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Abstract.  A two-dimensional multi-layered finite elements modeling of reinforced concrete structures at 
non-linear behaviour under monotonic and cyclical loading is presented. The non-linearity material is 
characterized by several phenomena such as: the physical non-linearity of the concrete and steels materials, 
the behaviour of cracked concrete and the interaction effect between materials represented by the post-
cracking filled. These parameters are taken into consideration in this paper to examine the response of the 
reinforced concrete structures at the non-linear behaviour. Four examples of application are presented. The 
numerical results obtained, are in a very good agreement with available experimental data and other 
numerical models of the literature. 
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1. Introduction 

 

The non-linear behaviour modelling of reinforced concrete structures is an important objective 

for the civil engineering researchers. The response of a structure under a loading results from a 

strong interaction between the materials effects (local non-linearity), the structures effects 

(geometry, distribution of forces and stiffness, links) and the environment effect (soil-structure 

interaction). The local non-linearities are related particularly to the formation, the opening and 

reclosure of cracks, on one hand, to the link and to the behaviour of the reinforcements (plasticity 

of steels) on the other hand. A good description of these phenomena has to be done in order to 

represent the variations of the structural stiffness and to have access to the behavior until to the 

collapse. 

In this paper we have presented a numerical method for modelling planar reinforced concrete 

structure (2D) under static and cyclical loading. This method uses multi-layered beams elements of 

which the stiffness matrix is computed using a beam discretization according to the height in 

superimposed successive layers (Fig. 1). The summation of these layers allows the calculation of 

stiffness in a correct manner and takes into account the behaviour variations. The Bernoulli 

hypothesis (section remaining plane and perpendicular to the neutral axis of the beam) confers for  
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Fig. 1 Discretisation principal of reinforced concrete structures with multi-layered beam 

 

 

different layers a uniaxial behaviour. Hence, this allows as to treat the local behaviours through 

uniaxial laws for the concrete and steel, laws that are assigned to each layer. The calculation of 

inelastic efforts is carried through to an iteration method based on the initial secant stiffness. 

A particular treatment is reserved for the layers including simultaneously concrete and steel. 

The behaviour of the mixed layers (Fig. 1) is homogenized by a mixing law permitting to calculate 

the stress layer in proportion to each material:  

  steelconcretelayer AA   1                        (1) 

where σlayer  denote axial stresses in the layer, σconcrete and σsteel axial stresses in the concrete and 

the steel respectively in the layer and A is the relative area of steel within the reinforced layer. 

The steel-concrete adherence is supposed to be perfect (identical strain of the two materials at their 

frontier: εconcrete = εsteel
). 

 
 

 
2. Formulation of multi-layered beam element 

 

The elements used are beams with tow nodes, the Bernoulli hypothesis confers on the various 

layers a uniaxial behaviour. The relation giving the element equilibrium is obtained by the virtual 

work principle, expressed in terms of generalized coordinates.  

dVFU TT  


                             (2) 

with  

  TTTT BUBU                            (3) 

where B: depends on the derived shape functions 
 

If can be introduced a behaviour law with damage and anelastic,  
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 
 D

DE
an


 




1
                          (4) 

or
 
 

  anDE   1                            (5) 

The virtual work principle takes the following form:  

  an

TTT DEBUFU   


1                      (6) 

or,  

  dVDEBF an

T




 1                         (7) 

Eq. (7) can be rewritten in the following form: 












 dVDEBUBdVDEBF an

TT )1()1(                 (8) 

By putting:  

 BdVDEBK T  


1                            (9) 

and 

  dVDEBF an

T

an  


1                          (10) 

We endup with the final system to solve:  

anFKUF                               (11) 

K is the element stiffness matrix:  

BdxkBK

l

s

T


0

                            (12) 

The section stiffness matrix is expressed as follows:  











2221

1211

kk

kk
ks                              (13) 
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with 

 
sss

dsEykEydskkEdsk 2

22211211
                (14) 

The discretization of the cross-section in superimposed layers according to the Bernoulli 

hypothesis allows to be obtaining the following stiffnesses (Belmouden 2004):  

k

nlayers

k

kkk

nlayers

k

kkk

nlayers

k

k AyEkAyEkkAEk 



1

2

22

1

2112

1

11         (15) 

Ek, Ak and yk are respectively the Young modulus, the layer area and the centre position layer to 

the reference axis.  

