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Abstract.  Concrete is a versatile construction material used in many engineering structures. The design of 
concrete structures requires a thorough understanding of their material properties under various loading 
conditions. Several experimental investigations have been carried out to examine the behavior of concrete. 
This paper is an attempt to summarize the behavioral aspects of concrete under different loading conditions. 
Failure models developed out of these experimental investigations are reported in this paper with their merits 
and demerits. 
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Nonmenclature 
 

σ, σi – Principal normal stress, principal normal stress in direction i. 

τ – Shear stress 

I1 – First invariant of stress tensor 

J2 – Second invariant of deviatoric stress tensor 
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J3- Third invariant of deviatoric stress tensor 
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1. Introduction 
 

Concrete is a versatile material used for the construction of civil engineering structures. The 

inevitable use of concrete has sparked many investigations on its behavior for various nature 

(tension, compression) and types of loading (uniaxial, biaxial, triaxial) conditions. To understand 

the behavior of concrete completely, there is a need to investigate its behavior in all ranges i.e. 

compression, tension, combinations of tension and compression. In order to predict the strength of 

concrete in compression and tension, several experimental investigations have been reported so far. 

These tests have been done on concrete subjected to uniaxial, biaxial and triaxial loadings. The 

behavior of concrete changes drastically when the nature of loading changes from compressive to 

tensile. When subjected to tension, the response of concrete is same irrespective of uniaxial or 

biaxial loads. Nevertheless, the concrete shows different behavior for uniaxial and biaxial loads 

under compression. Thus, the nature and type of loading plays a major role on the behavior of 

concrete, thus highlighting the importance of the current study.  

Several uniaxial, biaxial, triaxial tests have been reported in literature (Kupfer et al. (1969); 

Kotsovos and Newman (1977); Mills and Zimmerman (1970); Lee et al. (2004); Sinha et al. 

(1964), Ren et al. (2008), Fehking et al. (2011)). In order to simulate the actual behavior of 

concrete in compression and tension, several analytical models have been developed. The 

analytical models are formulated based on microscopic, mesoscopic and macroscopic behavior of 

concrete. The models based on macroscopic behavior are invariably used in practice especially in 

construction field. The deformation patterns and stress-strain curves are the two important 

indicators of the behavior of concrete. In order to define completely the deformational and stress-

strain behavior of concrete, one must analyze the structure till failure. The deformation of the 

structure is linearly elastic till the yield limit, and beyond this point plastic deformation 

(irreversible) takes place. A model should be capable of producing the above mentioned behavior 

till failure. One such way of obtaining a model is based on plasticity theory (Chen (1982)).  

The plasticity theory defines the yield limit as the limit below which the material property 

remains elastic and any further loading beyond this yield limit results in plastic flow. In the case of 

elastic-perfectly plastic, the initial yield surface becomes a failure/bounding surface, reflecting the 

increase in strain without further change in stress. Nevertheless, for concrete having elasto-plastic 

behavior, strain hardening and strain softening behavior are to be included. Strain hardening is the 

region between the yield and peak stress reflecting the hardening nature of concrete with the 

increase in stress value. Once the concrete hardens and attains the peak stress, further loading 

results in the decrease in stress with the increase in strain, thus enabling the softening behavior. 

Thus initial loading surface/yield surface is allowed to expand on the application of load resulting 

in strain-hardening behavior of concrete, defining the subsequent loading surface. Hardening may 

be isotropic, kinematic and mixed hardening. Isotropic hardening assumes that the expansion of 

initial loading surface takes place uniformly thus completely neglecting Bauschinger effect. It 

essentially means that direction of strain and stress are assumed to progress in the same fashion. 

Thus, the isotropic hardening is only valid for monotonic loading without any load reversals. On 

the other hand, the kinematic hardening assumes that the loading surface translates as a rigid body 

in stress space thus accounting for Bauschinger effect. The typical isotropic hardening rule for the 

monotonic loading condition is shown in Fig. 1. At times, mixed hardening rules can be used 

which combines the isotropic and kinematic hardening.  

