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Abstract. This paper proposes an innovative method for selection of measurement sets in static parameter
identification of concrete or steel bridges. This method is proved as a systematic tool to address the first
steps of Structural System Identification procedures by observability techniques: the selection of adequate
measurement sets. The observability trees show graphically how the unknown estimates are successively
calculated throughout the recursive process of the observability analysis. The observability trees can be
proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied
in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among
structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition,
a set of guidelines are provided to facilitate the representation of the observability trees in this kind of
structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics
of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of
stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical
analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the
probability of selecting an adequate measurement set with a minimum number of measurements at random
is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the
unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete
cable-stayed bridge is also analyzed. The comparison with the humber of measurements required in the
literature shows again the advantages of using the proposed method.
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1. Introduction

The structural response of a bridge is traditionally based on simplistic physically based models
(e.g. Finite Element Models, FEMs). Actual parameters of built structures (such as axial stiffness,
E;A;, flexural stiffness, Ejl;, area, A; or inertia, I;) might differ from those assumed in these FEMs.
For this reason, calibration of the models is required for accurate and reliable estimation of stress
distribution and deformations of built structures (see Turker et al. 2014). One way to approach this
need is by using measurements from health monitoring system (see Ni et al. 2011). This process is
known as Structural System Identification (SSI) (see ASCE 2011).

Adeli and Jiang (2006) classified the SSI methods as parametric (see Sanayei and Saletnik
1996), in which the set of equations has a physical meaning, and non-parametric (see Erdogan and
Bakir 2013), in which it has not. According to the type of excitation, the SSI methods can also be
classified as input-output methods or only output methods. The main difference between both
groups refers to the information of the excitation loads. In the input-output method, the excitation
loads might be assumed known while in the output-only methods they are unknown. Multiple
examples of input-output methods have been presented in the literature for dynamic (see Arslan
and Durmus 2013), static (see Lakshmanan et al. 2008, Ubertini et al. 2013) or mixed (see Lee et
al. 2010) excitation. Static methods can identify only stiffness parameters and are not able to
capture any changes in mass and damping parameters, while dynamic methods can identify
changes in all structural parameters. Nevertheless, many applications require only element
stiffness identification for condition assessment. In these cases, static methods can prove simpler
and more adequate for economical and computational time reasons (see Sanayei et al. 1997).

In any SSI method, different measurement sets can be used to calculate the desired estimates.
Often the number of deflections that can be measured in a structure is limited due to available
funds, equipment, and/or accessibility conditions. Therefore, a key pretest decision for the SSI
method is the selection of the minimum number of measurement points and their location for
successful parameter estimation. Several authors have presented heuristic methods to select
near-optimal measurement set from non-destructive static (see Sanayei et al. 1992) and dynamic
(see Pothisiri and Hjelmstad 2002) structural responses. Meo and Zumpano (2005) compared
different optimal sensor placement techniques. Zhang and Ohsaki (2011) proposed an optimization
problem to search for the optimal set of locations for measurement of member forces to have the
highest identification accuracy. Raich and Liszkai (2012) optimized both the number and location
of dynamic sensors. Recently, Joshua and Varghese (2013) used decision trees to select the
location of accelerometers in bricklayers.

Lozano-Galant et al. (2013a, 2014a) proposed the novel application of observability techniques
to SSI in trusses, beams and frame structures and the validation of this methodology to deal with
the peculiarities of cable-stayed bridges. This technique can be applied regardless of the load type.
This comes from the fact that the observability technique is applied in the system of equations
coming from the stiffness matrix method. The only restriction of the load test used in the
observability technique is that it needs to excite the parameter to be estimated. For example, it is
clear to notice that the flexural stiffness of one horizontal beam cannot be estimated when only a
horizontal load is introduced, as this load does not excite the flexural mechanism. A hitch that
impeded a practical application of the observability method was the fact that the measurement set
selection was carried out by trial and error analysis, that is, without a systematic procedure. It is
important to highlight that this selection is a crucial step in the SSI. Nevertheless, and despite its
importance, no adequate procedure for measurement set selection by observability techniques has
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been found in the literature. To fill this gap, the major contribution of the current paper is based on
the definition of a systematic procedure for measurement set selection in SSI by observability
techniques. The new systematic method presented in this paper corresponds with the observability
trees technique.

The observability trees show graphically how the estimates are successively calculated
(observability flow) throughout the recursive process of the observability analysis. The trees are
defined by two different elements: tree nodes (unknown variables that correspond with unknown
estimates, as stiffness, areas or inertias) and tree branches (information measured at the nodes of
the structure, such as rotations or deflections). The aim of the method is to define an observability
flow that enables the connection of the pursued tree nodes. To initiate an observability flow in
these trees, the measured deflections must fulfill a set of requirements regarding both, deflection
type and location. Finally, to propagate adequately the flow, the measured deflections must provide
adequate connectivity to these nodes. Observability trees can also be used to look for alternative
measurements if required.

It is important to highlight that the observability trees technique presented in this paper is a
symbolic and parametric procedure in which the obtained results do not depend on the numerical
values. For this reason, and in order to avoid unnecessary data, the numerical analyses have been
intentionally omitted in the analyzed examples.

This paper is organized as follows. In Section 2, the concept of observability tree is presented
for beam structures. After analyzing the effects of the structural redundancy and the beam
inclination, an algorithm is described for measurement set selection in beams. In Section 3, the
application of the observability trees in cable-stayed bridges is presented. A set of simplifications
are provided to facilitate the representation of the observability trees of cable-stayed bridges. From
these simplifications, a set of guidelines to make observability tress in cable-stayed bridges is
presented. These guidelines are applied for measurement set selection of cable-stayed bridges of
growing complexity. Furthermore, the effectiveness of random measurement set selection is also
analyzed. Finally, in Section 4, some conclusions are drawn.

2. Observability trees

The observability trees are graphical representations that illustrate the connectivity of the
unknown parameters (such as EjA;, Eil;, E;, A; or I;) into the system of equations of the stiffness
matrix method as well as the recursive process described in Lozano-Galant et al. (2013a, 2014a)
and Castillo et al. (2014). These trees can be used for systematic measurement set selection in SSI
by observability techniques.

