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Abstract.  Fibre-added concretes are frequently used in large site applications such as slab and airports as 
well as in bearing system elements or prefabricated elements. It is very difficult to determine the mechanical 
properties of the fibre-added concretes by experimental methods in situ. The purpose of this study is to 
develop an artificial neural network (ANN) model in order to predict the compressive and bending strengths 
of hybrid fibre-added and non-added concretes. The strengths have been predicted by means of the data that 
has been obtained from destructive (DT) and non-destructive tests (NDT) on the samples. NDTs are 
ultrasonic pulse velocity (UPV) and Rebound Hammer Tests (RH). 105 pieces of cylinder samples with a 
dimension of 150 × 300 mm, 105 pieces of bending samples with a dimension of 100x100x400 mm have 
been manufactured. The first set has been manufactured without fibre addition, the second set with the 
addition of %0.5 polypropylene and %0.5 steel fibre in terms of volume, and the third set with the addition 
of %0.5 polypropylene, %1 steel fibre. The water/cement (w/c) ratio of samples parametrically varies 
between 0.3-0.9. The experimentally measured compressive and bending strengths have been compared 
with predicted results by use of ANN method. 
 

Keywords:  fibre-added concrete; hybrid fibre; compressive; bending, non-destructive test; artificial neural 

network 

 
 
1. Introduction 

 
Fibres are frequently used in structural and non-structural concretes as it improves many 

mechanical properties of concrete such as compressive strength, bending strength, ductility and 
toughness. It is a difficult and effort-requiring process to determine the behaviours of fibre-added 
concretes by use of destructive experimental methods such as core - taking method. For that reason, 
in order to determine the mechanical properties of the concretes, it is more advantageous to use 
NDT methods. NDT methods which give no harm to the structure and structural elements are 
frequently used in recent years in order to assess the quality of the concrete. RH and UPV methods 
are most commonly used NDT methods (Komlos et al. 1996; Demirboğa et al. 2004; Hoła and 
Schabowicz 2005; Kewalramani and Gupta 2006; Yaman et al. 2006; Ulucan et al. 2008; Liu et al. 
2009; Trtnik et al. 2009; Bilgehan and Turgut 2010; Bilgehan and Turgut 2010; Shariati et al. 2011; 
Mazloom and Yoosefi 2013; Sheena et al. 2013, Ercikdi et al. 2014). 

ANN was commonly used to predict strength of concrete having different properties with 
various tests. Contrary to the traditional prediction methods, ANN can be easily adapted new data 
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and continuously re-trained. ANN were frequently carried out together with NDT and easily 
reached mechanical properties of concrete.   

Hoła and Schabowicz (2005) researched the compressive strength of concrete by using NDT 
methods. A data set based on results of representing a wide range of strength concretes by different 
NDT methods such as UPV, RH and the pull-out test was used to train and test for an ANN. Finally, 
it is proposed to determine the compressive strength of concrete by using several NDT methods. 
Altun et al. (2008) studied the usability of ANN to predict the compressive strength of steel fibre 
added lightweight concrete. For this purpose, normal strength lightweight concrete with 350, 400, 
and 450 kg/m

3
 cement dosages were produced. The steel fibres were added to each specimen at the 

various dosages. The test results obtained from the ANN were compared with the multi linear 
regression technique based on mean square error, mean absolute error, and correlation coefficient 
criteria. ANN predicted the compressive strength of steel fibre added lightweight concrete better 
than did the multi linear regression technique. Trtnik et al. (2009) aimed to easily and reliably 
predict the compressive strength of concrete by using only the UPV value and some mix 
parameters of concrete. The relationship between UPV, static and dynamic Young’s modulus and 
shear modulus was also analysed. Based on the experimental results, a numerical model was 
established with ANN. ANN was successfully used in modelling the velocity–strength relationship. 
Bilgehan and Turgut (2010a) determined relationship between concrete compressive strength, 
UPV and density values by using the experimental data obtained from many cores taken from 
different reinforced concrete structures by using ANN. It was shown that ANN approach could be 
used effectively to predict the compressive strength of concrete by using UPV and density data. 
Shariati et al. (2011) established a correlation between the compressive strengths obtained from 
compressive tests, UPV and RH tests. These tests had been used to determine the concrete quality 
by applying regression analysis models between compressive strength of in-situ concrete on 
existing building and test values. The test results showed that the RN method was more efficient in 
predicting the strength of concrete. Besides, a combined method for the above two NDT tests were 
used. The more reliable results that were closer to the true values were obtained with combined 
methods. Ercikdi et al. (2014) presented the strength and UPV properties of cemented paste 
backfill produced from two different mill tailings. It was concluded that the UPV test could be 
suitably used for the rapid estimation of the strength and quality of cemented paste backfill 
samples even using small samples.  

