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Abstract.  The flow of freshly mixed cement-based material shows thixotropy, which implies some difficulties on 
robust measurement of its rheological properties: The flow curve of thixotropic materials depends on the used 
protocol. For examples, higher viscosity is obtained when the rate of shear strain is more quickly increased. Even 
though precise measurement and modelling of the concrete rheology needs to consider the thixotropic effect, 
engineers in the concrete field prefer considering as a non-thixotropic Herschel-Bulkley fluid, even more simply 
Bingham fluid. That is due to robustness of the measurement and application in casting process. In the aspect of 
simplification, this papers attempts to mimic the thixoropic flow by the non-thixotropic Herschel-Bulkley model. 
Disregarding the thixotropy of cement based materials allows us to adopt the rheological concept in the field. An 
optimized protocol to measure the Bingham parameters was finally found based on the accuracy and reproducibility 
test of cement paste samples, which minimizes the error of simulation stemming from the assumption of 
non-thixotropy. 
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1. Introduction 
 

The workability of concrete affects the quality of its freshly mixed and hardened state. The 
performance of concrete structures is consequently dependent on how to control the workability of 
concrete and obtain quality assurance. In a construction field, the slump of concrete (ASTM C143), 
a measure of its workability, is importantly controlled and monitored. The slump is, however, the 
result of an empirical test for evaluating the properties of freshly mixed concrete. Its scientific 
background is weak. Nevertheless, its robustness and wide adoption in almost all construction sites 
allow it to be considered a standard test. For flowable concrete, such as self-consolidating concrete 
(SCC), the slump flow test (ASTM C1611) is applied even though it has the same weak point.  

The use of SCC triggers studying the rheology of concrete, which makes it possible to simulate 
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casting and placing processes of concrete structures. Flow of SCC in a form could be predicted by 
means of computational fluid dynamics. Flow blockage and insufficient filling are expected to be 
predicted before execution. The rheological simulation also predicts slump flow of concrete 
(Chidiac and Habibbeig 2005) and evaluates its casting performance pertinent for producing 
complex-shape girders or plates. Roussel et al. (2007) reviewed three fresh concrete flow 
simulation methods to predict a concrete flow: volume-of-fluid (VOF), discrete particle flow, and 
suspension flow techniques. Among them, the VOF technique is widely used especially for 
evaluating the filling and passing ability of fresh concrete. The technique assumes that the freshly 
mixed cement-based material is a single fluid and uses the flow curve as a material property. 

One of the most important material properties for the rheological simulation is the flow curve. 
It is defined as the relationship between the rate of shear strain (in the unit of s-1) and the shear 
stress (in the unit of Pa). It is usually obtained by using a rotational rheometer. Consistent and 
accurate measurement of the flow curve of fresh concrete has been studied for long time (NISTIR 
6819, NISTIR 7154), still it is not easy to be concluded. Homogeneity of a construction material 
needs high volume of measurement. Theoretically, the sufficient volume is reportedly more than 1 
m3. Inert aggregates locally disturb the consistent stress field on the fluid flow to be measured. 
Therefore, so-called concrete rheometers, specialized for highly condensed suspension having 
wide-scale inclusions, are big and need high volume of concrete sample (a few tens of liters). They 
also adopt a vane rotor to apply a wide range of nonsingular shear field. Nevertheless, the current 
technology guarantees consistent measurement only by the use of a single device. 

On the other hand, measuring the flow curve of binder paste can plausibly adopt a general 
rheometer used for chemical and mechanical engineering materials. Note that the rheological 
properties of cement paste in a freshly mixed concrete determine the flow of concrete. The particle 
size of Portland cement is generally less than 200 μm, which is acceptable to be tested with 
general gap size of measuring geometries. The current issue on the cement paste rheology is 
developing a standard protocol for the rheological measurement. That is obviously the first step in 
a science-based approach to casting and placing process of concrete construction. For the purpose, 
a test standard guide was proposed by ASTM C1749 recently. The guide provides an open form of 
protocol that a user should detail with respect to the interested application. This paper proposes the 
optimized protocol for the case of gravity-induced flow. The targeted flow behavior for simulation 
is both mini-slump flow and channel flow tests.  

The engineers in the field prefer considering concrete as a non-thixotropic Bingham fluid 
because of the robustness of the measurement and application. Accordingly, the optimized protocol 
for measurement of concrete flow is essentially needed to obtain the rheological properties of 
concrete. The optimized protocol can also be applied in the field to predict concrete flow, and it 
can be used for precisely simulating of gravity-induced flow based on the measured yield stress 
and plastic viscosity. 
 