 
 
3. Damage model for the concrete (Unilateral model) 

 

The unilateral model (Laborderie 1991, Kotronis 2000, Davenne et al. 2003) is an isotropic 

model where two scalar damage variables, are used to describe the consequences of the evolution 

of the mechanical characteristics of material, the irreversible strains and the unilateral effect when 

the sign of the stresses changes. Consdering the partition of the strain tensor as the sum of an 

elastic part and an anelastic part, calculated as follows:  

ane                                (16) 

   
  ITr

EDEDE
e 


 









02010 11
               (17) 
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


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
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




                   (18) 

where: E0 
is the initial Young modulus and ν the Poisson ratio.‹•›

+
 denotes the positive part of a 

tensor, D1 and D2  are scalar damage variable in tension and scalar damage variable in compression 

respectively (their evolution between 0 – i.e, healthy material- to 1 - i.e, broken material- is related 

to the local elastic energy ) , 
1 et 

2 are material parameters to be identified in order to describe 

the evolution of the anelastic strains can be described,  f  is the crack closure function which 

cancels the anelastic strains of the tension during the recovery of stiffness and f  the crack 

closure stress :  

   
 

1,0 










f
Tr                        (19) 
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       
110, 














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




f

f

Trf
Tr








                  (20) 

      1.0,   fTr f                      (21) 

The evolution laws for the damage are finally written as:  

   iB

iii

i
YYA

D
01

1
1


                        (22) 

with Yi  is the variable associated to damage (energy refund ratio, tension or compression). 

Ai and Bi are material constants.  

Y0i is the
 
damage threshold (tension or compression). 

The stress-strain relation-ship and the crack closure function in the uniaxial model can be 

written as follows:  

     
 

 20

22

10

11

2010 1111 DE

D
F

DE

D

DEDE 











 



          (23) 

  01   siF                            (24) 

  01  



 f

f

siF                      (25) 

  fsiF   0                        (26) 

 

 

 

 

Fig. 2 Uniaxial response of the unilateral model 
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If the shearing strain is not negligeable the biaxial behaviour is reduced to the stresses xx and 

xy , for each layer of the beam (Timoshenko) element. The non-linear system to solve is written 

(Dubé 1994, Kotronis 2000):  

   













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











yyyx

xyxx

yyyx

xyxx
DD









21

1 ,,                  (27) 
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                   (29) 

 

4. The behaviour of steel 

 

In order to describe the non-linear behaviour of reinforcement, one chooses the classical 

plasticity model which take into account the non-linear kinematic hardening (Fig. 3) is used. 

The free potential energy for this model is expressed as follows (Kotronis 2000, Kotronis 2005 

and al, Davenne et al. 2003):  

     :
2

1
::

2

1
bC pp                   (30) 

 

 

 

 

Fig. 3 Cyclic response of the plasticity steel model 
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With C is the elasticity tensor and   an internal variable associated with the kinematic 

hardening. The constitutive laws defined by derivation of this energy give:  

 
pC 




 




 :                           (31) 





bX 




                             (32) 

where X is the stress-like hardening variable. 

The threshold function of the model has the form: 

  yXdXXJf   :
4

3
2                      (33) 

where b ,d and σy are the model parameters to identify. 

The reinforcement has a privileged orientation and the uniaxial law is sufficient to reproduce its 

behaviour (Kotronis 2000). The reinforcement can be considered as concentrate or diffuse in the 

concrete elements. In the first case, elements bars with non-linear behaviour, whose position and 

section coincide with the position and section of real reinforcement, are used. In the second case 

the behaviour of the mixed layers (Fig. 1) is homogenized by a law of mixtures to calculate the 

stress layer in proportion to each material (The adherence steel-concrete is supposed perfect; i.e, 

identical strain on the two materials at their frontier). Thus, in each layer (Mazars 2001): 

steelconcrete                               (34) 

  steelbaconcreteba ECECE  //1                   (35) 

  steelanbaconcreteanbaan CC ././1                    (36) 

B

A
C ba /                                 (37) 

where: E : is the homogenized Young modulus (steel + concrete).  

Ca /b : is the ratio surface of reinforcement. 

A : is the relative steel air within the reinforced layer. 

B : is the relative concrete air within the reinforced layer. 

εan.concrete : is the anelastic concrete stain. 

εan.steel  : is the anelastic steel stain; and 

εan  : is the anelastic strain homogenized of the reinforced layer (steel + concrete).  

 

 
5. Applications 

 
5.1 Modelling of a reinforced concrete beam (Benchmark MECA(Ghavamian 2001)) 
 

In order to highlight the results which can be obtained with the multi-layered elements 
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modelling , the MECA benchmark will be used. Considering a beam of a rectangular section in 

concrete reinforced by steels (Fig. 4), subjected to a 3 points bending with a static loading of 

increasing intensity applied to the beam medium. The same example was studied by Ragueneau 

(2006). 

The MECA beam is characterized by its twinge, it behaves as bending beam. The influence of 

shearing is negligible and the multi-layered beam of Bernoulli kinematics modelling, with uniaxial 

laws behaviour for the concrete and steel, is sufficient (Kotronis 2000).  

