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Abstract.  “Mortar or concrete pneumatically projected at high velocity onto a surface” is called Shotcrete. 
Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing 
proportions of admixtures could save considerable experimentation time consumed during trial and error 
based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, 
such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels 
with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and 
compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) 
models of different network architectures were used to train the network using 15 samples, while 4 samples 
were randomly chosen to validate the model. The predicted compressive strength from linear regression 
lacked accuracy with R

2
 value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher 

correlations of R
2
 = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training 

data and corresponding R
2 

values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of 
output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure 
ANN model. 
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1. Introduction 

 

Shotcrete is preferred support for underground and surface mining/civil structures compared to 

conventional rock bolting and mesh supported systems for its ease in plastering, high productivity, 

lower underground maintenance requirements, lesser labor requirements, and cost effectiveness 

( Leung et al. 2005, Leung et al. 2006, Hoek 2007). Environmental and engineering factors 

encourage the use of industrial waste or by-products e.g. slag, silica fume, and fibers as admixtures 

in shotcrete which improve various shotcrete properties. Silica fume increases the density (Rasa et 

al. 2009) adhesion and cohesion properties (Maimberg 1993) of shotcrete which results in lesser 

rebound during shotcrete layering and greater compressive strength. Addition of steel fibers 

prevent cracks formation due to different shrinkage rates in a shotcrete layer (Leung et al. 2006). It 

makes shotcrete highly resistant to impact energy released during blasting, seismic activity and 

similar destabilizing factors in underground environment (Banthia et al. 1999). Appropriate 
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mixing of silica fume and steel fibers in shotcrete is of key significance to improve rebound, 

compressive and flexural strength (Morgan and Wolsiefer 1991).  
However, the selection of appropriate shotcrete mix design is often left to the experience of the 

shotcreting crew who rely on lengthy and time consuming trial and error procedures (Maimberg 
1993). Alternatively, developing prediction models for such processes from experimental data 
could save extensive time consumed during trial and error based design. For this purpose, highly 
adaptive models such as Artificial Neural Networks (Sonmez et al. 2006) are most suitable that 
can encompass the nonlinearity between output design parameters and mixing 
ingredients/admixtures. ANN is preferred for its prediction accuracy compared to other methods 
such as multivariate linear regression (Atici 2011) or fuzzy logic (Ö zcan et al. 2009). It has been 
successfully used in engineering applications such as development of neural network based rock 
mass classification system (Sonmez et al. 2006, Yang and Zhang 1998), prediction of vibration for 
quarry blasting design (Khandelwal and Singh 2009), prediction of aggregate quality (Huang, 
1999). Many researchers (Tavakkol et al. 2013, Eredm et al. 2013, Shah and Ribakov 2011, Yeh 
1998, Ni and Wang 2000, Dias and Pooliyadda 2001, Ji et al. 2006, Öztaş et al. 2006, Altun et al. 
2008, Rasa et al. 2009, Bilgehan and Turgut 2010) have used ANN to predict compressive 
strength, flexural strength and slump of concrete from different proportions of primary mixing 
components i.e. water, cement, aggregate sizes and a variety of admixtures such as steel fibers 
silica fume, fly ash and blast furnace slag. However, characteristics of shotcrete are different from 
ordinary concrete in many ways: such as the description of coarse aggregate size is smaller in 
shotcrete than in concrete; temperature and humidity are of less concern during underground 
applications of shotcrete and early compressive strength is of more importance in shotcrete than in 
ordinary concrete (Xie et al. 2011). Noticeably, shotcrete design problems are of inverse nature 
(Atici 2011) since we often require to determine mixing proportions of ingredients for already 
identified design parameters such as compressive strength. Yet, the prediction models still save 
considerable experimentation time and are therefore popularly in use within the industry. In this 
paper ANN is used to predict properties of shotcrete i.e. compressive strength, slump and cost as 
'output variables' using varying mixing proportions of water content, silica fume and steel fibers, 
as 'inputs' with fixed quantities of aggregate and cement.  