In general, plasticity theory is based on either stress-based formulation or strain-based 

formulation. Many failure theories have evolved based on stress-based formulation. However, in  
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Fig. 1 Isotropic Hardening with expanding yield surfaces and the corresponding uni-axial 

 

 

defining the loading/unloading criteria, there is a little bit of ambiguity in expressing the loading 

function in terms of stresses. This ambiguity is avoided in strain-based formulation. While stress-

based formulation is based on Drucker’s postulate, strain-based formulation is based on II’yushin’s 

postulate (Chen (1982)). Keeping in view the fact that the not many failure criteria are developed 

in strain-based formulation, the stress-based formulation is adopted in practice.  

To this end, the behavior of concrete under monotonic and cyclic loading under various 

combinations of tension & compression is studied. In order to adopt a mathematical model to 

simulate completely the experimental behavior, it is necessary to investigate the various 

yield/failure models. To keep abreast with the latest developments in material modeling, a detailed 

review has been made in identifying the various failure models adopted for the concrete.  

 

 
2. Experimental behaviour of concrete 

 

The behavior of plain concrete has been found to be complex due to inherent characteristics of 

the material. Several experimental works have been performed to examine mechanisms that lead to 

the propagation of failure from initial stage to ultimate collapse. On the other hand, the presence of 

reinforcement in the concrete makes it more complex. It has been reported that the presence of 

reinforcement alters the behavior of concrete considerably. Nevertheless, Brestler and Pister 

(1958) have suggested that the conditions responsible for local failure are essentially the same for 

both plain and reinforced concrete, thus highlighting the importance of examining the behavior for 

plain concrete. Keeping in view the above mentioned facts, a brief summary has been made on the 

various experimental investigations carried out on predicting the behavior of plain concrete under 

uni-axial, biaxial and triaxial loadings for different combinations of tension and compression. 

In order to plot stress-strain curve under compressive loading in uni-direction, strength tests on 

cylindrical or cubical concrete specimens are obtained at an age of 28 days. The various stages of 

stress-strain curve which characterizes different behavior of concrete are mentioned in the 

literature (Hognestad et al. (1955); Kwak and Filippou (1990); Fardis et al. (1983), Tsai (1988)). 

Carreira (1985) has reported that the four parameters, namely uni-axial compressive strength, 

strain corresponding to uniaxial compressive strength, initial tangent modulus and ultimate strain 

at failure can be regarded as the characteristic values for the stress-strain curve of concrete under 

505



 

 

 

 

 

 

Muthukumar G and Manoj Kumar 

uni-axial compression. The direct tensile tests by various researchers (Hughes and Chapman 

(1966); Ansari (1987), Gopalarathnam and Shah (1985)) show that the load-elongation curve 

presents a peak followed by a softening branch. Even though uniaxial loading conditions 

characterize the different stages of deformation it does not simulate the actual behavior of structure 

which are generally subjected to multiaxial loading conditions. Therefore, it is essential to predict 

the behavior of concrete under multi-axial stress state to obtain the more generalized response 

(Kupfer (1973); Darwin and Pecknold (1977); Cedolin and Mulas (1984); Hussein and Marzouk 

(2000); Bellamy (1961); Tasuji et al. (1978); Buyukozturk and Nilson (1971). Brestler and Pister 

have performed experimental tests on 65 tubular specimens of plain concrete subjected to 

combined stresses to predict the failure of the concrete specimens (Brestler and Pister (1958)). 

Based on experimental results they suggested that strength of the concrete is a function of the state 

of stress and cannot be predicted without considering the interaction of stresses.   

