earthquake characteristics significantly affect the solutions. 
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