The next three sections present, overview of: multivariate regression, Back Propagation Neural 
Network (BPNN) model and modeling shotcrete mix design, then the experimental setup section is 
presented. After application of ANN on the data and sensitivity analysis, the results and discussion 
section is presented. The paper ends with the conclusion section.   

 

 
2. Multivariate linear regression  
 

Knowing the “n” input variables, any jth output variable in multiple linear regression, is 

obtained from a linear combination of the input variables and their corresponding coefficients. 

yj = c0 +c1 X1 + c2 X2+….+ cn Xn 

where c0 is the regression constant and c1, c2….. cn are the regression parameters for associated 

input variables X1, X2, X3…… Xn. The coefficients are estimated by minimizing the mean squared 

error between samples and regression line through well-established statistical least square 

estimation method. The regression constant and regression parameters are given as: 

  j
TT

j yXXXP
1

 , where: 
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X = (N x n+1) matrix of the n dimensional input variables plus a column of unity 

yj = (N x 1) output variables vector  

N = total number of samples 

The regression parameters ci for any ith input variable and a constant c0 are given by: 

 ni PPPc ......, 21  , for i = 1,2…n and  10  nPc  

 

 
3. Artificial Neural Networks 
 

Artificial Neural Network (ANN) is a layered set of node connections that emulate human 

nervous system (Hopfield 1988) and learn to adapt itself to the output data by changing the 

corresponding weights connecting different nodes or neurons in subsequent layers. For a simple 3 

layer architecture with input layer l = 0, hidden layer l = 1 and output layer l = L=2 having K
l
 

neurons in lth layer where each neuron 
l
ja  represents output value of any jth neuron in the lth 

layer (see Fig. 1). Additionally, every layer except the output layer has a 0th bias neuron whose 

output la0  in any case is equal to unity.  

Each neuron j, l0,1,2....Kj   in layer l, is connected through weights l

ijw  to the ith neuron 

11,2....K  li  in the (l+1)th layer. As input data is fed into the input layer, the K
0
 dimensional 

inputs of any pth sample plus the bias node value of unity are simply passed on to the next layer l 

= 1. The output of the ith neuron in the next layer l = 1 is given as: 

0

0011
K

j

ijji

l

i wazz where j 

= 0, … K
0
. The final output 1l

ia of the ith neuron in (l+1)th layer is nonlinear activation function 

(e.g. sigmoid function) of the previously obtained weighted linear combination term 1l

iz  i.e. 

)1(

1
)(

)(

111

1
izii

l

i

e
zfaa






  for all i =1,2…..K

1
. The same procedure is adopted to obtain 

outputs 2

ia for all the nodes in the second layer, and onwards, till the outputs for all K
2
 neurons in 

the output layer L=2 are achieved; this completes a forward pass. 

 

3.1 Back propagation neural network 

 

Learning takes place by updating the connecting weights after the error term for each output 

node is determined and redistributed backwards to update the connecting weights. The objective 

function, i.e. Sum of Squared Error (SSE) =  
N

p

K

i

pipi oy

2

2)( ought to be minimized such that; 

ignoring the term p for N samples, kth node output )( 22

kkk afao  of the output layer, is 

closest to the “actual” output ky . Since the activation function is a function of weighted linear 

combination of outputs of preceding layers, the connection weights are to be updated in order to 

minimize the error function SSE. The weights updating term "" 1
kjw , connecting jth term of l=1 to  
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Fig. 1 A general 3 layer ANN design 

 

 

kth node of output layer l=2, is directly proportional to the error term 1
2

kj
k w

E


 of kth node 

in output layer l=2. For the sigmoid function, this term can be obtained as (Mehrotra et al. 1997): 

1

1

2

)1()(2 jkkkk

kj

aoooy
w

E

k

  






 

The updated weights w
1*

 connecting the hidden layer l=1 to the output layer l=2 is determined 

by 1211*1

jk awww   . Where, 121

jk aw  is the change in weights term, 

learning rate for weights update, 
1w is the previous weight update term is the momentum term, 

with a predefined value chosen within range of 0-1. The term 
1w smoothen the learning 

process and increases speed of optimization (Lecun et al. 1998). Similarly the term 0
jiw