In orthogonal grids, axial and flexural structural resistant mechanisms can be studied separately.
Therefore, two different observability trees, referring to the axial (Ty) and flexural (Ty) resistant
mechanism, can be analyzed independently of each other. On the contrary, in those cases where
both resistant mechanisms are coupled together, as in inclined beams, these trees are joined in a
common tree (Ty.v). Any observability tree is composed of two different elements: the tree nodes
(represented by the unknown estimates, see Fig. 1) and straight lines called tree branches that
connect the tree nodes (see Fig. 1). These branches represent the equation or equations that link
unknown estimates in the stiffness matrix method. They also include the deflections and/or
rotations measured at the corresponding nodes of the structure.

In horizontal beams, information of the axial resistant mechanism depends on the horizontal
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deflections in nodes, ug, while information of the flexural resistant mechanism depends on the
vertical deflections, vy, and the rotations, wy, in structural nodes k. On the other hand, in vertical
beams the role of the horizontal and vertical deflections is exchanged or swapped. The shape of the
tree depends on the connectivity and beam elements inclination, the structural redundancy, the
known and unknown structural parameters and the measured deformations.

To illustrate the definition of the observability trees from the stiffness matrix, the Ty and Ty
trees of a horizontal continuous beam without boundary conditions are summarized in Fig. 1. The
FEM of this beam includes 4 nodes and 3 beam elements (bars) L;, L, and L; long, respectively.
The contribution of each bar to the stiffness matrix of the structure is highlighted by a dashed line.
The mechanical properties of the beam elements, that is, A, A,, As, 11, I, and I3, are assumed as
unknown. The Young’s modulus, the length of all the beam elements and the forces in nodes (Hy,
Vi and My) are assumed as known. The system of equations of the stiffness matrix includes 3
equations for each node of the structure. With k being the node number, the equations of the kth
node are located between the row 3(k-1) + 1 and the row 3k of the stiffness matrix. The
contribution of each structural node into the system of equations has been framed in the vectors of
forces and displacements of Fig. 1. In this case, the axial resistant mechanism of the structure is
represented by the horizontal deflections, u. This is to say, in the first equation of each node. These
4 equations are framed with continuous lines in Fig. 1. From these equations, the axial
observability tree, Ty, can be directly represented. This tree includes three tree nodes (unknown
areas in beam elements, A;to A;) and four branches that refer to the 4 equations that link the tree
nodes. These branches include information of the corresponding horizontal node deflections (u; to
uy). The flexural observability tree, Ty, can be obtained from the equations that represent the
bending resistant mechanism of the structure. These equations are highlighted by a dotted line in
Fig. 1. In this case, the Ty tree also includes three tree nodes (unknown inertias in beam elements,
I; to I;) and four branches. Each of these branches involves the two different equations that
correspond to the equilibrium of vertical forces and moments in the corresponding node of the
structure. Therefore, these branches might include information on the vertical deflections and/or
rotations in the structural nodes (v; to v4 and w; to wy).

The observability trees can be used to define measurement sets with a minimum number of
measurements. The number of required deflections, Np, to estimate a structure with N, unknown
Areas or Axial stiffnesses and N; unknown Inertias or bending stiffnesses can be expressed as

ND = NA+NI (1)

One of the advantages of identifying a minimum measurement set is that if this is done, a
consistent system of equations is obtained. It is true that the estimates obtained in this system
depend, to a great extent, on the accuracy of the monitored data. Nevertheless, either additional
measurements or measurement repetitions might provide different consistent systems with
different values of the estimates. Analysis of these estimates can be used to minimize the errors in
estimates. It is remarked that if a minimum measurement set is not defined, an inconsistent system
of equations can be obtained. This type of system cannot be appropriately solved with
observability techniques. This proves the interest and the importance of the method presented in
this paper.

In addition to the number of measurements, the type of deflection and its location are of
primary importance. In fact, when the deflection types or the locations are not properly selected,
even a higher number Np does not enable the observability of the unknown estimates. The location
and the type of measurement required to obtain the minimum set of deflections can be obtained by
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the recursive process of the observability analysis. This process can be seen as an “observability
flow” that shows how the equations of the stiffness matrix method are successively solved.
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The observability flow starts when some parts of the structure include enough information to
evaluate one or several unknown estimates. To propagate adequately the flow, the measured
deflections in tree branches must provide adequate connectivity to the tree nodes. In this way,
observed estimates together with measured deflections can be used to solve some equations in
adjacent beam elements.

To illustrate the concept of observability flow and its role in the solution of the system of
equations of the stiffness matrix method, let’s focus on Fig. 2. This Fig. includes the system of
equations of the stiffness matrix method for the continuous beam analyzed in Fig. 1. The 4
equations that govern the axial behavior of the structure are framed with a continuous line and
numbered from (1) to (4) in Fig. 1.

To show how the connectivity of the beams links the equations of the axial resistant mechanism,
equations are rewritten at the bottom of Fig. 2. In these equations, the terms referring to the axial
stiffness of each beam are represented with a different color. For example, the axial stiffness of bar
1 appears in the equilibrium equations of its both nodes (Egs. (1) and (2) of Fig. 1) while the axial
stiffness of bar 2 appears in Egs. (2) and (3) of Fig. 1. If the Young’s modulus, the length of the
bars and the horizontal forces in nodes (H; to H,) are assumed as known and the areas of the bars
are assumed as unknown, the equations of the axial resistant mechanism include 7 unknown
variables (A; to Az and u; to uy). Furthermore, unknown horizontal deflections and areas are
multiplied making the problem nonlinear. To estimate the unknown areas (objective of the SSI), a
set of horizontal deflections at the structural nodes is first measured. Measuring horizontal
deflections of all structural nodes (that is, u; to u) leads to a system with more equations than
unknown variables, which can be solved directly (assuming that one equation is redundant).
Nevertheless, we can take advantage of the connectivity of the unknown estimates in the system of
equations to reduce the number of deflections to be measured. In this procedure, the equations of
the system are solved one by one. In this way, once an unknown area is calculated from the
equilibrium equation of one of its nodes, this area might contribute to solve new unknowns in the
equilibrium equations of other nodes. For example in the case of the continuous beam in Fig. 2,
when u,; is measured, A; can be obtained from (1) of Fig. 1. Then, calculated A; and measured u,,
they can be used to obtain A, from (2) of Fig. 1. Finally, calculated A, and measured u;, they can
be used to obtain A; from (3). This very simplified example shows that A;, A, and A; can be
obtained by measuring deflection in three conveniently selected nodes (u;, u; and u;). This way of
solving the system of equations illustrates the recursive process of the observability analysis and it
represents the concept of observability flow.

