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Abstract.  In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam 
bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The 
analysis is based on the deformation compatibility approach where both the shear and normal stresses are 
assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be 
parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko’s beam 
theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results 
from the present analysis are presented both to demonstrate the advantages of the present solution over 
existing ones and to illustrate the main characteristics of adhesive stress distributions. 
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1. Introduction 

 

Structural beams made of reinforced concrete (RC) or metal can be strengthened by bonding 

steel or composite plates/sheets to tension surfaces and this technical method has been the topic of 

important research effort and has shown to be a highly effective retrofit method in civil and 

structural engineering (Teng et al. 2001; Cadei et al. 2004; Nehdi et al. 2008; Belakhdar et al. 

2011; Lee et al. 2011; Panjehpour et al. 2014abc). It is largely accepted that in such a strengthened 

beam, one of the important failure modes is the plate end debonding of the bonded plate from 

concrete beam, which depends widely on the adhesive shear and normal stress concentration at the 

cut-off points of the plate (Teng et al. 2002). Many analytical and numerical works are developed 

the scientific literatures to predict the adhesive stresses, such as the elastic shear stress analysis 

approach by Mukhopadhyaya and Swamy (2001); the shear-lag approach by Triantafillou and 

Deskovic (1991), Ye (2001) and Leung et al. (2015); the staged analysis approach by Roberts 

(1989), Roberts and Haji-Kazemi (1989) and the deformation compatibility-based approach by 

Vilnay (1988), Taljsten (1997), Malek et al. (1998), Maalej and Bian (2001), Smith and Teng 
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(2001), Teng et al. (2002), Tounsi and Benyoucef (2007), Cai et al. (2007), Benachour et al. 

(2008), Tounsi (2006), Tounsi et al. (2009), and Guenaneche et al. (2014).  

In this work, an improved analytical model is proposed to predict the adhesive stress 

distributions in a plated beam by considering the adherends shear deformations effect. The effect 

of the shear deformation of the adherends on the adhesive shear stress is included by supposing a 

parabolic distribution of shear stress across the thickness of the beam and of the FRP plate. In 

determining the solution for adhesive normal stress, the shear deformation in adherends is 

accounted for in closed form by utilizing the Timoshenko’s beam theory (Narayanamurthy et al., 

2011; Berrabah et al. 2013). A verification of the present analytical method with other theoretical 

solutions is carried out through illustrative examples to prove the effect of shear deformation in 

adherends. The effect of material and geometric parameters of the adherends and adhesive on the 

present method is also presented through a parametric study.  

 

 
2. Governing equations and simplified solutions 
 

Consider a concrete beam of span L  retrofitted by a thin plate of length pL  which may be 

made of steel or fibre-reinforced plastics, bonded together with an adhesive layer. The beam is 

simply supported and subjected to four points bending, as shown in Fig. 1. It is assumed that (1) 

all of the materials are linear elastic; (2) the normal and shear stresses in the adhesive layer are 

constant across it; (3) a parabolic shear stress through the depth of both the concrete beam and 

bonded plate is assumed. 

The interfacial shear and normal stresses are denoted by )(x  and )(x , respectively. 

Interfacial stress studies accounting for the influence of adherend shear deformation (shear-lag 

effect) are scarce. However, it is reasonable to assume that the shear stresses, which develop in the 

adhesive, are continuous across the adhesive–RC beam/FRP panel interface. In addition, 

equilibrium requires the shear stress be zero at the free surface. The importance of including the 

shear-lag effect of the adherends was shown by several authors such as Adams and Wake (1986), 

Jones and Callinan (1979) and Tsai et al. (1998) in adhesive lap joints. Tounsi (2006) has extended 

this theory to study concrete beams strengthened by FRP plates. The basic assumption in this later 

study is a linear distribution of shear stress across the thickness of the RC beam and the 

 

 

 
Fig. 1 Simply supported beam strengthened with bonded FRP plate 
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FRP plate. However, it is well known that, in beam theory, this distribution is parabolic through 

the depth of beam. Recently, Tounsi et al. (2009) have improved the method developed by Tounsi 

(2006) by assuming a parabolic shear stress across the depth of both FRP plate and RC beams.  In 

the present study, the theory developed by Tounsi et al. (2009) is improved by considering the first 

order beam theory in predicting interfacial normal stress. 