The concrete behaviour follows the damage Laborderie model (unilateral law behaviour). The 

concrete characteristics are represented in the table 1. 

The steel behaviour is supposed elastoplastic with kinematic hardening with a Young’s modulus 

of 200000 MPa and an elastic limit equal to 400 MPa. 

Fig. 5 shows the numerical model (2D) of MECA beam, carried out by the present modelling. 

The beam is modelled by 10 beam elements with 2 nodes and 2 integration points, the section of 

each element is discretized by 10 superimposed layers, including 8 out of concrete alone and 2 

simultaneously including concrete and steel.   

Fig. 6 shows a comparison of the load-deflection response between the present numerical 

simulation and the experimental and numerical results of Ragueneau (2006). 

 The present model can be compared to the references modes, i.e, Ragueneau (2006) and the 

experimental model.   

 

 

 
Fig. 4 Reinforced concrete beam of MECA benchmark 

 

Table 1 Concrete characteristics for this model (Moulin.2012) 

Young’s modulus 37272 e
6
 Pa 

Density  2400 kg/m
3
 

Damage threshold in tension  310 Pa 

Damage threshold in compression   7000 Pa 

Damage threshold in compression   9e-3 Pa
-1

 

Damage parameter in compression    5.30e
-6

 Pa
-1

 

Parameter for tension   1.20 

Parameter for compression  2.00 

Permanent strain activation in tension   1.00e
6
 Pa 

Permanent strain activation in compression   -40e
6
 Pa 

Crack closure stress 3.50e
6
 Pa 
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Fig. 5 MECA beam Discretization in  multi-layered element 

 

 

 
 

Fig. 6 Load-displacement curve of MECA beam 

 

 

The first part of the load-displacement curve established by the present modelling, is linear 

until a force of 45000 N. this force is reached for a displacement of 2.04 mm. The beam stiffness is 

then of 45000/0.00204 = 22080471.1N/m. The end of the linear phase indicates the apparition of 

the bending first crack. In the second part of the curve, the concrete is in the non-linear field but 

the reinforcements did not yet plasticize. Every change of the slope corresponds to a crack 

therefore a redistribution of the efforts in the beam. The steel plasticizations occur for a 

displacement of 0 .01719 m, corresponding to a load of 220000 N.  
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Figs. 7, 8 and 9 progressively show the damage cards due to tension during the loading. The 

first state damage to appear for a displacement of 0.001431m Fig. 7), it is localized in the beam 

mid-span. This damage is developed along the lower part of the beam (Fig. 9). 

Another beam was modelled with an imposed displacement applied at mid-span (Fig. 10). The 

beam is medelled by 16 beams elements with 2 nodes and 2 integrations points, the section of each 

element is discretized by 20 superimposed layers, of which 18 in concrete alone and 2 

simultaneously including concrete and steel (Fig. 11). A comparison between the present results 

and those of Moulin (2012) obtained by the Aster’s code was established. 

The concrete behaviour follows the damage Laborderie model (unilateral law behavior). The 

concrete characteristics are represented in table 1. 

This beam has the same concrete and steel characteristics as the previous case. 

The evolution of the support reaction terms of the mid-span displacement of the beam is shown 

in Fig. 12. In comparison with the results of Moulin (2012) model, there is a very good agreement 

between the two results.  

 

 

 
Fig. 7 Damage chart in tension  «D1 » for 0.001431m deflection 

 

 
Fig. 8 Damage chart in tension  «D1 » for 0.00204m deflection 

 

 
Fig. 9 Damage chart in tension  «D1 » for 0.01719m deflection 

 

  
Fig. 10 reinforced concrete beam of  MECA benchmark 
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Fig. 11 Numerical model beam  

 

 

       

Fig. 12 Support reaction, as a function of the displacement at the mid-span of the beam 

 

 

Fig. 13 damage chart in tension «D1 » 
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The damage chart in tension at the end of the loading is shown in Fig. 13.The damage indicator 

varies between 0 and 1. By filtering these values between 0.9 and 1, we remove the micro-cracks 

in order to obtain an image of the macro-cracks. The beam is mainly damaged in the lower part. 

 
5.2 Column buckling 
 
The purpose of this example is to perform a modelling of a reinforced concrete column with 

rectangular section subjected to an axial loading with an eccentricity cme 5.1 (Fig. 14(a)). The 

same column was studied experimentally by Fouré (1978) and numerically discretization by Franz 

(1994) with multi-fiber elements (Willam-Warnke behaviour law).  