In this study, an ANN model has been developed in order to predict the compressive and 
bending strengths of the fibre-added and non-added concretes by use of DT and NDT methods. 
w/c ratio, steel and polypropylene fibre ratio which have effects on the mechanical properties of 
the concrete have been considered as variables and a wide range of data network has been 
investigated. The UPV and RN values of the samples have been determined by use of NDT 
methods. Then compressive and bending strengths of these samples have been obtained by use of 
DT tests. Finally, by means of the ANN model that was developed, compressive and bending 
strengths of fibre-added and non-added concretes have been predicted by use of NDT methods. A 
good degree of coherency was observed between predicted and measured values. The model that 
was developed makes it possible to easily predict the compressive and bending strengths of the 
fibre-added and non-added concretes by use of non-destructive tests instead of making destructive 
tests on the structure.  
 

 
2. Experimental program 

 

2.1 Materials and mix proportions 
 
In this study, 105 pieces of cylinders, 105 pieces of bending samples with different w/c ratios 

have been manufactured in the Celal Bayar University laboratories by the author. w/c ratios have 
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been changed as 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. In addition, concrete was added with steel and 
polypropylene fibres at the production stage. Steel fibre was added to the concrete by %0.5 
and %1, and polypropylene fibre by %0.5 in terms of volume. For each set of the concrete, 5 
pieces of cylinders, 5 pieces of bending samples have been manufactured. The geometry of steel 
fibres was hooked end type. The fibre length (l) in concrete was 60 mm, the diameter (d) was 0.75 
mm, aspect ratio (l/d) was 80. Polypropylene fibres are homopolymer type and yarn length is 18 
mm. For the production of concrete, 0-4 mm natural sand for fine material and 4-8 mm and 8-16 
mm crushed stone has been used. Polycarboxylic based superplasticizer admixture was used for 
obtaining good workability in fresh mix. Portland cement has been used for concrete production. 
Dry materials have been mixed for 3 minutes, and then polypropylene and steel fibres have been 
added in the mixture, respectively. Finally water has been added. The materials and ratios used for 
concrete production have been shown in Table 1. Non-fibre concrete mixtures have been named as 
REF and fibre concrete mixtures as HF (Hybrid Fibre). The numbers following “HF” represent w/c 
and steel fibre ratios, respectively. All samples have been cured under + 20 

o
C until the end of 28 

days.  
 

 

Table 1 Materials and ratios used for concrete production 

No Mix Code 
Sand 

(kg/m
3
) 

4-8 

(kg/m
3
) 

8-16 

(kg/m
3
) 

Water 

(kg/m
3
) 

Cement 

(kg/m
3
) 

W/C 

Steel 

Fibre 

% 

in 

volume 

Polypropylene 

Fibre 

% 

in volume 

1 REF0.9/0 1025 410 610 170 188 0.9 0 0 

2 HF0.9/0.5 1025 410 610 170 188 0.9 0.5 0.5 

3 HF0.9/1.0 1025 410 610 170 188 0.9 1.0 0.5 

4 REF0.8/0 1005 405 605 170 212 0.8 0 0 

5 HF0.8/0.5 1005 405 605 170 212 0.8 0.5 0.5 

6 HF0.8/1.0 1005 405 605 170 212 0.8 1.0 0.5 

7 REF0.7/0 995 400 595 170 242 0.7 0 0 

8 HF0.7/0.5 995 400 595 170 242 0.7 0.5 0.5 

9 HF0.7/1.0 995 400 595 170 242 0.7 1.0 0.5 

10 REF0.6/0 975 390 585 170 282 0.6 0 0 

11 HF0.6/0.5 975 390 585 170 282 0.6 0.5 0.5 

12 HF0.6/1.0 975 390 585 170 282 0.6 1.0 0.5 

13 REF0.5/0 945 380 565 170 340 0.5 0 0 

14 HF0.5/0.5 945 380 565 170 340 0.5 0.5 0.5 

15 HF0.5/1.0 945 380 565 170 340 0.5 1.0 0.5 

16 REF0.4/0 905 360 545 170 420 0.4 0 0 

17 HF0.4/0.5 905 360 545 170 420 0.4 0.5 0.5 

18 HF0.4/1.0 905 360 545 170 420 0.4 1.0 0.5 

19 REF0.3/0 835 335 500 170 560 0.3 0 0 

20 HF0.3/0.5 835 335 500 170 560 0.3 0.5 0.5 

21 HF0.3/1.0 835 335 500 170 560 0.3 1.0 0.5 
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2.2 Experimental method 
 