In the structure presented in Fig. 2, an observability flow (flow 1) is initiated in Eq. (1) when
A, is calculated. Then, the observability flows towards the rest of equations and the new areas are
successively calculated. To enable the calculation of an estimate from the observability flow, it is
necessary to connect conveniently the tree branches. With this aim, the branches must include
information that (together with the calculated estimates) can be used to solve new equations. The
observability flow 1 is represented in the right hand side of the equations of the axial resistant
mechanism, in the main diagonal of the stiffness matrix and in the axial observability tree, Ty, by a
continuous arrow in Fig. 2. The required measurement set obtained by the flow consists of u;, u,
and u;. The observed estimates are colored in green color. An alternative observability flow (flow
2) might be initiated when Aj; is obtained from Eq. (4) after introducing the measured vale uy. In
this case, to observe all cross sectional areas it is necessary to measure an alternative set of
deflections (uy4, u; and u,). The observability flow 2 is represented by a dashed arrow in Fig. 2.
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Fig. 3 Ty and Ty, with boundary conditions

The boundary conditions reduce the points of the structure where deflections and/or rotations
might be measured to introduce information to the system. To illustrate how to include the
boundary conditions into the representation of the observability trees the example in Fig. 3 is
presented. This structure is the same as that in Figs. 1 and 2 but includes the boundary conditions
in edged nodes. Node 1 has the vertical and the horizontal deflection fixed while in node 4 all the
movements are fixed. A circle is used to represent the fixed boundary conditions at the tree node.
This circle is added only in those cases where the boundary conditions are such that no
information might be obtained from one equation of the stiffness matrix method. That equation is
represented in an edged branch. In the case of the Ty tree, the first and the third node, A, and A;,
are circled because the corresponding equations of edged branches do not introduce any
information to the system. This is clearly appreciable in Eqgs. (1) and (4) of the axial resistant
mechanism in Fig. 2. In these cases, as the boundary conditions impose a null horizontal deflection
at nodes 1 and 4, Egs. (1) and (4) cannot be used to obtain estimates. This lack of information is
represented by a disconnection in the corresponding edged branches of Ty in Fig. 3.

The effects of the boundary conditions in the bending resistant mechanism of the continuous
beam are also illustrated in Fig. 3. In this case, the branches of the Ty tree include information of
two different equations (equilibrium of vertical equations and moments). For this reason, and
despite the fact that the vertical deflection is fixed at node 1, its first tree node, 1, is not circled
because the first branch might still introduce useful information to the system of equations by
mean of w;. A different thing happens in the third tree node, I;. In this case, the equation associated
with the last branch is useless because v, and wy are forced to be zero by the boundary condition.
To indicate this fact in the observability tree, the I; is circled and the last branch is disconnected.

To understand the observability trees, different beam structures are analyzed in Example 1.

2.1 Example 1: Beam

The first analyzed structure corresponds with the horizontal beam presented in Fig. 4. Its FE
model includes 5 nodes and 4 bars L;, L,, L; and L, long, respectively. Two intermediate nodes
(nodes 6 and 7) are also considered. The applied nodal loads correspond to those introduced in the
static load test. All the beam elements have the same known E. Nevertheless, both their area, A,
and their inertia, I; (framed and numbered from 1 to 4 in Fig. 4) are assumed unknown. This
implies that 8 unknown estimates (A to A4 and I; to I;) must be identified. Horizontal deflections
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(u), vertical deflections (v), rotation (w), horizontal reactions (H), vertical reactions (V), and
moments (M) followed the positive direction of axes presented in Fig. 4.

The observability of the unknown estimates in eight different measurement sets (cases 1.1 to
1.8) is summarized in Fig. 4. Differences between the analyzed cases refer to the beam inclination,
a;, (horizontal beam, 0;=0, in cases to 1.1 to 1.6 and inclined beam, 0;#0, in cases 1.7 and 1.8) and
to the boundary conditions (simply supported in cases 1.1 to 1.3 and clamped-supported in cases
1.4 to 1.8). For each case, Fig. 4 summarizes the measured deflections introduced into the
observability analysis (left hand side) and the axial (Ty) and flexural (Ty) observability trees (right
hand side). In the observability trees, observed parameters are in bold green color. Unobserved
parameters are in italics red color. Circled nodes indicate restrictions by boundary conditions.
Green arrows show the observability flow through the recursive process. Dashes in branches
(disconnected branch) indicate that no information is measured in the corresponding node of the
FEM.

Cases 1.1 to 1.3 correspond with a horizontal and simply supported beam. In case 1.1, 8
measured deflections and rotations (w;, U, vz, Us, V3 Us, V4 and us) are introduced into the
observability analysis. In this case, all the variables can be observed. On the one hand, the Ty
observability tree shows that all the areas are observed after an observability flow (initiated in Ay)
flows from right to left in the tree. On the other hand, the Ty observability tree shows that the
inertias can also be observed. In the initial observability analysis (number of recursive Step i=1),
the location of the measurements in beam element 1 enables the observation of I; and an
observability flow is initiated. As the branches of the tree are conveniently connected the
observability flows from left to right and the rest of inertias can be successively observed in three
more steps. The observed parameters throughout the recursive process are summarized in Table 1.
It is important to highlight that the number of observed variables in each recursive step, N.obs;,
presented in this table includes not only areas and inertias, but also unknown deflections. Case 1.2
shows that all areas and inertias but A4, 15 and I, are observed when five deflections (u, v, U3, v3
and uy) and one rotation (ws3) are measured. The Ty observability tree shows a disconnection
(discontinuous red line) in edge branch as no horizontal deflection is measured at node 5. This
illustrates that A4 cannot be observed unless us is measured. The Ty observability tree shows how
the flow can be initiated at an inner node (I;) and to flow to edge nodes when adequate
connectivity is provided. Nevertheless, when adjacent nodes of the tree are not conveniently
connected, (e.g. when neither vertical deflection nor rotation in node 4 is measured) the
observability cannot flow. This is the case of the right hand side of Ty in which, I5 and I; cannot be
observed. In case 1.3, As; Ay, [y and 14 can be observed when five deflections (v,, u;, U4, v4 and ug)
and two rotations (w, and ws) are measured. This example shows that separated parts of the trees
can be observed when a branch is disconnected. The Ty, tree illustrates that different observability
flows can be initiated at different parts of the structure when requirements to initiate the flows are
adequately satisfied. Nevertheless, when a branch is disconnected, the mechanical properties of the
adjacent nodes of the trees (such as A;, A,, I, and I5) cannot be observed.