 
2. Volume-of-fluid simulation 
 

A rheological model idealizes the flow curve generally measured by using a rotational 
rheometer. The Herschel-Bulkley model reportedly well describes the flow curves of 
cement-based materials under the assumption of non-thixotropy (de Larrard et al. 1998).  The 
Herschel-Bulkley model is a nonlinear function that relates shear stress (τ) to  the rate of strain 
rate (ߛሶ) 
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Table 3 Mix proportions 

Label 
Hand mixing of 36 

mL 
Mechanical stirrer 

of 90 mL 
High shearing  

of 90 mL 
Planetary mixer 

of 1,500 mL 

C40 
Water (g) 20 50 50 837 

Cement (g) 50 125 125 2,090 

C50 
Water (g) 22 55 55 - 

Cement (g) 44 110 110 - 

C60 
Water (g) 24 59 59 - 

Cement (g) 39 98 98 - 

C40A20 
Water (g) 20 50 50 837 

Cement (g) 50 125 125 2,090 
HWRA (g) 0.100 0.251 0.251 4.182 

C40A35 

Water (g) 20 50 50 837 

Cement (g) 50 125 125 2,090 

HRWRA (g) 0.176 0.439 0.439 7.315 
 
 
3. Experiment 
 

3.1 Sample preparation 
 
A total of 5 cement paste samples were prepared to measure their rheological properties. The 

variation of the samples was on (1) water-to-cement ratio, w/cm=40%, 50%, and 60%; and (2) 
high-range water-reducing admixture (HRWRA) dosage, 0.20% and 0.35% of the cement content 
by mass. Ordinary Portland cement was used for all the samples. Its specific gravity and Blaine 
number were 3.14 and 3,320 cm2/g, respectively. The oxide composition was described in Table 2. 
The HRWRA was incorporated to enhance the fluidity of the last two samples. That was 
polycarboxylates based, and its solid content was 22%.  

The rheological properties of cement-based materials also depend on the mixing method and 
protocol. A total of 4 mixing methods were considered for each sample. (1) The first method was 
hand mixing with a small glass beaker and stick. The rotational speed was kept constant manually. 
Not to confirm it accurate but it was about 280 rpm. (2) A mechanical stirrer was used with the 
same rotational speed of 280 rpm. The vane was a conventional 4 rectangular blades. (3) A 
planetary mixer corresponding to ASTM C 305 practice was used, and its rotational speed was 
also 280 rpm approximately. Due to the volume of the mixing bowl a large volume of the samples, 
1.5 L, was produced in the mixing method. (4) Finally, the standard practice of mixing for the 
rheological test, ASTM C 1738, was considered where the use of a high-shear mixer (up to 12,000 
rpm) was needed. The high shearing supposedly eliminates the thixotropy of the materials and is 
expected to yield a reliable measurement.  

ASTM C 1738 specifies the mixing protocol. The most important guide on the mixing is the 
limitation of continuous mixing within 0.5 min due to heat release by high shearing of cement 
suspension. Following the limitation but keeping the total mixing time constant with the other 
mixing method, the protocol of high-shear mixing was slightly adjusted: (1) mixing for 0.5 min; (2) 
scraping on the upper part of the mixing bowl for 4 min; (3) additional mixing for 0.5 min, and (4) 
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At the lowest shear rate of 0.01 s-1, as shown in Fig. 8(a), the transient fluctuation was observed. 
The shear stress increased up to 30 s as the reference non-Newtonian fluid showed the same 
phenomenon. A thick mix C40 then shows slight thixotropy with decrease-and-convergence 
pattern of shear stress measurement. The transient fluctuation and thixotropy were measured at the 
low shear rate. If one needs to measure a stable shear stress, the step time will be at least 130 s, 40 
s, or 12 s for mix C40, C50, or C60, respectively.  

 
3.3.3 Reproducibility of the stepwise protocol 
Further examination of the systematic error and thixotropy was accomplished by applying the 

conventional protocol in Fig. 6. Fig. 9 shows the measurement results of a superplasticized cement 
paste (C40A35), where the parallel plate sensor of 35 mm diameter was used. A total of 3 samples 
mixed in the same mix proportion, 40% w/cm and 0.35% HRWRA dosage, were distinguished by 
their mixing method: hand mixing at approximately 280 rpm, mechanical stirrer at 280 rpm, and 
high shear mixer at 12,000 rpm. The rheological properties of cement-based materials depend on 
the mixing process. High shearing on the mix used increases the resistance to flow and is expected 
to provide high yield stress and plastic viscosity on fitting of Bingham fluid model. The results of 
hand mixing and mechanical stirrer are comparable with a similar mixing speed of 280 rpm, but 
they are not identical. The thixotropy of each sample was still observed at low rates of shear strain 
(1 s-1 and 10 s-1 corresponding to 0 to 40 s measurement). It is worthwhile to remark that the 
thixotropy still prevails with 20 s steps, and it does with the sample produced even by high shear 
mixing. As already expected, the thixotropy of cement paste cannot be disregarded by any testing 
protocol to measure the rheological properties. 