E


 is 

given as: 0111

0

0

1

2

2

)1()1()(2 ijjkj

K

k
kkkk

ji

ji aaawoooy
w

E
w

j

k

 





  

  





, when using the sigmoid 

function. The final equation for updated weights w
0*

, connecting layer 0 to layer 1, is given as: 

  w
0* 0100

ijaww    

A learning rate is chosen, within a range of 0-1, however, lower value leads to slower 
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convergence, while too high value makes the learning process jerky, making it difficult to meet the 

convergence criteria. The variance of fluctuations around a local minimum is directly proportional 

to the learning rate (Lecun et al. 1998). After new weights are determined, the feed forward step is 

performed again to recalculate the values of output nodes. When this error is less than a predefined 

threshold value or if a predefined number of epochs is exhausted the final weights are fixed and 

t h e  n e t w o r k  i s  f i n a l l y  t r a i n e d ;  o t h e r w i s e ,  t h e  p r o c e d u r e  i s  r e p e a t e d . 

 

 

4. Modeling shotcrete mix design 
 

Wet mix shotcreting method is preferred due to its ease in homogenous mixing, less rebound, 

greater productivity, lower dust and cost compared to dry mix process (Morgan and Wolsiefer 

1991, Maimberg 1993, Armelin and Banthia 1998). Aggregate oversize (> 8 mm) is avoided to 

prevent plugging of the hose or nozzle and high rebound especially in presence of lower water 

content and airflow (Armelin and Banthia 1998). The use of accelerators for early strength of 

shotcrete (Prudhcio 1998) may be avoided, since it can affect the quality of shotcrete due to 

uneven distribution of accelerators, resulting in different settling times of shotcrete layers (Jolin 

and Beaupré 2003).  

Flexural strength, toughness and compressive strength are commonly reported strength 

parameters during shotcrete design (Chan et al. 2002, Leung et al. 2005). Compressive strength 

considers the structural capacity and durability of shotcrete for different applications (Chan et al. 

2002). Compressive strength of shotcrete and concrete is important parameter for categorizing 

different shotcretes according to design requirements in different environments (Hakim et al. 

2011, Alilou and Teshnehlab 2010). Slump is another important parameter that effects pumpability 

and greater build up thickness during a single shotcrete layering thus increasing productivity (Jolin 

and Beaupré 2003). However, excessive slump increases rebound causing loss of material and thin 

layering (Chan et al. 2002), however, when slump is too small it may also choke the nozzle (Chan 

et al. 2002). In some cases, e.g. for deep mines when shotcrete is transported through gravity flow 

in pipes, a surface slump spread of 25-28 inches is allowed (Millete and Lessard 2007). Increase in 

slump also improves the pumpability of shotcrete; in such cases high initial air content (10-20%) is 

needed to provide maximum buildup thickness through the “slump killing effect” (Jolin and 

Beaupré 2003).  

 

4.1 Data collection before modeling 

 

Several design of experiments methods (Wahid and Nadir 2013) are available for carrying out 

experimental studies to get optimum number of experiments. When the individual affect of factor 

variables is dominant compared to the interactive affect of factor variables, the simplest one factor 

at a time based experimental model is preferred (Frey et al. 2003), which often leads to smaller 

number of experiments. Recently, several researchers (Avunduk et al. 2014, Baskar et al. 2011, 

Kalyani et al. 2008, Ko and Shang 2011, Mohammed and Hamza 2011 , Sayadi et al. 2013) have 

successfully applied ANN to develop models using small datasets. However, thoughtful analysis 

of the results is needed to assess the soundness of the model through suitable quantitative and 

qualitative measures. 
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5. Experimental setup 
 

This research work was carried out at the department of Mining Engineering, University of 

Engineering and Technology Peshawar Pakistan. Water content and two admixtures: silica fume 

and steel fibers were chosen as input parameters. The specifications of steel fibers used in this 

study are given in Table 1. All the remaining samples equally contained 500 Kg/m
3
 of Type I 

(ASTM C 150) Ordinary Portland cement, 725 Kg/m
3
 of fine aggregate (0-1 mm) and 595 Kg/m

3
 

of coarse aggregate (4-8 mm). The output design parameters considered were compressive 

strength, cost and slump of shotcrete.  