Cases 1.4 and 1.5 correspond to a horizontal clamped-supported beam. This beam is statically
indeterminate in the axial and flexural resistant mechanism. In case 1.4, neither any A nor I can be
observed when 7 deflections and rotations (u,, vy, U3, V3, U4, V4 and ws) are introduced. In the Ty
observability tree, the absence of observed areas can be explained by the fact that no observability
flow can be initiated. The analysis of the Ty indicates that an additional condition arises in
clamped-supported beams. In these structures, the observability of the inertia that connects the
clamped node (I; in this case) is compulsory. To observe this inertia, it is necessary to relocate the
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measured deflections. In this way, defections might be measured at the proximities of the clamped
edge at an intermediate point of the beam. This is illustrated in case 1.5, where ws is substituted to
the vertical deflection at the intermediate node 7. The horizontal deflection u; is also introduced. A
summary of the observed parameters throughout the recursive process in case 1.5 is presented in
Table 1.

Unlike horizontal and vertical beams, the axial and flexural structural behavior of inclined
beams (0;#0) cannot be treated independently unless the horizontal and vertical forces and the
deflections can be determined in the local axes of the beam. In simple structures, forces and
deflections in global axes (e.g. determined by topography) can be projected into local axes of the
beam. Nevertheless, in structures with a large number of elements with different local axes, this
change of axes is discouraged. For this reason, this section analyzes the effects of the inclination of
the beam when measurements in global axes (ux and vy). In this case, both deflections include
information of both resistant mechanisms and therefore, the observability flow can only be
represented by a common observability tree, called Ty.y. This tree links the axial (Ty) and flexural
(Twm) structural behavior of the beam.

To illustrate the peculiarities of the Ty.y observability tree, cases 1.6 to 1.8 are analyzed. The
beam used in these cases only differs with that presented in cases 1.4 and 1.5 in the fact that it has
an inclination a. In case 1.6, all the estimates are calculated when 8 deflections (u,, v, us, vs, Uy, Va,
u; and v;) are measured. The Ty observability tree shows that, thanks to the information
measured at the intermediate node 7, observability flows are initiated in both resistant mechanisms
(at nodes A; and I;). The connectivity of the branches of the tree enables the observability of all
the estimates. This observability flow corresponds with the sum of the separated observability
flows for the equivalent horizontal beam presented in case 1.5. In the following case, a
disconnection in the horizontal deflections is introduced at the branch joining the mechanical
characteristics of the beam elements 2 and 3 (v;). The analysis of the observability tree of these
two cases shows that in inclined beams a disconnection at any resistant mechanism also affects the
observability of the other one. A summary of the observed parameters throughout the recursive
process in case 1.7 is presented in Table 1. Finally, in case 1.8, no area can be observed because no
observability flow can be initiated. Furthermore, as the node 1 is clamped, the observability of
beam 1, I;, is compulsory. Nevertheless, the disconnection of the branch that connects structural
parameters in bars 1 and 2 (u;) makes that any flexural stiffness can be observed.

Table 1 Number of observations (N.obs;) including deflections, observed areas and inertias in cases 1.1, 1.5
and 1.7 throughout the steps (i) of the recursive process

Case 1.1 Case 1.5 Case 1.7

Step (i) N.obs; Areas Inertias N.obs; Areas Inertias N.obs; Areas Inertias

1 10 Al tOA4 Il 12 A1 tOA4 11 10 AI,A4 11
2 12 A1 to A4 Il, Iz 14 A1 to A4 Il, 12
3 14 Al to A4 Iln 12, 13 16 A1 to A4 Il: 12, 13

4 18 A] to A4 I] to I4 18 Al tOA4 Il to I4
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2.2 Algorithm

Input: Geometry, boundary conditions and unknown mechanical properties (N flexural and Ny
axial stiffnesses).

Output: For each analysis direction (forward or backward), different sets of minimum
measurements clustered in matrices [Mg] and [Mg] can be obtained. On the one hand, [Mg] defines
the required measurements obtained by a forward observability flow while [Mg] defines those
measurements obtained by a backward flow.

Step 1: Creating a FEM to be analyzed: From the geometry of the beam an adequate FEM is
defined. This FEM includes nodes to separate the structural beam elements with different unknown
mechanical properties and to represent the boundary conditions.

Step 2: Evaluating the flexural resistant mechanism from a forward direction': The nodes are
looked over from left to right. A vertical deflection or a rotation is available when the following
two conditions are fulfilled: (1) The measurement is not null due to boundary conditions and (2) it
has not been previously selected. The vertical deflection or the rotation of each node is selected
when at least one of them is available. Else the vertical deflection or the rotation of the next node
is selected if available. Otherwise, an additional node is created to measure either its vertical
deflection or its rotation. The Nj selected values are saved in [Mg].

Step 3: Evaluating the flexural resistant mechanism from a backward direction” : The nodes are
look over from right to left. The vertical deflection or the rotation of each node is selected when at
least one of them is available. Else, the vertical deflection or the rotation of the next node is
selected if available. Otherwise, an additional node is created to measure either its vertical
deflection or its rotation. These Njselected values are saved in [Mg].

Step 4: Evaluating the axial resistant mechanism from a forward direction®: The nodes are
looked over from left to right. The horizontal deflections of each node are selected when they are
available. Else, the horizontal deflection of the next node is selected if available. Otherwise, an
additional node is created to measure its horizontal deflection. These N, selected values are saved
in [MF]

Step 5: Evaluating the axial resistant mechanism from a backward direction: The nodes are
looked over from right to left. The horizontal deflections of each node are selected when they are
available. Else, the horizontal deflection of the next node is selected if available. Otherwise, an
additional node is created to measure its horizontal deflection. All these values are saved in [Mg].