 
2.1 Shear stress distribution along the FRP–beam interface 

 

The strains at the base of RC beam and the top of FRP panel, considering all three components 

of axial, bending and adherend shear deformations, are given as (Tounsi et al., 2009) 
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where )(1 xu  and )(2 xu  are the longitudinal displacements at the base of adherend 1 and the 

top of adherend 2. )(xN  and )(xM  are the axial forces, bending moment in each elements 

(RC beam and FRP panel) while 1y  and 2y  are the distance from the bottom of beam and top of 

plate to their respective centroid. 1t  and 2t  are the depth of the RC beam and the FRP panel, 

respectively. A  the cross – sectional area, I  the second moment of area, E  the elastic 

modulus, 1G  and 2G  are the transverse shear moduli of the RC beam and FRP panel, 

respectively. 

The shear stress in the adhesive can be expressed as follows:  

 )()()( 12 xuxuKx Sa                          (3) 

where 
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G
K   is shear stiffness of the adhesive, aG  and at  are shear modulus and 

thickness of the adhesive, respectively. Differentiating the above expression we obtain 
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Consideration of horizontal equilibrium gives (see Fig. 2): 
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Fig. 2 Differential segment of a plated beam 
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2b  is the width of the soffit plate. 

Assuming equal curvature in the beam and soffit plate, the relationship between the moments in 

the two adherends can be expressed as 

   xRMxM 21                                  (9) 

with 
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Moment equilibrium of the differential segment of the plated beam in Fig. 2 gives 

        aT tyyxNxMxMxM  2121                   (11) 

where, MT(x) is the total applied moment. 

The bending moment in each adherend, expressed as a function of the total applied moment and 

the interfacial shear stress, is given as 
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The first derivative of the bending moment in each adherend gives: 
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Substituting Eqs. (1) and (2) into Eq. (4) and differentiating the resulting equation once yields: 

2

2

1

1

2

2

1

11

1

11

12

22

22

22
2

2

)(

412

5
             

)(1)()()(1)(

dx

xd

G

t

G

t
K

dx

xdN

AEdx

xdM

IE

y

dx

xdM

IE

y

dx

xdN

AE
K

dx

xd

S

S





























  (16) 

Substitution of the shear forces (Eqs. (14) and (15)) and axial forces (Eq. (7) and (8)) into Eq. 

(16) gives the following governing differential equation for the interfacial stress 
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For simplicity, the general solutions presented below are limited to loading which is either 

concentrated or uniformly distributed over part or the whole span of the beam, or both. For such 

loading, d
2
VT(x)/dx

2
 = 0, and the general solution to Eq. (17) is given by: 

       xVmxBxBx T121 sinhcosh                       (19)  

where 
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B1 and B2 are constant coefficients determined from the boundary conditions.  

In the present study, a simply supported beam is investigated which is subjected to a two point 

loads symmetrically positioned. Two cases are considered: (1) the plate extends beyond the 

constant moment region (a<b) and (2) the plate is terminated within the constant moment region (a 

> b). 

The general solution for the interfacial shear stress is given by the following expressions 

(Tounsi et al, 2009): 
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For a > b 
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where P  is the concentrated load and )( abk   . The values of 1m  and 2m  take into 

consideration the shear deformation of the adherends. 

 
2.2 Interfacial normal stress distribution along the FRP–beam interface 

 
The interfacial normal stress in the adhesive can be expressed as follows: 

 )()()()( 12 xwxwKxwKx nnn                     (24) 

where nK  is normal stiffness of the adhesive per unit length and can be deduced as: 
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)(1 xw  and )(2 xw  are the vertical displacements of adherend 1 and 2, respectively. 

Differentiating Eq. (24) twice results in 
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Considering the moment–curvature relationships for the beam to be strengthened and the 

external reinforcement, respectively: 
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where i (i=1, 2) is the Timoshenko’s shear coefficient which is the ratio between the effective 

area resisting shear deformation and the actual cross sectional area of the adherend (e.g. 6/5  

for rectangle and 12/5  for hollow thin walled square section). 