Kupfer (1969, 1973) has conducted the test on plate-type specimens (20 × 20 × 5 cms) under 

proportional monotonically increasing biaxial loading. Nevertheless, concrete strength under 

biaxial tension was found to be the approximately equal to the uni-axial tensile strength (Kupfer et 

al. (1969); Kwak and Filippou (1990)). Tasuji et al. (1978) have conducted experimental 

investigations on thin plain concrete plates subjected to biaxial loading which includes all 

combinations of compressive and tensile loadings. It has been reported that the concrete possesses 

higher compressive strength when subjected to biaxial compression as compared to uniaxial 

compression (Tasuji et al. (1978); Liu et al. (1972)). On the other hand, when the concrete is 

subjected to combined compression and tension, the compressive strength has been reported to 

decrease linearly as the tensile stress increases (Tasuji et al. (1978); Kupfer et al. (1969); Kwak 

and Filippou (1990)).  

On the basis of above mentioned uni-axial and bi-axial tests on concrete, it is emphasized that 

the inclusion of the three basic parameters in any analytical model namely uni-axial compressive 

strength, biaxial compressive strength and uni-axial tensile strength is indispensable. 

To understand the behavior of concrete subjected to tri-axial loading, several experimental 

investigations have been done (Mills and Zimmerman (1970), Imran and Pantazopoulou (1991)). 

Mills and Zimmerman (1970) have reported that majority of investigations have been performed 

on cylindrical specimens where two principal stresses out of three retain the same value. They 

conducted the test on cubical specimens and concluded that cubical specimens provide a realistic 

estimation of failure strength as it incorporates the effect of intermediate stress component.  

It has been reported by Gardner (1969) that all mechanical properties can be improved with 

increase in the confinement. Gardner (1969) and Zhi et al. (1987) carried out the biaxial and 

triaxial experiments to investigate the influence of confinement on compressive strength of 

concrete and observed that confinement significantly enhances the compressive strength.  Linhua 

et al. (1991) found that strength of concrete under triaxial compressive-compressive-tensile 

loading is higher compared to strength of concrete subjected to biaxial Compression-tension 

loading.  

On the other hand, cyclic loading occurs when there is a load reversal with several loading, 

unloading and reloading cycles. Loading, unloading & reloading constitutes a hysteresis loop. In 

order to understand the behavior of concrete under dynamic effects, it is essential to know the 

behavior of concrete under compressive and tensile cyclic loadings. The concrete, subjected to 

compressive loading of high amplitude and low cycle is predominantly significant from 

earthquake point of view. When the number of cycles is large, the continuous growth of micro 

cracks can lead to the reduction in the strength of concrete (Sinha et al. (1964); Karsan and Jisra 
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(1969); Reinhardt (1986)). Vecchio (1990) has discussed the importance of cyclic load modeling 

of reinforced concrete and analyzed the shear wall using nonlinear elasticity model. Several 

experimental investigations have been done on concrete subjected to uniaxial cyclic loading (Lam 

(1980); Karsan and Jirsa (1969); Sinha et al. (1964)).  

Mlakar et al. (1985) examined the bi-axial tensile-compressive behavior of concrete under 

dynamic loading and concluded that the tensile stress at failure decreases while the compressive 

stress gets increased. This conclusion was similar to one observed under monotonic loading. It has 

been observed that strength envelope for cyclic and monotonic loading has not been found to show 

significant difference (Buyukozturk and Tseng (1984); Lan and Guo (1999)).   

Based on the above experimental works, it has been concluded that confinement of a concrete 

has a very strong influence on compressive strength and hence should be sufficiently incorporated 

in any analytical model. Moreover, since condition responsible for local failure is essentially the 

same regardless of randomness of loading, information available on the monotonic loading can be 

used effectively in developing failure model capable of capturing the responses under monotonic 

and cyclic loading. In order to describe the response of structures under monotonic loadings, 

various failure models have been developed (Willam and Warnke (1975), Chen (1982), 

Bagheripour (2011), Karam and Tabbara (2012)). These models are categorized from one-

parameter through five-parameter models depending upon the number of parameters appearing in 

the expression of the failure surface. The next section briefly summarizes various characteristic 

features of failure models. 