Basic components of shotcrete; aggregate, water and cement were mixed along with varying 

quantities of silica fume and steel fibers using Aliva AL385 shotcrete spraying machine, with 

50mm nozzle outlet and constant air supply at pressure of 6 bar. Shotcrete design specifications of 

ACI-506R-90 (1995) were followed during preparation of shotcrete. The fine and course 

aggregates were collected from Sakhi Sarwar, Dera Ghazi Khan District of Punjab in Pakistan. 

Shotcrete sample mixtures were prepared in 19 vertically placed separate wooden panels (24in 

width, 24 in. length and depth of 9 in.) that were sprayed with shotcrete keeping the nozzle 

position horizontal at a distance of 1m from the panel as per ASTM C 1140-03a. The chemical 

composition of water used is shown in Table 2. The quantity of steel fibres and silica fume were 

changed as percentage of cement used in mix design.   

The cost of the admixtures together with aggregate, cement and water was calculated. Slump of 

the shotcrete mix was determined as per ASTM C143M using a 30cm long standard slump cone 

with 20cm bottom diameter and 10cm top diameter. Shotcrete was sprayed from the top in three 

intervals, each of 10cm height. Each layer of shotcrete was stirred using a tamping rod before 

adding the next layer, a final layer filled the cone to the top where it was leveled with upper end of 

cone by drawing off the extra shotcrete. After cleaning the surroundings, the cone was lifted 

smoothly by applying even pressure at both ends and the slump in shotcrete was measured. 

Before measuring the compressive strength, the panels were kept in underground conditions for 

28 days at a temperature of 20-25
o
 C and 65-70 % humidity. Three cores were taken from each 

panel after 7, 14 and 28 days. The core was prepared to have Length to Dia ratio equivalent to 2 as 

per ASTM C 42/C 42M-03. The length of 3.5 inches diameter core was reduced from 9 inches 

(panel depth) to 7 inches after sawing the extra part using concrete cutter. Compressive strength 

tests were conducted at the rock mechanics laboratory Department of Mining Engineering 

University of Engineering and Technology Peshawar, Pakistan. The average compressive strength 

of these 3 cores of specific ages from each panel was reported as the compressive strength of 

particular shotcrete mix at that age. 19 shotcrete mixtures are obtained by varying one factor at a 

time from water, silica fume and steel fibers that are shown in Table 3 along with their 

corresponding output parameter values. 

 

Table 1 Specifications of steel fibers used in this study 

ASTM A820 Type I 

Material Cold drawn wire 

Tensile strength Over 1,000 MPa 

Aspect ratio 45 ~ 75 

Length 30 - 35mm 
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Table 2 Analysis of water sample 

pH 7.1 

Total Hardness (ppm as CaCO3) 257 

Calcium (ppm) 20 

Magnesium (ppm) 17 

Total Dissolved Salts (ppm) 502 

Chlorides (ppm) 23 

Sulphates (ppm) 70 

 

Table 3 Data collected from experimentation design 

Water 

(Kg/m
3
) 

 

Steel 

Fibres 

(Kg/m
3
) 

Quantity 

of Silica 

Fume 

(Kg/m
3
) 

Slump 

(cm) 

7th Day 

Compressive 

Strength 

(Psi) 

14th Day 

Compressive 

Strength (Psi) 

28th Day 

Compressive 

Strength (Psi) 

Cost  

/m
3
 

(Pak 

Rs) 
280 0 0 12 1620 1701 1750 2769 
290 0 0 13 2003 2103 2174 2769 
300 0 0 17 2053 2197 2245 2769 
310 0 0 20 1607 1703 1811 2769 
320 0 0 22 1519 1625 1702 2769 
300 13 0 17 3249 3574 3640 3679 
300 20 0 15 3464 3671 3701 4169 
300 27 0 14 3015 3656 3845 4659 
300 34 0 14 2641 2852 3040 4948 
300 40 0 13 2194 2325 2647 5569 
300 0 20 16 2594 2801 2950 3169 
300 0 30 16 2711 2982 3154 3369 
300 0 40 15 2945 3122 3462 3569 
300 0 50 14 2992 3201 3397 3769 
300 0 60 10 1590 1733 1971 3969 
300 13 10 17 3049 3314 3510 3879 
300 13 20 16 3357 3572 3780 4079 
300 13 30 13 3156 3431 3660 4279 
300 13 40 11 3052 3354 3442 4479 