Step 6: Correction to substitute rotations for deflections”: If we want to define an alternative

'The N; measurements required to define the N; unknown flexural stiffnesses are selected to assure an
adequate connectivity of the N; tree nodes. In a horizontal beam these measurements might be both vertical
deflections and rotations. To define the possible measurement sets, the structure is analyzed forwards (from
left to right) and available measurements are selected.

’To define the N; measurements the structure is analyzed backwards. In this way, the measurements are
selected from right to left.

’The N, measurements required to define the N, unknown axial stiffnesses are selected to assure an
adequate connectivity of the N, tree nodes. In a horizontal beam these measurements correspond with
horizontal deflections. To define these deflections the structure is analyzed forwards and available
measurements are selected.

*This step is presented because usually the rotations are difficult to be measured in actual structures. For this
reason, rotations might be replaced by vertical deflections.
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measurement set without rotations, the rotations in matrices [Mg] and [Mg] are replaced by vertical
deflections at their corresponding nodes if available, or at next node if available, or at an
intermediate node. Otherwise, go to step 7.

Step 7: Correction in clamped-supported beams with different mechanical properties and
without intermediate supports: If the structure is clamped-supported and it includes different
mechanical properties without intermediate supports, the measurement set that does not start at the
clamped node is replaced for the other measurement set. Otherwise, go to Step 8.

Step 8: Correction in doubled clamped beams with different mechanical properties and without
intermediate supports: If the structure is doubled clamped with different mechanical properties and
without intermediate supports, an additional measurement is required. This additional information
might correspond with an extra vertical deflection or rotation at any available node or at any
intermediate node. Otherwise go to step 9.

Step 9: Results report: The matrices [Mg] and [Mg] are provided.

It is noted that in both vertical and horizontal beams the axial and the flexural resistant
mechanisms can be studied separately from the measurements provided by [Mg] or [Mg].
Nevertheless, this is not the case of inclined beams with measurements in global axes as both
resistant mechanisms have to be considered together.

The algorithm can be developed to take into account the 3D behavior of beam elements. In
such a case, transverse flexural stiffness and torsional stiffness have to be identified. The number
of unknowns will be increased by Nt; (unknown transverse flexural stiffnesses) and Nt (unknown
torsional stiffenesses). To define the additional required measurements new analyses must be
carried out from a forward and a backward approach. In the case of the transverse flexural
mechanism, these analyses are equivalent to those presented in Steps 2 and 3 for the vertical
flexural mechanism. On the other hand, the analyses of the torsional resistant mechanism are
equivalent to those presented in Steps 4 and 5 for the axial resistant mechanism.

2.3 Application of the algorithm

The algorithm presented in the preceding section has been applied for measurement set
selection in the simply supported beam presented in case 1.1. Five of the alternative measurement
sets obtained by the algorithm are summarized in Table 2. This table includes the measurement
sets in the Forward, [Mg], and the Backward, [Mg], analysis direction. As we are aiming to get
measurement sets including rotations in order to compare with the results presented in Section 2.1,
Step 6 of the algorithm is intentionally skipped. However, it is to highlight that measurement set
four includes a practical application without rotation measurements.

Table 2 Alternative measurement sets obtained by the algorithm by the Forward, [Mg], and the Backward,
[Mg], analysis direction

Set [Me] [Ms]
1 Uz, U3, Ug, Us Wi, W, W3, Wy Uz, U3, Ug, Us W5, Wy, W3, W)
2 Uy, Us, Uy, u5, Wi, Wa, V3, V4 U7, Uz, Uy, U57 Ws, Wy, V3, V)
3 Uy, Us, Uy, u6, Wi, V2, W3, Vy U7, Uz, Uy, u6, Ws, V4, W3, V)
4 Uy, U3, Us, U, V7, V2, V3, V4 Uy, U3, Us, Ug, Ve, Va4, V3, V2
5 Uy, U3, Uy, Ug V7, Wp, V2, W3 U7, Uz, Uy, Ug V7, W4, V4, W3
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Application of the algorithm to 2D structures is presented in the next section. The SSI using
observability techniques might also be applied to 3D structures. Nevertheless, due to the high
connectivity of all mechanical properties, the representation of the 3D observability trees is far
from being intuitive. Hence, the essence of the observability trees method is lost.

3. Measurement set selection in cable-stayed bridges

The structural audacity and lightness of the current cable-stayed bridges make these structures
very sensitive to static and dynamic loads in service (see Swenson 2012, Lozano-Galant and
Turmo 2014a) and during construction (see Lozano-Galant et al. 2013b, 2014b and Lozano and
Turmo 2014b). However, in many cases, especially for short and medium span bridges, dynamic
behavior is not crucial, whereas the response under static loads is indeed.

The structural behavior of this kind of structures is much more complicated than that of
continuous bridges because their structural behavior depends on the interaction of the deck, the
pylon and the stay cables. As presented in Lozano-Galant et al. (2013a), this interaction is
especially problematic in SSI by observability techniques.

Unless some simplifications are assumed, the interaction between the different loads bearing
elements results in complex Ty.\ observability trees. In these trees the essence of the parametric
method is lost as they are very difficult to be understood and far from being intuitive. To illustrate
these complex trees in a cable-stayed bridge, Example 2 is analyzed. To uncouple the linkage
produced by the stays a set of simplifications is advised. Furthermore, a set of guidelines to make
observability trees in cable-stayed bridges is presented. Next, these guidelines are used to define
the measurement set of cable-stayed bridges with few stay cables and different pylon-deck
connections. The statistic analysis of the effectiveness of arbitrary measurement set selection is
also analyzed in one of these structures. Finally, the measurement set selection of a large scale
cable-stayed bridge is carried out.

3.1 Example 2: Cable-stayed bridge with inclined pylon

In this example the cable-stayed bridge with inclined pylon presented in Fig. 5 is analyzed. The
bridge deck of this structure corresponds with the beam analyzed in Example 1. In this structure
three stay cables are used to transfer the loads to the pylon. This element is Ls high and with an
inclination B. The Young’s modula of all the elements of the structure are assumed as known. This
assumption is introduced to deal with unknown areas and inertias instead of axial and flexural
stiffnesses. Nevertheless, and without any lack of generality, the method is still applicable when
Young’s modula are assumed as unknown.