 

 
3. Basic features of failure criteria  
 

The capacity of the material at any state of stress is defined by criterion known as failure 

criterion/yield criterion. The yield criterion is the limiting point at the yield of a material 

representing the threshold of elastic and plastic deformations; whereas failure criterion is the 

limiting point at failure stage. In general yield criterion and failure criterion may be 

interchangeably used as both represent a certain state of material. Nevertheless, a single yield 

criterion may not be suitable to capture characteristics of all materials. Hence, it is inevitable to 

develop several yield criteria for different materials according to the requirement. Therefore, the 

choice of yield criteria considerably affects the estimation of strength characteristics of the 

material (Chen (1982), Yu (2002b, 2004)). Yield limit for uniaxial case is represented by a point 

whereas for biaxial and triaxial cases, it is represented by a curve and surface respectively. 

The general form of the failure surface can be described in terms of principal stresses and strain 

hardening parameters 0,....),,,,( 21321 F . In the above failure surface, 321 ,,   are 

principal stresses and 21 , are material constants to be determined experimentally. At every 

point inside the stressed body, there exist at least three planes called principal planes. The 

directions normal to these planes are called principal directions and the stresses along these 

directions are called principal stresses. The failure surface can at best be represented in terms of 

three stress invariants, I1, J2 and J3 as  

(Chen 1982) 0),,( 321 JJIF                     (1) 
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Fig. 2 Yield surface in 3-dimensional principal stress space 

 

 
Fig. 3 Characteristics of failure surface 

 

 

where  1

2

12 3
3

1
IIJ  ;  321

3

13 2792
27

1
IIIIJ   

3211  I ; ;1332212  I  3213 I  

The typical yield surface in 3-dimensional principal stress space is shown in Fig. 2. The 

diagonal which has equal distances from three principal axes is called the hydrostatic axis (σ1 = σ2 

= σ3). Deviatoric plane is a plane perpendicular to the hydrostatic axis. Pie plane is the plane 

perpendicular to the hydrostatic axis and passes through the origin and is considered as a special 

type of deviatoric plane. The meridians of the failure surface are the intersection curves between 

the failure surface and the plane containing the hydrostatic axis with constant ϴ. The meridian 

planes corresponding to ϴ = 0
⁰
 and ϴ = 60

⁰
 are called tensile and compressive meridians 

respectively. The meridian plane corresponding to ϴ = 30
⁰
 is known as shear meridian. The 

deviatoric plane and meridian planes are pictorially represented in Fig. 3. 

Nevertheless, for better geometric representation, the failure criterion may be expressed in 

Haigh-Westergaard coordinate system (Chen and Han (1987)) which is defined in terms of three 

parameters namely hydrostatic stress invariant , deviatoric stress invariant   and deviatoric 

polar angle . 0),,( F  In the Haigh-Westergaard coordinate system, the cross-section of 
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the failure surface is represented in deviatoric plane and the meridians are described in the 

meridian plane. At any point within the failure surface, the principal stresses may be expressed in 

terms of Haigh-Westergaard coordinates as  
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where 
1

3

1
I ; 22J  and the angle   is the lode angle. The lode angle is expressed in 

terms of second and third deviatoric stress invariant (Nayak and Zeinkiewicz (1972)) as 

3

2

3

2

33
3cos

J

J
         

On the basis of the various experimental results, the following characteristics of the have been 

considered to be desirable and the same has to be reflected in any failure model. 

(i) Failure surface should be convex and should contain smooth edges 

(ii) Cross-section in the deviatoric plane changes from triangular to circular with the increase in 

confinement. 

(iii) Compressive and tensile meridians in the meridian plane should be parabolic in nature.  