 

 

6. Prediction models using multivariate linear regression 

 

Multivariate regression parameters, associated with input variables: water content (WC), steel 

fibres (St) and silica fume (SF); were derived using least square estimation. The equations for 

compressive strength (C. Strength), cost and slump are derived as:  

SF0.44St0.68WC0.090.34Strength  C.   

SF0.425St0.958WC00.009 Cost   

SF0.45St0.344WC0.90.17Slump   
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Results indicated prediction of compressive strength was poor with R
2
 value of 0.36 while that 

of slump and cost was relatively high at 0.85 and 0.89. The lower correlation was due to the 

presence of nonlinear relationship between compressive strength and input parameters; therefore, 

to achieve a better fit, application of ANN was essential. 

 

 

7. Application of ANN model for predicting compressive strength, cost and slump 

references 

 

First, the complete dataset “X”, including all the input and output variables were range 

transformed i.e.    minmaxmin XXXX  . The samples were separated into two sets, 15 samples 

were used to train the ANN network model, while 4 were randomly chosen to validate the network. 

The ANN code was coded in MATLAB after detailed explanation by various authors (Fausett 

1993, Mehrotra et al. 1997). A number of nodes in the hidden layer were tried to obtain various 3-

layered architectures (3-2-3, 3-3-3……) that were first trained using batch mode and then using 

online mode. The learning rate and momentum for online training were set to 0.2 and 0.5, while 

these values were fixed to 0.3 and 0.5 correspondingly during batch mode training. The activation 

function in all cases was sigmoid function and objective function was Sum of Squared Error (SSE). 

In each case, the training was set to terminate at 30,000 iterations or if the SSE was less than or 

equal to 0.0001.  
 

 

Table 4 The sum of square errors for training (SSE), and validation data (SSE-V) along with corresponding 

correlation coefficients for different network architectures trained in batch mode 

Network 

Architectures 
SSE SSE-V 

Training R square Validation R square 

C Strength Cost Slump C Strength Cost Slump 

363 0.12 0.07 0.99 0.99 0.97 0.99 0.99 0.90 

353 0.13 0.05 0.98 0.99 0.98 0.99 0.99 0.93 

343 0.21 0.05 0.97 0.99 0.95 0.99 0.99 0.93 

333 0.36 0.06 0.95 0.99 0.90 1.00 1.00 0.79 

323 0.77 0.05 0.85 0.97 0.89 1.00 1.00 0.93 

 

Table 5 The sum of square errors of training (SSE), and validation data (SSE-V) with corresponding 

correlation coefficients of output variables for different network architectures trained in online mode 

Network 

Architectures SSE 

 

SSE-V 

Training R square Validation R square 

C Strength Cost Slump C Strength Cost Slump 

373 0.06 0.09 1.00 0.99 0.98 0.99 0.99 0.90 

363 0.05 0.06 1.00 0.99 0.99 1.00 0.99 0.92 

353 0.07 0.06 0.99 0.99 0.99 0.99 1.00 0.94 

343 0.10 0.09 0.99 0.99 0.98 0.99 0.98 0.89 

333 0.25 0.07 0.99 0.96 0.94 0.99 0.99 0.91 

323 0.52 0.09 0.92 0.96 0.91 1.00 0.97 0.92 
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Fig. 2 Comparison of SSE and SSE-V fordifferent 

network architectures trained in online mode. 
Fig. 3 Final model architecture. 