In this study, 2 DT and 2 NDT tests, in total 4 different tests have been performed: uniaxial 

compressive test, 4 point bending test, RH and UPV tests. Some of the samples that have been 

subjected to test have been shown in Fig. 1(a). On the samples, first of all RH and UPV tests-

which are non-destructive-have been applied and then cylinder and bending samples have been 

subjected to destructive uniaxial compressive and four point bending tests, respectively as 

illustrated in Fig. 1.b and 1.c. Non-destructive UPV and RH tests have been shown in Fig. 1.d and 

1.e, respectively (Hoła and Schabowicz 2005). 

The velocity of ultrasonic pulses travelling in a solid material is related to the density and 

elastic properties of the material. Although UPV method has some difficulties; it is one of the most 

popular non-destructive tests of today. The UPV equipment contains a transmitter, a receiver and 

an electronic clock. The velocities of P waves were calculated from the measured travel time and 

the distance between the transmitter and receiver. In this study, UPV tests have been made in 

accordance with ASTM C 597-97 standard. Measurements has been performed on two faces of 

elements by direct (measure in direct) method.  

The RH test is a convenient NDT. The surface of hardened concrete is struck with the hammer, 

and concrete compressive strength is predicted via the surface rebound value. When the RH test is 

performed, kinetic energy from the impact and amount of lost kinetic energy affect the RN. 

Rebound energy is correlated with the concrete strength and rigidity (Liu et al. 2009). Rebound 

tests of the concrete specimens were performed using a digital hammer apparatus according to 

ASTM C 805. At least 20 measurements were taken at different points upon each sample. 

The compressive strength properties of the concrete mixtures were determined according to 

standards proposed by ASTM C 39. In order to carry out the uniaxial compressive tests of 

concretes with or without fibre, 2500 kN capacity- hydraulic press machine has been used. A total 

of 105 pieces of 150×300 mm cylinder samples were produced and subjected to uniaxial 

compressive test. The compressive strengths that were obtained as a result of tests have been given 

in Table 2. Four point bending test has been performed by use of 100 kN capacity-bending test 

device. 105 pieces of bending samples (dimensions:100×100×400 mm) have been manufactured. 

The bending strengths obtained as a result of tests have been given in Table 2.  

In the samples with a low w/c ratio which have less porosity as a result of tests, UPV is high, 

whereas the addition of fibres in the concrete decreases the UPV. Despite RN has been impacted 

from the addition of fibres into the concrete even to a little scale, it has been rather impacted from 

w/c ratio and it has increased when this ratio decreased.  

The decrease of w/c ratio, as expected, increases the compressive and bending strengths of the 

concrete. Addition of steel and polypropylene fibres into the concrete has increased both the 

compressive and bending strength of the concrete. In the samples whose steel fibre ratio is %1 and 

w/c ratio is between 0.7 and 0.9, compressive strengths of the samples has increased by an average 

of %21 comparing to reference samples, and in the samples whose fibre ratio is %0.5 by an 

average of %10. Compressive strengths has increased by an average of %8 and %14 in the samples 

whose w/c ratio is between 0.3 and 0.6, steel fibre ratio is %1 and %0.5, respectively. It has been 

seen that the fibres are more effective on the compressive strengths of low strength concretes.  

Bending strengths increase as the steel fibre ratio increases. The bending strengths of the 

samples which have %1 steel fibre have increased by an average of %53 comparing to reference 

samples, and the bending strengths of the samples which have %0.5 steel fibre by an average of 
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%16. With the impact of the steel fibre, bending samples have been failed in a ductile manner. The 

fibre impact is more obvious on the bending strengths of the samples with a low w/c ratio. Fibres 

influence the bending strength rather than compressive strength of concrete.  
 