The equilibrium of adherends 1 and 2, leads to the following relationships: 
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Differentiating Eqs. (27) once with respect to x and substituting Eqs. (28) and (29) into the 

resulting equation gives 
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Differentiating Eqs. (30) and (31) once with respect to x and substituting Eqs. (28) and (29) 

into the resulting equation gives 
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Adherend 2: 
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Differentiating Eq. (24) four times with respect to x and substituting Eqs. (33) and (32) into the 

resulting equation yields the following governing differential equation for the interfacial normal 

stress 
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In Eq.(34), 1  arose from Timoshenko’s beam theory and represents the effect of shear 

deformation. If 01   it reduces to the governing equation for interfacial normal stresses 

without considering shear deformation as in (Tounsi et al, 2009). 

The governing equation for the interfacial normal stress given in Eq. (34) is a fourth order non-

homogeneous ordinary differential equation. Its general solution can have the following three 

forms depending on the value of parameter d, which is influenced by material and geometric 

properties of the adherends and adhesive 
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where 1C  to 6C  and 11C  to 61C  are constants of integration. They are to be determined from 

appropriate boundary conditions and 
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Because 0)( x  for large values of x, 11C  to 61C  = 0 and Eqs (40) reduce to 
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The constants 1C  to 6C  in Eqs. (41) to (43) are determined using the appropriate boundary 

conditions. The first boundary condition is the zero bending moment at the ends of the soffit plate, 

the second Boundary condition concerns the shear force at the end of the soffit plate in the beam 

and the soffit plate. 

In the case of 0 , differentiating Eq. (24) twice with respect to x, substituting Eq. (27) into 

the resulting expression gives: 
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Since it has been established that 0)0(2 M  and )0()0(1 TMM   at the end of the soffit 

plate, the above relationship can be expressed as: 
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Setting x=0 in Eq. (41) and substituting in Eq. (44) gives: 
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Differentiating Eq. (40) twice with respect to x and setting x=0 into the resulting equation gives: 
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From Eqs (46) and (47), 
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Differentiating Eq. (24) thrice with respect to x, substituting Eq. (30) and (31) into the resulting 

expression  
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Then applying the second boundary conditions, shear force at the end of the plate is zero 

[ 0)0(2 V ], )0()0(1 TVV  .  
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Differentiating Eq. (41) once with respect to x, setting x=0 and substituting the result into Eq. 

(50) gives 
























 0

2

2

312211112

110

3

3 )(
)0()0(

)(

x

mT

a

a

x
x

x
nCCnV

IEt

E

x

x 



      (52) 

Differentiating Eq. (41) three times with respect to x and setting x=0 gives 
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From Eqs. (52) and (53), 
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1C  and 2C  are obtained from Eqs (54) and (48) as 
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3. Results and discussion 

 

In this section, numerical results of the interfacial stresses in a beam bonded with the FRP plate 

are analyzed by considering the effect of the adherend shear deformations. In order to demonstrate 

the accuracy of the present analytical method, a comparison of the present results with those of 

Tounsi et al (2009) has been carried out. A steel plated RC beam of rectangular cross section under 

a four point bending with two transverse loads each of 30 kN as indicated in Fig. 3 is studied here 

as a typical case. The material and geometric properties of this beam are given in Table 1, which 

are taken from an experimental study reported by Jones et al. (1988).  

The adhesive stresses from the above formulation are plotted in Fig. 4. It is observed that the 

present results are in excellent agreement with those of Tounsi et al (2006).  

To better understand the behaviour of bonded beam repairs, which will help engineers in 

optimizing their design parameters, the effects of several parameters were studied. Fig. 5 prove 

that the peak adhesive stresses are significantly influenced by the magnitude of aE : they are 

higher for stiffer adhesives.  

Fig. 6 illustrates the variation of adhesive stresses for different thicknesses of the adhesive layer. 

Smaller adhesive stresses are found for thicker adhesive layer. However, design of the properties 

and thickness of the adhesive is a difficult problem. An optimization design of the adhesive is 

expected. 