 

 

After completion of the training phase, the input parameters of the validation data were fed to 

all the trained network architectures. The best model architecture was selected by analyzing R
2
 

values and SSE between predicted and actual outputs of training and validation datasets. Training 

in batch mode was faster having average training time of 10 sec compared to online training with 

an average training time of 350 seconds. The sum of square error for validation data 'SSE-V' was 

lowest i.e. 0.05 for 3-2-3, 3-4-3 and 3-5-3 architecture in batch mode, as seen in Table 4. However, 

the corresponding SSE were quite high in case of batch mode training compared to the online 

learning mode as shown in Tables 4-5. In batch learning mode the sum of squared error for 

training data increased with increase in number of nodes in the hidden layer. However, for 

validation data, correlation coefficient for slump decreases slightly when number of nodes in 

hidden layer exceeded beyond 5.  

 

  

8. Results and discussion 

 

As shown in Fig. 2 the 3-5-3 architecture, trained in online mode, was selected as the best 

model since it had the lowest training and validation errors i.e. SSE (0.07) and SSE-V (0.06). The 

results from 3-5-3 architecture (Fig. 3) trained in online learning are shown collectively in Fig. 4. 

Online learning mode, took longer to train, however, the training SSE was lower than models 

trained in batch mode. The validation SSE-V increased as the number of nodes in hidden layer 

exceeded beyond 6 nodes. Further increase in hidden nodes carried no significant improvement in 

SSE-V and model was prone to over fitting, since SSE-V increased to 0.09 for 3-7-3 architecture 

(see Table 5). Validation samples 16-19 shown in Figs. 4(a)-(c) show that sufficient variation is 

present in these samples. Predicted and actual values of the validation samples for the output 

variables are also shown separately (Figs. 4(d)-(f)) for a closer look of at the prediction accuracy. 

To analyze the effect of mixing components of shotcrete on the output design parameters, 

Global Relative Strength Effect (GRSE) (Yang and Zhang 1998) was determined that are shown in 

Table 6. Positive GRSE values indicates the corresponding output variable would increase with the 

increase in that input variable, whereas negative GRSE values represented inverse relationship 

between the input and output. 
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(a) Training and validation of comp. strength (d) Validation results for comp. strength 

 

 
(b) Training and validation of cost (e) Validation results for cost 

    
(c) Training and validation of slump (f) Validation results for slump 

Fig. 4 Comparison of actual and predicted values of 4(a) Compressive Strength, 4(b) Cost and 

4(c) Slump using 3-5-3 ANN model, for both training samples (1-15) and validation samples (16-

19). A closer look at predicted and actual 4(d) compressive strength, 4(e) cost and 4(f) slump 

values for validation data is also shown separately 
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Table 6 GRSE values for 3-5-3 ANN prediction model 

 C Strength Cost Slump 

Water Content 1.00 -0.88 1.00 

Steel Fibres -0.72 1.00 -0.61 

Silica Fume -0.74 0.49 -0.77 

 

 
 

(a) Sensitivity analysis of comp. strength (b) Sensitivity analysis of cost 

 

  

      

(c) Sensitivity analysis of slump 
(d) Respective values of variables used during 

sensitivity analysis 

Fig. 5 Sensitivity analysis results of 3-5-3 ANN model for 5(a) compressive strength, 5(b) cost 

and 5(c) slump variables through systematic variation of quantities of water (Kg/m
3
), steel 

fibres (Kg/m
3
) and silica fume (Kg/m

3
) shown in 5(d) 

 

 

Water content have smaller negative GRSE value for cost and higher positive value for slump 

indicating as the amount of water is increased, it has decreasing effect on cost and increasing effect 

on slump. Steel and silica fume with higher positive GRSE values for cost and negative values for 

slump show their increase will have direct positive effect on cost and reduce slump. However,  

positive GRSE values of water content and negative value of silica fume and steel fibres indicated 

compressive strength increased with increase in water and decreased with addition of silica fume 

and/or steel fibres. This needed further investigation; at best through sensitivity analysis using the 

ANN model, i.e. changing one input variable systematically for a range of values, keeping other 
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input variables constant at some acceptable mid-range value. 