 
Table 2 Results of DT and NDT tests  
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R
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1 
REF0.9/

0 

16.6 

15.2 

17.4 

16.1 

15.7 

2.61 

2.67 

2.55 

2.49 

2.64 

27 

25 

27 

27 

26 

3865 

3840 

3875 

3850 

3820 

12 
HF0.6

/1.0 

34.1 

34.3 

35.2 

35.3 

34.2 

7.05 

7.50 

7.38 

6.90 

6.75 

38 

38 

39 

39 

39 

3720 

3730 

3790 

3798 

3760 

2 
HF0.9/ 

0.5 

18.8 

20.0 

17.9 

18.3 

19.1 

3.30 

3.45 

3.54 

3.15 

3.24 

28 

29 

28 

28 

29 

3027 

3102 

3010 

3040 

3050 

13 
REF0.

5/0 

39.4 

40.1 

38.5 

37.7 

38.1 

5.49 

5.94 

5.70 

5.25 

5.10 

41 

41 

40 

41 

39 

4260 

4280 

4255 

4250 

4260 

3 
HF0.9/ 

1.0 

23.4 

22.8 

23.9 

22.1 

22.9 

4.44 

4.65 

4.26 

4.35 

4.50 

31 

31 

32 

31 

32 

3220 

3200 

3250 

3180 

3190 

14 
HF0.5

/0.5 

43.8 

45.5 

43.5 

45.7 

44.9 

6.33 

6.78 

6.00 

5.79 

6.90 

43 

45 

44 

45 

44 

4071 

4126 

4070 

4150 

4100 

4 
REF0.8/

0 

24.1 

22.1 

22.9 

24.1 

23.2 

3.15 

3.33 

3.03 

3.27 

3.23 

29 

28 

28 

30 

29 

3967 

3925 

3935 

3980 

3970 

15 
HF0.5

/1.0 

42.8 

41.0 

41.7 

42.9 

40.6 

7.95 

8.34 

8.40 

7.59 

7.44 

43 

42 

42 

43 

43 

4005 

3870 

3950 

4020 

3800 

5 
HF0.8/ 

0.5 

25.9 

26.7 

24.9 

26.2 

25.3 

3.66 

3.90 

3.48 

3.81 

3.36 

31 

32 

31 

31 

32 

3367 

3370 

3280 

3390 

3410 

16 
REF0.

4/0 

45.2 

44.1 

43.8 

44.6 

42.9 

6.45 

6.87 

6.15 

6.09 

6.60 

43 

45 

43 

43 

43 

4410 

4390 

4370 

4380 

4320 

6 
HF0.8/ 

1.0 

26.8 

27.8 

26.2 

28.1 

26.9 

5.37 

5.64 

4.95 

5.10 

5.70 

35 

35 

33 

35 

33 

3507 

3550 

3490 

3570 

3502 

17 
HF0.4

/0.5 

50.0 

48.8 

50.7 

50.2 

49.1 

7.59 

7.20 

7.98 

7.80 

7.50 

47 

47 

48 

49 

49 

4310 

4290 

4360 

4350 

4305 

7 
REF0.7/

0 

28.5 

29.1 

29.5 

27.5 

27.9 

4.05 

4.35 

4.47 

3.75 

3.87 

33 

34 

34 

33 

33 

4021 

4090 

4120 

4020 

4010 

18 
HF0.4

/1.0 

47.1 

48.7 

46.8 

47.6 

48.1 

9.24 

9.66 

9.60 

8.94 

8.85 

45 

48 

45 

46 

46 

4260 

4310 

4250 

4300 

4320 
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Table 2 Continued 
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8 
HF0.7/ 

0.5 

29.4 

29.7 

28.9 

30.6 

30.9 

4.56 

4.26 

4.17 

4.92 

4.95 

33 

33 

32 

33 

33 

3553 

3520 

3490 

3610 

3602 

19 
REF0.

3/0 

51.5 

50.1 

52.6 

49.8 

50.8 

7.14 

7.50 

7.59 

6.90 

6.72 

45 

45 

46 

45 

46 

4658 

4620 

4670 

4605 

4625 

9 
HF0.7/1.

0 

32.1 

31.1 

32.9 

31.0 

33.0 

6.24 

6.48 

6.60 

5.94 

5.85 

37 

36 

36 

37 

37 

3650 

3640 

3690 

3600 

3710 

20 
HF0.3/

0.5 

57.1 

58.8 

59.1 

57.9 

58.6 

8.40 

8.82 

8.16 

8.10 

8.64 

50 

52 

52 

52 

50 

4440 

4490 

4520 

4455 

4470 

10 
REF0.6/

0 

32.7 

32.9 

31.2 

33.3 

33.1 

4.68 

4.50 

4.35 

4.89 

5.04 

35 

35 

35 

36 

36 

4153 

4180 

4110 

4235 

4230 

21 
HF0.3/

1.0 

55.5 

54.7 

53.9 

56.1 

55.9 

10.23 

10.62 

10.50 

9.96 

9.84 

50 

49 

49 

50 

49 

4444 

4418 

4400 

4470 

4430 

11 
HF0.6/0.

5 

37.2 

35.6 

36.2 

36.9 

38.1 

5.13 

5.40 

5.58 

4.74 

4.89 

39 

39 

38 

38 

40 

3877 

3752 

3780 

3790 

3895 

      