The observability trees of four measurements sets (cases 2.1 to 2.4) are presented in Fig. 5. In
the first case, the mechanical properties (A and I) of the deck, the pylon and the stays are assumed
as unknown. This produces a set of 16 unknown mechanical properties (from A, to Ag and from [,
to Ig). To observe these estimates a minimum set of 16 deflections is required. This set includes the
measurement of deflections at intermediate points of the stay cables. Observed estimates
throughout the recursive process are summarized in Table 3. A simplified Ty.y observability tree
(without the measurements in the branches) of this structure is presented in Fig. 5. This tree shows
that the resistant mechanisms of all the elements are strongly linked. This linkage complicates the
initialization of observability flows and the observability throughout the recursive process.
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To disconnect the resistant mechanisms of the deck from those of the stays and the pylon, it can
be assumed that the stays behave mainly with the axial resistant mechanism. This hypothesis is
commonly used in the literature (see SETRA 2001) and it neglects the stay inertia (I=0). This
assumption is followed in case 2.2, in which the number of unknown mechanical properties is
reduced to 13 (from A, to Ag and from I; to 14 and Ig). To assure the observability of these elements
a set of 13 deflections is required. As presented in the simplified observability tree of Fig. 5, the
inertia of the stays has been removed. The parameters that can be observed throughout the
recursive process are summarized in Table 3.

The manufacturing process of the stays provides high confidence of the stay axial stiffness.
Furthermore, if required, cable sag effects can be included into E; by mean of the equivalent
Emst’s modulus (see Podolny and Scalzi 1986) that depends on the length of the stay, its weight
and its force, F. Therefore, in practice, the axial stiffness EA of the stays is traditionally assumed as
known. The effects of introducing this hypothesis into case 2.2 are analyzed in case 2.3. In this
example the number of unknown parameters is reduced to 10 (from A; to A4, Ag, from I;to I and
Ig). To observe these parameters, the measurement of a minimum set of 10 deflections is required.
Introducing the stay cable area as a known parameter into the observability analysis facilitates the
representation of the observability tree of the structure as the resistant mechanisms of the deck and
the pylon might be studied separately as presented in Fig. 5. The deck observability trees
correspond with those of the equivalent horizontal beam described in case 1.5. The pylon
observability tree corresponds with that of an inclined cantilever beam. In this case, because of the
inclination, the resistant mechanisms cannot be separated. It is important to highlight that there are
an infinite number of minimum measurement sets.

For example, in case 2.3 all the mechanical properties can also be observed when a different
measurement set substituting v, for w, or wj is introduced.

An additional hypothesis that can be added to provide more freedom in the selection of the
measurement set consists of including the stay force F. In this way, the stay cables can be
substituted in the observability analysis by their corresponding forces in the stay-anchorage points.
This situation is presented in case 2.4, where the stays are replaced by their axial forces F. To show
that the stays do no longer appear in the observability analysis, they are highlighted by a dotted
line. In this example, to observe all the unknown estimates a new measurement set might be used.
Compared with that presented in case 2.4, this set enables to interchange the deflections at the top
of the pylon (node 9 in Fig. 5) with those at another point of the pylon (such as node 8 in Fig. 5)
providing more freedom to the measurement set.

When only the stay cable axial resistant mechanism is assumed, it is possible to link the stay
force, F, with the axial stiffness of the stay, EA, and its elongation, AL, as follows

F=EA-AL )

This equation might provide additional information to the system in the following cases: (1)
When F and the deflections in both stay-anchorage points are measured, the axial stiffness EA of
the stay can be calculated. (2) When F, EA, the deformations of one stay-anchorage point and one
of the deformations (uy or vy) of the other anchorage point are measured, the unknown deformation
of the anchorage point can be calculated. This information might be useful to reduce the number of
points in the deck where horizontal deflection must be measured. (3) When one of the
stay-anchorage points corresponds with a boundary condition, F can be used to calculate the
boundary reactions, as in the case of the backstays.
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Table 3 Number of observations (N.obs;) including deflections, observed areas and inertias in cases 2.1 and
2.2 throughout their recursive steps (i).

Case 2.1 Case 2.2
Step (i) N.obs; Areas Inertias N.obs; Areas Inertias
1 18 A A As, Ay, Ag 1, Is 22 A, to Ag 1, Is
2 23 Ay, Ay, Ay As, A, Ag I, I, I, Ig 24 A toAg I, L, Iy
3 31 A[ to Ag I], Iz, 13, 15, 17, Ig 26 A] to Ag I], Iz, 13, Ig
4 35 Al to Ag Il to Ig 28 A1 to Ag I], Iz, 13, I4, Ig

3.2 Guidelines in cable-stayed bridges

The analysis of a number of structures provides the following guidelines to determine the Ty
and Ty observability trees in cable-stayed bridges:

(1) Tnmtrees in cable-stayed bridges with unknown mechanical properties in the stays: If the
mechanical properties of the stays (A and/or I) are assumed unknown, the observability trees of the
structures are far from being intuitive because the resistant mechanisms of all the elements (deck,
pylon and stays) are linked (see cases 2.1 and 2.2). Furthermore, in this case the minimum number
of required deflection usually includes deflections at both stay-anchorage points and at
intermediate points of the stays.

(2) Tyand Ty trees in cable-stayed bridges with known mechanical properties in the stays: The
resistant mechanisms of the deck and the pylon can be separated from those of the stays by
neglecting the stay inertia (I=0) and assuming as known the area of the stay (see case 2.3). This
simplification facilitates the representation and understanding of the observability trees of the
structure. In this case, the set of measurements has to include deflections in both stay-anchorage
points. The application of these hypothesis leads to the following ideas: Additional information
can be obtained from the axial resistant mechanisms of the stays by Eq. (2). In cable-stayed
bridges without pylon-deck connection, the observability trees of the pylon and the deck can be
studied separately. In this case the deck can be analyzed as a beam and the pylon as a cantilever
beam. Both elements include a different axial Ty, and a flexural, Ty, observability tree that might
be coupled together depending on the element inclination. In cable-stayed bridges with pylon-deck
connection, the observability trees of the deck and the pylon are linked at the connection.

(3) Tyand Ty trees in cable-stayed bridges without stay elements: When in addition to the
mechanical properties of stays (A known and [=0), the axial forces of the stays, F, are included as
data, the stays can be substituted in the observability analysis by the corresponding forces in the
stay-anchorage points. In this case, most of the ideas referring to the representation of these trees
presented in the above point are still applicable. Nevertheless, measuring F forces provides more
freedom in the selection of the measurement set (as deflections in the stay-anchorage points are not
required). Therefore, more intuitive observability trees can be obtained.