Based on the knowledge on the shape of failure surface for concrete materials, a variety of 

failure criteria models were proposed. Failure models have been developed in the past based on (i) 

the empirical approach, (ii) physical approach, (iii) phenomenological approach. In the empirical 

approach, the tensile and compressive meridians in the meridian plane were derived through curve 

fitting over a cluster of experimental data points obtained by various researchers. To represent the 

failure surface in the deviatoric plane, the smooth interpolation between the two meridians were 

obtained to get the shape functions. It has also been reported by Fan and Wang (2002) that the 

formulations based on empirical approach lacks theoretical background on its hypothetical smooth 

interpolation between the meridians in the deviatoric plane although it has been found to give 

satisfactory results. On the other hand, failure models have also been developed based on the 

material structure which has been claimed as the only true property of a material. The above 

approach captures the pressure sensitivity of the material. Failure models are also based on 

phenomenological approach where criterion is based on experimental observations of the global 

shape of the failure contour. 

In the early days, multiple equations were used to describe the failure criteria (Kupfer and 

Gerstle (1973); Willam and Warnke (1975); Kotsovos (1979) for different zones such as tension, 

compression, tension-compression, tension-tension, compression etc. In order to avoid complexity 

of using multiple functions, models based on a single unified function have been used to describe 

the entire range of failure surface (Ottosen (1977); Lade (1982); and Kang and William (1999)). 

Nevertheless, the use of single function has been found to be plagued by unsatisfactory results 

(Kang and William (1999)). In general, failure criteria may be developed based on conventional 
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method or by a unified method. A recently developed unified method encompasses several other 

criteria as special cases by changing the parameter. In this paper, a detailed review has been made 

on the various conventional failure criteria. 

 

 

4. Failure models 
 

Failure surface is well described in terms of principal stresses (Chen 1982). Since the tensile 

strength of concrete is much lower than its compressive strength, the failure criterion for concrete 

for uniaxial case is defined in terms of two parameters namely tensile strength (ft) and 

Compressive strength (fc). Under biaxial tension, the strength of the concrete is almost the same as 

that under uni-axial tension. However, for the tensile-compressive stress state with low 

tensile/compressive stress ratio, a substantial reduction in tensile strength of concrete arises. Under 

biaxial compression, the maximum compressive strength of concrete increases significantly. 

Therefore, at least one additional parameter that is biaxial compressive becomes an important 

parameter to be considered in the failure criterion. When concrete is subjected to triaxial loading, 

the failure surface similar to the one shown in Fig. 3 has been obtained. Failure models are 

classified from 1-parameter model through 5-parameter model depending on the number of 

material constants appearing in the expressions.  

 

4.1 One-parameter model 
 

When the state of stress is a function of either uni-axial tension or uni-axial compression acting 

normal to the cross-section of the material, the yield condition is represented by σ = ±σy. Since, 

this yield model depends only on the yield stress in tension or compression, it is known as one 

parameter model. In order to develop a unified failure criterion applicable in compression as well 

as in tension, the one-parameter tension model can be coupled with other compression failure 

criterion to define a fracture/cut-off region and referred as tension cut-off criterion. Sometimes 

concrete may fail in shear and, therefore, there is a need to define failure criterion in terms of shear 

stress also. Tresca considered yield stress at shear plane as the parameter to characterize the shear 

failure of concrete. Mathematically the failure form of Tresca criterion is given by 

0
2

),( 31
31 


 kF


                        (3) 

 
 

 
Fig. 4 Tresca criterion 
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Fig. 5 Von-mises criterion 

 

 

where 1  and 3 are the maximum and minimum principal stresses respectively and k is the 

strength of concrete in shear which is equal to  2y . Now the above failure criterion may be 

represented as  

  y

y
F 


 


 31

31
31 0

22
,                 (4) 

In the above equation, y is the yield stress in simple tension. 

The above failure surface can be represented invariant form as 

  064963636274, 6
2

42
2

22
3

22
3

3
232  kJkJkJkJJJJF   (Invariant Form)  (5) 

In the above equation, it is essential to note that the there is no influence of I1( First invariant 

stress tensor). Octahedral normal stress is given by 3/1Ioct  . Thus, the relationship between 

octahedral shear stress and stress is represented by a parallel line. It is interesting to note that the 

intermediate principal stress value has nothing to do with Tresca criterion. Moreover, the Tresca 

criterion assumes that strength of concrete same in compression as well as in tension. Hence 

Tresca criterion cannot be used for concrete since concrete has different strengths in compression 

and tension.  