In this paper, the column is modeled by 11multi-layered elements with 2 nodes and 2 

integration points. The section of each element is discretized by 06 superimposed layers, of wich 4 

in concrete alone and 2 in concrete and steel (Fig. 14(b)). The eccentric axial load is modelled by a 

centered axial load F and a bending moment eFM   . The weight of the column is neglected. 

The concrete behaviour obeyed the Laborderie damage model (unilateral law behaviour). The 

characteristics considered for the concrete are shown on table 2.  

The steel behaviour is supposed elastoplastic with kinematic hardening. The steels 

characteristics used are: 

Young modulus: 200000 MPa;  

Elastic limit: 400 MPa. 

Fig. 15, shows the load variation according to the horizontal displacement of the top of the 

column. This figure gives a comparison between the results obtained by the present modelling, the 

experimental results of Fouré (1978) and those obtained by Franz (1994). As it can be seen from 

Fig. 15, there is a good agreement between these models. 

 

 

  
(a) Geometry and loading system (b) numerical model (2D) 

Fig. 14 Geometry and 2D numerical model of Fouré Column 
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Table 2 Concrete characteristics for Laborderie model 

Young’s modulus 30000 e
6
 Pa 

Density   2500 kg/m
3
 

Damage threshold in tension  220 Pa 

Damage threshold in compression   9000 Pa 

Damage threshold in compression   9e
-3

 Pa
-1

 

Damage parameter in compression    5.30e
-6

 Pa
-1

 

Parameter for tension   1.20 

Parameter for compression  1.40 

Permanent strain activation in tension   1.00e
6
 Pa 

Permanent strain activation in compression   -40e
6
 Pa 

Crack closure stress 1.30e
6
 Pa 

 

 

 

Fig. 15 Load-displacement of the top column 

 
 
5.3 Cyclic response modelling of a reinforced concrete beam 
 
This example is used to validate the cyclic bending behaviour of a reinforced concrete beam   

(Fig. 16(a)). The loading is composed of an amplitude cycle of 1mm followed by an amplitude 

cycle of 2 mm (Fig. 16(b)).  

The model used in this paper is a structure of 20 beams elements with 2 nodes and 2  
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(a) Geometry and reinforcement beam (b) The loading history 

Fig. 16 Geometry and numerical model (2D) 

 

 
Fig. 17 Beam discretisation in multi-layered elements  

 
 

 
 

Fig. 18 Load-displacement response for different models  
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(a) Loading state  A  (b) Loading state B  

Fig. 19 Damage chart in tension «D1 » for the first cyclic loading  

 

  
(a) Loading state C (b) Loading state D 

Fig. 20 Damage chart in tension «D1 » for the second cyclic loading  

 

 

integrations points. The section of each element is discretized by 10 superimposed layers, 

including 8 out of concrete alone and 2 simultaneously including concrete and steel (Fig. 17). 

The same concrete and steel behaviour as the previous examples are used in this case. 

The cyclic response of the beam shown on the Fig. 18, are comparied with the test results. As it 

can be seen from this figure, a very good coherence between the two results. 

This figure shows also presents a comparison of the load-displacement response obtained by 

the present simulation (modeling by multi-layered elements with a Laborderie law) and that 

obtained by Matallah (2009). The two numerical models gave similar results in first cyclic loading. 

However, for the second cyclic loading, a light differences are observed.  

Fig. 19 presents the damage chart of the beam for the first cyclic loading. In the loading state 

« A » the higher part of the beam is damaged (Fig. 19(a)). The loading state « B » corresponds to 

an opposed loading, the damage state initially product is always stored whereas a new damage 

state is created in the lower part of the beam (Fig. 19(b)). 

The damage chart of the beam during the second cyclic loading is shown in Fig. 20.   

 
 
6. Conclusions 
 

A simple modelling of the non-linear behaviour of the reinforced concrete structure is presented. 

It uses a multi-layered beams elements which obeyed the Bernoulli hypothesis to confer to the 

various layers an uniaxial behaviour. It also allows the description of the structures damage state 

during a loading.  

Four examples of applications were presented. The first one is a beam subjected to a 3 points 

flexion with static loading of increasing intensity applied to the mid-span of the beam (MECA 

Benchmark), the second one was a beam subjected to 3 points flexion with an imposed 

displacement at mid-span of the beam. The third, is a column buckling test (Fouré column) and the 

fourth of a beam in cyclic bending. According to these examples it was noticed:   

 A very good coherence between the present numerical results and the experimentation 

results. 

 A good concordance between the results of present numerical models and those of other 

numerical models of references. 
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 The non-linear analysis reflects the real behavior of reinforced concrete structures.  

 If the material is discharged after having undergone a damage state, it restores its stiffness, 

the crack previously open are closed again but the internal structure of material remains always 

damaged.    
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