Each sample was tested 3 times for evaluating its reproducibility. All replicated samples 
showed an identical response to the applied protocol, but only small scattering could be found at 
the high rate of shear strain, 60 s-1 to 80 s-1 corresponding to 120 s to 180 s (see Fig. 6). Low-speed 
mixing is supposed to leave very small agglomerates in a mix, which results in inhomogeneity at 
high-velocity field. The small scatters are thought to be negligible by eliminating bias points. 
Therefore, it is concluded that the stepwise protocol together with any mixing method discussed in 
the study provides sufficient reproducibility so as to apply the fitting of a Bingham fluid model. 

Two more mix proportions, C40 and C40A20, were considered to evaluate the reproducibility 
of the stepwise protocol. Each mix was produced by the 3 different mixing methods again. Similar 
response to those in Fig. 9 was obtained, and then the shear stress reading at the end of 20 s step 
was taken at the applied shear rate. A shear stress-rate relationship was developed by Bingham 
fluid model as shown in Fig. 1. The reproducibility of the stepwise protocol and mixing process 
was evaluated by testing a total of 10 replicated samples. Figs. 10 and 11 show the results of 
reproducibility tests. 

Compared to hand mixing and mechanical stirrer, high shear mixing provides higher yield 
stress and plastic viscosity. Especially for the neat cement paste, scatters on the yield stress 
measurement were enlarged with high shear mixing. High shearing thickened the sample and 
caused the clumping of cement powders in the suspension, which results in high values of the 
result and unstable measurement of rheology. When an HRWRA was used, the thickening and 
clumping is weakened even by high shear mixing. The measurement of yield stress and plastic 
viscosity were generally reproducible as shown in Fig. 11. Overall, low speed mixing such as hand 
mixing and mechanical stirrer, combined with the stepwise protocol, provides a good 
reproducibility to determine the rheological properties of cement paste. 
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The optimized protocol was applied using the parallel-plates geometry. The gap size and the 
diameter of plates were 1 mm and 25 mm, respectively. In order to disregard slippage on the plates, 
sand paper was attached on the plate surfaces. The measured rheological properties and the 
simulation result for the channel flow test are given by Figs. 14 and 15. Due to the high thixotropy 
of neat cement paste a local peak is observed at the shear strain rate of 1 s-1 on the ascending 
measurement. Curve fitting to the Bingham model gave the yield stress of 58 Pa and the plastic 
viscosity of 1.30 Pa∙s. In the case of superplasticized cement paste, the flow curve is relatively 
better suited for Bingham model. The yield stress of 24 Pa and the plastic viscosity of 0.97 P∙s. 
Finally, the evaluated rheological properties predict the spread of channel flow within the 
standards of accuracy.  
 
 
5. Conclusions 

 
The rheology of cement-based materials predicts flow of fresh concrete and the performance of 

placing process. Yield stress and plastic viscosity are two important material properties, but a test 
standard to measure the properties does not agree yet. In order to develop a protocol to measure 
the rheological properties in all mix-proportions of cement paste, this paper evaluated the accuracy 
and reproducibility of the measurement using various cement paste samples and simulated 
gravity-induced flow with the measured parameters.  

The first consideration of the measurement protocol was the transient fluctuation and thixotropy. 
The transient fluctuation occurs when a non-Newtonian fluid is tested. Releasing the transient 
fluctuation needs more than 4 s step duration at shear rates higher than 0.1 s-1. The shear rate of 0.1 
s-1 is also critical to simulate gravity-induced flow accurately. A material experiences 0.1 s-1 to 1.0 
s-1 when such a flow gets stopped. Therefore, an optimized protocol for accurate simulation of 
gravity-induced flow includes the range of shear rate, and the duration of stepwise protocol is set 
higher than 4 s. The optimized protocol reflects the foregoing consideration, but the thixotropy 
cannot be neglected in the measurement. Therefore, the protocol is found to provide the least error 
between the simulation and experimental results. The optimized protocol to measure the yield 
stress and plastic viscosity is recommended for the simulation of gravity-induced flow such as 
slump flow test. 
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