Five different values for each input variable i.e. Lowest (L); Mid-point between Avg value and 

Lowest value (ML); Avg value (Av); Mid-Point between Avg value and Highest value (MH) and 

finally the Highest value (H) were calculated. These values, as shown in Fig. 5(d) were fed into the 

neural network model for one input variable at a time, systematically; from lowest to highest value 

while keeping all the other input variables constant at their respective Avg values. The results 

indicated that variation in inputs for cost and slump complied with GRSE values presented earlier, 

since the trend was somewhat linear as shown in Figs. 5(b)-(c). However, sensitivity analysis for 

compressive strength elaborated nonlinearity within the system (see Fig. 5(a)) that was not 

explained by GRSE analysis.  

Sensitivity analysis revealed that silica fume and steel fibres are the major factors responsible 

for increase in compressive strength; this fact is well established from the literature. Compressive 

strength sensitivity (Fig. 5(a)) to shotcrete mixtures having L, i.e. 0 Kg/m
3
 steel fibres indicated 

that higher compressive strength (3450 Psi) was due to the presence of Avg quantities of Silica 

fume i.e. 33 Kg/m
3
 and Water content i.e., 300 Kg/m

3
. 

Sensitivity analysis further suggested that keeping these values constant, a little increase in 

quantity of steel fibres to ML i.e. 11 Kg/m
3
, caused increase in 28

th
 day compressive strength value 

to 3780 Psi which decreased rapidly when steel fibres exceeded from 11 Kg/m
3
 in the mixture. 

Silica fume sensitivity line at point L (with no silica fume) showed maximum value for 

compressive strength i.e. 3815 Psi due to the presence of average quantity of steel fibers i.e. 33 

kg/m
3
. Compressive strength further decreased to 3670 Psi as silica fume value exceeded to ML i.e. 

17 Kg/m
3
. This decreasing trend with addition of more water could be due to unbalance in water to 

binder ratio, since water quantity was constant at 300 Kg/m
3
. Similar behavior was indicated by 

the water sensitivity line, which showed that compressive strength increased with water, that could 

be due to presence of higher quantity of silica fume at Avg value i.e. 33 Kg/m
3
 that acts as binding 

agent (Siddique and Khan 2011), more water was required to achieve the appropriate water to 

binder ratio for higher compressive strength (Katkhuda et al. 2009, Rao 2001). This is further 

revealed by lower compressive strength of shotcrete i.e. 2230 Psi when all the inputs have average 

quantities within the shotcrete mixture i.e. 300 Kg/m
3
 water, 22 Kg/m

3
 steel fibres and 33 Kg/m

3
 

silica fume. Hence, sensitivity analysis suggested that higher quantity of water 310-320 Kg/m
3
 

would be needed to balance the increase in volume of silica fume + steel fibers content. However, 

this increase in water also results in higher slump which requires further study, since lower air  

pressure/content may also be responsible for higher slump due to the absence of the "slump killing 

effect" (Jolin and Beaupré 2003). The sensitivity analysis using the ANN model showed the cause 

and effect relationship for the given range of input and output variables. It further suggests 

investigating ANN models that can incorporate the effect of air content on the output variables and 

also take into account other important output parameters such as rebound in shotcrete mix design. 

 

 

9. Conclusions 

 

The results show ANN models perform better then linear regression while predicting shotcrete 

mix design. The online mode training gave better training results, however, taking longer training 

time compared to batch mode learning. The 3-5-3 architecture ANN model trained in online mode 

was retained as best model giving a sum of squared error of 0.07 and 0.06 for training and 
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validation datasets respectively. The sensitivity analysis by varying one variable at a time is 

beneficial to extract nonlinear relationship for ANN model, since the Global Relative Strength 

Effect cannot depict the nonlinearity within the input and output variables. Sensitivity analysis 

revealed compressive strength improved with addition of silica fume and steel fibres; however, 

most significant parameter for increase in compressive strength was steel fibres. Sensitivity 

analysis further suggests that higher quantity of silica fume require higher quantity of water to 

achieve optimum water to binder ratio. A number of new mix design combinations emerged from 

sensitivity analysis on ANN model; a suitable mix design can be chosen from these options in 

accordance with specific design needs. 
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