Fig. 7 proves that typical steel; CFRP and GFRP plates produce adhesive stresses in a 

decreasing order. The results demonstrate that, as the plate material becomes softer (from steel to 

CFRP and then GFRP), the adhesive stresses become smaller, as expected. This is because, under  
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Fig. 3 A steel plated RC beam subjected to 4 point bending 
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Fig. 4 Comparison of interfacial shear stress for steel-plated RC beam: (a) adhesive shear stress; 

(b) adhesive normal stress. 
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Fig. 5 Effect of adhesive thickness on interfacial stresses in a steel-plated RC beam under four 

point bending: (a) adhesive shear stress; (b) adhesive normal stress 
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Fig. 6 Effect of adhesive thickness on interfacial stresses in a steel-plated RC beam under four 

point bending: (a) interfacial shear stress; (b) interfacial normal stress 
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Fig. 6 Continued 
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Fig. 7 Effect of plate material on interfacial stresses in a steel-plated RC beam under four point 

bending: (a) interfacial shear stress; (b) interfacial normal stress 
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Fig. 8 Effect of plate thickness on interfacial stresses in a steel-plated RC beam under four point 

bending: (a) interfacial shear stress; (b) interfacial normal stress 
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Fig. 9 Effect of span-to-depth ratio of beam on interfacial stresses in a steel-plated RC beam under 

four point bending: (a) interfacial shear stress; (b) interfacial normal stress 
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Fig. 9 Continued 

 
Table 1 Geometric and material properties of example plated beams 

Component 
Width 

(mm) 

Depth 

(mm) 

Length 

(mm) 

Elastic modulus 

(GPa) 

Transverse shear 

modulus (GPa) 

RC beam b1 = 155 t1 = 225 L1 = 2300 E1 = 31 G1 = 31 

Steel plate b2 = 125 t2 = 125 L2 = 2200 E2 = 200 G2 = 200 

Adhesive layer ba = 125 ta = 125 La = 2200 Ea = 3 Ga = 3 

CFRP plate b2 = 125 t2 = 125 L2 = 2200 E2 = 100 G2 = 100 

GFRP plate b2 = 125 t2 = 125 L2 = 2200 E2 = 50 G2 = 50 

 

 

the same load, the tensile force developed in the plate is smaller, which leads to reduced adhesive 

stresses. The position of the peak interfacial shear stress moves closer to the free edge as the plate 

becomes less stiff. 

The influence of soffit plate thickness on the adhesive stresses is indicated in Fig. 8. A decrease 

in plate thickness decreases the adhesive stresses. Generally, the thickness of steel plates employed 

in practical engineering is high, compared with that of FRP plate. Therefore, the fact of the smaller 

interfacial stress level and concentration should be one of the advantages of retrofitting by FRP 

plate compared with a steel plate. 

When the beam depth is reduced (the span-to-depth ratio 1/ tL  is increased in Fig. 9), the 

adhesive stresses increases because the relative stiffness of the plate to beam increases. 

 
 
4. Conclusions 
 

In this work, an analytical plane stress solution for adhesive shear and normal stresses in plated 

beams is developed. The salient features of this method include the consideration of the effect of 

axial, bending and shear deformations in adherends. The influence of shear deformations in the 

adherends on adhesive shear stress is introduced by supposing that shear stress varies in a 

parabolic manner through the depth of the beam and the plate. Its effect on adhesive normal stress 

is included through Timoshenko’s beam theory. The parametric study shows the influence of 
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different geometric and material properties of the plated beam on adhesive stresses. In future 

works, other beam theories such as higher order beam theories (Bouderba et al. 2013; Tounsi et al. 

2013; Zidi et al. 2014; Belabed et al. 2014; Khalfi et al. 2014; Bousahla et al. 2014; Draiche et al., 

2014; Hebali et al. 2014; Ait Amar Meziane et al. 2014; Bourada et al. 2015; Hamidi et al. 2015; 

Mahi et al. 2015) are expected to be included in adherends shear deformation effects to determine 

the adhesive normal stress. 
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