 

   
a) b) c) 

 
                   d) e) 

Fig. 1 a) Test samples, b)uniaxial compressive, c) bending tests, d) UPV test, e) RH test 
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3. Artificial neural networks 

 

3.1 Application of ANNs for training and testing 

 

ANNs are the artificial intelligence technique developed with the inspiration from neural 

system’s properties such as ability to derive, define and predict information. ANNs, as in 

biological neural systems, consist of cells coming together. An ANN structure consists of 3 main 

layers: input, hidden and output. 

Input and output layers contain the date about the incident or problem. The number of neurons 

in the hidden layer and number of hidden layers are decided by trial and error during the training 

of the network. Simplified model of artificial neuron have been given in Fig. 2.  

x
m
 represents inputs, w

m
 represents weight coefficients, netj represents the net information 

function which determines the transmittal of information in a network from one layer to another 

layer, and yi represents outputs. The net functions which are obtained as the total, minimum, 

maximum or factors of the weighted inputs refer to the impacts of the whole of these inputs on this 

cell. In the overall of the modelling studies made, total net function which is found as the total of 

the weighted inputs is being used. Total net function has been presented in (1): 

                              (1) 

The activation function which converts net input values into net output values can be a linear or 

non-linear function. In this study, sigmoid function has been used which is frequently used in 

engineering problems (Kewalramani and Gupta 2006, Altun et al. 2008) and which produce net 

outputs between 0 and 1. Sigmoid function is monotonically increasing, continuous and nonlinear. 

Sigmoid function has been given in (2): 

                            (2) 

In this study, feed-forward back-propagation training algorithm has been applied which is 

frequently seen in literature (Bilgehan and Turgut 2010a, Tanarslan et al. 2012). This algorithm 

consists of two phases: feed forward and back propagation. In feed forward, input values are 

standardized by activation function and net values are obtained as per the net function used and net 

value is converted into the network’s output value by activation function. When the data obtained 

from the network are compared with the data available, if the errors are big, network shifts to back 

propagation phase. In this study, generalised delta rule has been used in back propagation phase. 

Delta learning rule is based on changing the weight coefficients in order to minimise the errors. 

With the new weight coefficient values, network re-calculates the output values. When the error 

reaches the desired limit, training of the network is completed. The trained network is tested with 

the input and output values which have not been previously used. Due to property of the 

logarithmic sigmoid activation function, all input and output values have been normalized between 

0.1–0.9 by use of (3) as 

                      (3) 

n

i ij
i 1

net j x w



  netnet jj

1
f

1 e





 

 

 
 



i min
i

max min

0.8 x x
z 0.1

x x
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Fig. 2 Simplified model of artificial neuron 
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Compressive strength
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Fig. 3 Structure of the network 

 

 

The unidirectional, multilayer feed-forward back-propagation and the Levenberg-Marquardt 

network were selected based on researches in the literature (Hoła and Schabowicz 2005, Altun et 

al. 2008). The Levenberg–Marquardt training algorithm was used for adjusting the weights. The  

adaptive learning rates were used for the goal of faster training speed and solving local minima 

problem. The network structure, five inputs, one hidden layer having 10 neurons and 30 epochs for 

training were used. The input data consisted of w/c ratio, ratio of polypropylene fibre, ratio of steel 

fibre, RN and UPV. The output data consisted of compressive and bending strengths. The data 

were randomly divided into data for training (70% of the total data) and testing (30% of the total 

data) the neural network. In ANN application, the neurons number in hidden layer was 

parametrically changed ranging from 1 to 10, optimum neuron number was determined and all of 

determination coefficients (R
2
) obtained from training are shown in Table 3. The network structure 

is shown in Fig. 3. 