3.3 Application to cable-stayed bridges with few stay cables

To test the performance of the observability trees in the case of large structures, the asymmetric
cable-stayed bridge presented in Fig. 6 is analyzed in this section. This structure is based on that
described by Aboul-Ella (1990). The concrete cable-stayed bridge includes a 37.5 m high pylon, a
92 m long main span and a 25 m long back span. To illustrate the influence of the pylon deck
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connection, two different structures (Bs and By in Fig. 6) are analyzed. The differences between
both structures are as follows: (1) different number of stay cables, five stays for Bs and four for By,
and (2) different type of connection between the deck and the pylon, no connection in Bs, and
vertically simply supported in B4. Both structures are simulated by a FE model that includes 18
nodes. The main characteristics of the bridge are presented in Fig. 6.

In the analysis proposed in this section the following hypotheses are assumed: (1) In order to
make a more general application, it is assumed that the deck could be cracked in the proximities of
the stay cables. This assumption makes the use of different deck stiffnesses necessary. (2) To
simplify the representation of the observability trees, and without losing any generality, the pylon
is assumed to have constant mechanical properties. (3) Null flexural stiffness of the stay cables. (4)
The stay axial stiffness is assumed as known. This simplification can be assumed because the
variability of the stay material and cross section is significantly lower than in elements from decks
and pylons made of concrete at early stages of the service life. Moreover, specific tests can be
made to collect information about the real area and stiffness of the stays [Sumitro et al. 2002]. (5)
In order to assimilate the axial and the flexural stiffnesses to the area and the inertia, the Young’s
modulus of all structural elements are assumed as known. This hypothesis is followed in most of
the methods presented in the literature (see Abdo 2012). All these hypotheses produce a set of 20
unknown mechanical properties (from A; to Ay and from I, to I;,). (6) The structure is assumed to
behave linearly during the non-destructive test and therefore, the effects of geometrical
nonlinearities have been neglected. (7) Only static element parameters are required for the
condition assessment of the structure. (8) No dynamic loads are applied and the structure is stiff
enough to neglect effects of the dynamic properties in the static test. This is a reasonable
assumption that can be applied to most of the medium span cable-stayed bridges no subjected to
earthquake loads.

By following the guidelines provided in the preceding sections, the observability tree of Bs
results from the summation of those of two independent beams (a horizontal simply supported
beam for the deck and a cantilever one for the pylon). One of the infinite number of minimum
measurement sets, Bs; is presented in Fig. 7. In this set, the required deflections (u;, uy, us, us, us,
Ug, Ujp, Uiy, U, W3, Ui, V2, V4, Ve, V7, Vg, Vo, Vig, Vi1 and V12) are determined to provide adequate
connectivity to the observability trees of the axial and resistant mechanisms of the structure. The
observability flows obtained are presented in Fig. 7. This figure also includes three alternative
measurement sets, Bs., to Bs.4, with the minimum number of measurements.

In structure B4 due to the pylon-deck connection, the resistant mechanisms of the deck and the
pylon are linked. This is appreciable in Fig. 8 where the corresponding Ty observability tree is
presented. In this case the area of the pylon, A, is linked with the inertia in the deck at the pylon
connection, Ig, and the inertia of the pylon, I,y is liked with Ag and I, respectively. It is important
to highlight that I, includes a clamped node (node 16) and therefore, that inertia has been circled
in the tree. Application of the guidelines presented in the preceding sections can be used to provide
one of the sets with a minimum number of measurements. The set B4 ; which is presented in Fig. 8§,
includes (ul, U, Us, Uy, Us, Ug, Ug, Ug, Ujg, U1, U2, U3, V3, V4, Vg, V7, Vo, Vig, V11 and V12)- Despite of
the fact that an infinite number of alternative measurement sets can be defined, it is noted that the
definition of these sets is not trivial at all. In fact, these measurements cannot be arbitrarily
selected because they rarely provide adequate identification of the unknown variables. This fact is
illustrated by the random analysis presented in the following section.
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Fig. 6 Geometry and material properties (framed) of a cable-stayed bridge without, Bs, and with, By,
pylon-deck connection. Units in m

—_—
u, us u Ug U u u g b
Beam T : A, A, 2 Aa;pﬁ b A ’;\{ ]”/\__.JA_\_"®__
Beam T A — — | = [ I I I I_ L. [
Iova 2 vy 3 wg 4 vy S vg 6 vy T oy 8oy, Y
B —
Deck = Horizontal Beam
? Viz Ujg
AA l Altl i
A I
. 16 | |
Stays with A known and null I -1+
I §2 3,4 5 46 47 4849410 JI1H2 13
/ 14 v v v vy v ¥ *
15

Pylon = Cantilever Beam

Minimum Measurement Set

Case Measured u Measured v

Bs. Uy, Uy, Us, Ug, Uy, Ug, Upg, Uy, Uyos Uy, Uyg V2, Vs Vs V7,5 Vi, Vo, Vios Vi V12
Bs. Uj, Uy, Uz, Uy, Ug, Uy, Ug, Ug, Ujp, U3, Ujg V2, Vi, Ve, V7, Vo, Vigs Vi Vi2, Via
Bsas Uy, Us, Uy, Ug, Ug, Ugy Ug, Ug, Uip, Upa, U3, Upg Vis Vs V7, Yo s Vios Viis Vi2, Vi3
Bsy Uy, Uy, Uy, Us, Ug, Uy, Ug, Ug, Upg, Uy, Ups Uyg V3, Vi, Vs, Vi, Vg, Vo, Vi, Vi

Fig. 7 Determination of different sets of minimum deflections (Bs.; to Bs4) from observability trees. Stays

are assumed with known A and null I



Selection of measurement sets in static structural identification of bridges using observability trees 789

s LW T, us Uy us ug ug Ug ) ST
Deck T : A, A, A,—A, —A, —A —A.—A O =
\
l]H |II
Pylon T, : | PylonT,;
= F oo
--& G- -
/
g [ uys
Deck Tyt — = — I, — ;l S e ey, (e, (R F.. _.|"_ -
\ 1 vy 2 vy 3 vo 4 5 yg, 6 y v 8 v
I Stays = 0
Bii A Stays is Known 16
c v
1 2 43 44 5 46 47 8 49,10 L1213 14
v v v v v v 4
15

Fig. 8 Determination of measurement set in By from observability trees. Stays are assumed with known
A and null I

3.4 Random set of measurements

In practice, the random selection of measurements is discouraged. Nevertheless, in this section
the random selection is presented to prove that the selection of the measurement set is not as trivial
as it might seem because the resulting system is not a linear one as polynomial equations appear.
For this reason, in this section a statistical analysis is presented to evaluate the result of selecting
measurement sets in an arbitrary way without using the guidelines that the use of observability
trees provides. This analysis has been carried out for structure B4 described in the preceding
section.