 

3.2 Results and Discussions 

 

The performance of the network has been assessed with the determination coefficients (R
2
) 

calculated between the experimental and predicted data sets. The performance of training and test 

data has been given in Fig. 4-5. A good learning process depends on the number of hidden layer 
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and the number of neurons in the hidden layer. The function of the neurons in the hidden layer 

reveals the relationship between the input and outputs of network. R
2 

values pertaining to the 

compressive and bending strengths that have been obtained as per parametrically changed neuron 

numbers have been given in Table 3. In ANN application, maximum R
2 
values have been reached 

when there are 10 neurons in the hidden layer, by making 30 epochs and with μ value 0.02. μ is the 

learning parameter of Levenberg-Marquardt training algorithm. In this structure, R
2
=0.995 in 

compressive, R
2
=0.982 in bending.  

In the training period of the network, scatter diagrams between the measured and predicted data 

sets have been illustrated in Fig. 4. The relationship between compressive data has been illustrated 
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Fig. 4 Performance of training data set 
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Fig. 5 Performance of test data set 

 

Table 3 Determination coefficients (R
2
) obtained from training  

Neurons 

in hidden layer 
1 2 3 4 5 6 7 8 9 10 

R
2 

in Compressive  
0.944 0.944 0.953 0.990 0.989 0.994 0.988 0.988 0.992 0.995 

R
2 

in Bending 
0.922 0.921 0.925 0.976 0.982 0.981 0.975 0.974 0.979 0.982 
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in Fig. 4(a), the relationship between bending data has been illustrated in Fig. 4(b). when Fig. 4 is 

examined, it is seen that scattering between measured and predicted compressive strengths is little. 

In other words, these values are on a 45
o
 line. Similar results were obtained for bending strengths. 

It has been seen that there is a good degree of coherency between the measured and predicted data 

sets. At the training phase, measured and predicted compressive and bending strength 

determination coefficients have been found 0.995 and 0.982 respectively. Also, a good degree of 

coherency was obtained between the data sets allocated for test (Fig. 5). Fig. 5(a) indicates the 

relationship between the measured and predicted compressive strengths and Fig. 5(b) indicates the 

relationship between the measured and predicted bending strengths. It is seen that the scattering of 

the test data of measured and predicted compressive and bending strengths towards each other is 

little both in low and high values. The R
2 

between the measured and predicted compressive 

strengths of test data was obtained as 0.995, and the R
2 
between the bending strengths as 0.975. 

These test values proves that developed ANN model is pretty successful.  

 

 

4. Conclusions 
 

In this study, the compressive and bending strengths of the hybrid fibre-added and non-added 

concrete samples with w/c ratios varying in the range of 0.3-0.9 has been predicted by ANN 

application using destructive and non-destructive experimental data. Polypropylene and steel 

fibres that are used for improving the mechanical properties of the concrete has been added to 

cylinder and bending samples in certain rates. 105 pieces of compressive and 105 pieces of 

bending samples have been manufactured. After determining the UPVs and RNs of these samples 

by NDT methods, these samples have been subjected to compressive and bending tests by DT 

methods. As a result of tests, decreasing the w/c ratio has increased the compressive and bending 

strengths of the concrete. Without fibre addition, UPV and RN values of low-porous samples have 

been observed to increase. Addition of fibres into the concrete has improved the compressive and 

bending strengths. Fibres are more effective on bending strengths. Fibres have decreased UPV. RN 

has been impacted from the addition of fibres into the concrete even if such impact is minor, it has 

been more impacted from w/c ratio and it has increased as this ratio decreased.  

By means of the ANN model that was developed, compressive and bending strengths of fibre-

added and non-added concretes have been predicted based on w/c, polypropylene fibre amount, 

steel fibre amount, UPV and RN values. By use of the model developed, it will be possible to 

easily predict the compressive and bending strengths by use of NDT, UPV and RH test, instead of 

taking cores from the concrete which is difficult. Data set have been divided into two phases: 

training and test data. A good degree of coherency was obtained between the measured and 

predicted data. This coherency also reflects on the determination coefficient which is a 

performance indicator between data. At the training phase, the R
2 
between measured and predicted 

compressive and bending strengths have been calculated as 0.995 and 0.982 respectively. By use 

of the developed ANN model, the R
2 
values of the compressive and bending strengths pertaining to 

the data that was allocated for test have been obtained as 0.995 and 0.975 respectively. The fact 

that yielding R
2 

values are very close to 1 indicates that the developed model passes a good 

training.  

Consequently, by use of the developed ANN model, it is pretty simple to predict the 

compressive and bending strengths of fibre-added and non-added concretes as no core has to be 
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taken hereby. By use of this study, compressive and bending strengths to be determined by use of 

NDT methods can easily be predicted. Also, this model can be continuously trained with new data 

and its practicability range can easily be extended.  
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