To define all the unknown stiffness variables of this structure 20 deflections or rotations are
required. In this case, 5.1x10" combinations of different arbitrary measurements appear (42
possible measurements taken 20 at a time). These deflections and rotations are randomly selected
from the degrees of freedom of the model nodes.

Fig. 9(a) shows the number of observed stiffness variables and the percentage of occurrence for
the sets of 20, 25 and 29 arbitrary measurements. Fig. 9(b). shows the mean of observed stiffness
variables for different number of selected measurements.

From the analysis of different sets of measurements randomly selected, the following points
can be drawn:

- When the number of measurements is increased, the probability to identify all the unknown

stiffnesses is increased.

- The possibility to achieve a full observability with only 20 measurements is 0.04%.
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Fig. 9 Analysis of arbitrary measurement selection in By4. (a) Occurrence percentage of observed
stiffnesses, and (b) Mean of observed stiffnesses

- With 20 measurements, there is a probability of 10% of not observing any variable.
- 29 measurements (45% more than the minimum ones) are necessary to observe all the
stiffness variables with a probability of 70%.
- With only 20 measurements, the mean of observed variables is almost 6.
- With 25 randomly selected measurements, the mean of observed variables is hardly 15.
- With 29 randomly selected measurements, the mean of observed variables does not achieve
the full observability.
The results of this example show the importance of defining conveniently the type and location
of the measurements by the observability trees. In fact, even higher measurement sets might not
provide adequate SSI of unknown parameters.

3.5 Cable-stayed bridge

In this section, the SSI of the model of a cable-stayed bridge projected in the city of Wuxi
(China) is analyzed. This bridge has a unique concrete pylon 60 m high, a concrete deck 180 m
long and 18 stay cables. The analyzed FEM presents the following geometrical simplifications:
stays have all the same cross sectional area and the deck is straight and has no camber. The
geometry of this FEM is summarized in Fig. 10(a). This FEM is based on the same simplification
hypotheses presented in Section 3.3. When these hypotheses are introduced a number of 61 nodes,
78 bars and 56 different mechanical properties (framed in Fig. 10(b)) appear.

The following additional simplifications have been carried out in the stay cables (elements
from 39 to 56): (1) Known area. (2) Null inertia and (3) Measured forces in the static test F. These
simplifications lead to a number of 76 unknown mechanical properties (A and I in elements from 1
to 38).

The SSI of this structure was analyzed by observability techniques in Lozano-Galant et al.
2014a. In this work a set of 99 deflections were required to identify all the unknown parameters.
The definition of this measurement set was far from systematic as it was based on a trial and error
analysis because at that time the potential of the recursive process was not completely understood.
The observability trees might be used to reduce the measurement set to a minimum.
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Fig. 10 Cable-Stayed bridge in Wuxi. (a) Geometry and mechanical properties, (b) Required deflections to
be measured

One of the infinite possible sets with the minimum number of measurements is presented in Fig.
10(B). To facilitate its representation, in this figure the different deflections are named (A for u and
v, B for u and C for v). This set was obtained by the algorithm described in Section 2.2. The shape
of the tree is similar to that presented in Fig. 8. Nevertheless, the number of unknown variables
discourages its graphical representation. The proposed measurement set initiates an observability
flow at node 1 that flows to the right hand side of the structure in 75 recursive steps.

The comparison of the measurement sets obtained by both methods shows the convenience of
using observability trees. In fact, the minimum measurement set (composed of 76 measurements)
has only been achieved when the observability trees were used.

4. Conclusions

One of the most important steps in any Structural System Identification (SSI) method consists
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on defining an adequate measurement set. Despite of its importance, the observability techniques
presented in the literature propose the measurement set selection by trial and error. This lack of a
systematic procedure for measurement set selection reduces significantly the applicability of the
observability techniques. To fill this gap, this paper proposes a new and innovative method, the
observability trees, for measurement set selection in SSI by observability techniques. This method
also provides a deep understanding of the physical meaning and the necessity of each of the
measurements.

The observability trees show graphically how the unknown estimates (such as bending
stiffness, areas or inertias) are successively calculated throughout the recursive process of the
observability analysis. These trees can be proved as a powerful tool for measurement set selection
in beam bridges that can also be applied in complex structures, such as cable-stayed bridges.
Nevertheless, in these structures, the strong link among structural parameters advises to assume a
set of simplifications to increase the trees intuitiveness. In addition, a set of guidelines are
provided to facilitate the representation of the observability trees in this kind of structures. These
guidelines are applied in bridges of growing complexity that are used to explain how the
characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck
connection, or the existence of stay cables) affect the observability trees. From these analyses, the
following conclusions might be obtained. Firstly, in non-inclined decks the axial and the flexural
observability trees can be independently analyzed. Observability trees of these structures can be
analyzed independently as a disconnection in a structural mechanism does not affect the other one.
On the contrary, in structures with inclined decks the axial and the flexural observability trees are
coupled for gravity loads and they need to be studied together. Secondly, in cable-stayed bridges,
the proposed simplifications enable the calculation of the measurement sets by the algorithm for
beams. In these structures, the pylon-deck connection plays an important role in the geometry of
the observability trees.

The importance of the observability trees is justified by a statistical analysis of measurement
sets randomly selected. This study shows that, in the analyzed bridge, the probability of selecting
an adequate measurement set with a minimum number of measurements at random is practically
negligible. Furthermore, even higher measurement sets might not provide adequate SSI of the
unknown parameters. Finally, to show the potential of the observability trees, a large-scale
concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements
required in the literature by a trial an error procedure shows again the advantages of using
observability trees.
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