In order to incorporate the effect of intermediate principal stress, von-Mises proposed another 

one–parameter model in terms of octahedral shear stress as 

0
3

2
)(  kF octoct                         (6) 

where      232

2

21

2

31
3

1
 oct

  and  k is the strength of concrete in pure 

shear 3yfk  at octahedral plane. von-Mises criterion can be expressed in the stress invariant 

form as   

 0)( 2

22  kJJF
                           

(7) 

From the above equation it may be observed that yielding of material begins when the second 
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deviatoric stress invariant (J2) reaches a critical value and hence this criterion is also referred as J2 

Plasticity theory or J2 flow theory. Since the von-Mises criterion includes all three principal stress 

states, it is also known as three-stress criterion.  

Since the above one-parameter models are independent of hydrostatic pressure as evident by 

absent of I1 term in the failure equations, they cannot be used as failure criteria for concrete. 

 
4.2 Two-parameter models 
 

Failure models have also been developed based on the material structure which has been claimed 

as the only true property of a material. The criterion for strength is expressed in terms of the 

cohesive strength of the cement paste and the frictional adhesion of aggregate interaction. The 

models based on this category have the pressure sensitivity and tensile strength criteria. The failure 

model proposed by Mohr-Coulomb & Drucker-Prager is based on this category. The Drucker- 

Prager and Mohr-Coulomb failure models are probably the simplest types of hydrostatic pressure 

dependent failure models, where the pure shear or octahedral shear stress depends linearly on the 

hydrostatic stress or octahedral normal stress respectively. The above failure criteria depend on 

two parameters.   

In Mohr’s criterion, maximum shear stress is the only critical measure of looming failure.  

The general form of Mohr-Coulomb criterion is expressed as   0, 31 F ;  

0),( 3131  tfF                          (8) 

 

 

 

     
Fig. 6 Mohr-coulomb criterion 

 

 
Fig. 7 Drucker-prager criterion 
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where 
c

t
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Where cf and tf  are the strength of concrete in uniaxial compression and tension 

respectively and may be obtained from uni-axial tests on concrete. It is interesting to note that, the 

constant shear stress Tresca criterion is a special case of Mohr’s criterion and may be obtained by 

substituting 1  in Mohr’s criterion 

The Mohr-Coulomb failure criterion can be expressed in terms of invariant form as 
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JIJIF       (9) 

The above equation involves the hydrostatic pressure term and thus gives the linear relationship 

between the octahedral shear stress and normal stress. 

Smoothness of the failure surface in the deviatoric sections has been considered as desirable 

property. Nevertheless, the Mohr-Coulomb criterion has been found to possess certain problems in 

numerical computations because of corners observed in the deviatoric section, thus highlighting 

the shortcomings associated with Mohr-Coulomb failure criteria (Chen and Han (2008)).  In 

addition to that, Mohr-Coulomb criterion is not influenced by intermediate principal stress. In 

order to overcome the problem possessed by Mohr-Coulomb, Drucker-Prager proposed a yield 

criterion similar to the von-Mises criterion by including one additional parameter. This additional 

parameter takes into the account the strength difference of concrete between tension and 

compression.  

The failure surface for the Drucker-Prager criterion is given by  

  0, 2121   JIJIf ; k = 3/yf                    (10) 

when ;0 the above equation leads to von-Mises criterion.  

The failure surface obtained using the Drucker-Prager criterion is a right-circular cone. It 

overcomes the problem posed by Mohr-Coulomb criteria where failure surface in hexagonal. The 

Drucker-Prager criterion, as a smooth approximation to the Mohr-Coulomb criterion, can be made 

to match the Mohr-Coulomb by adjusting the material parameters of both criteria. Nevertheless, in 

the Drucker-Prager criterion the relation between octahedral shear stress and octahedral normal 

stress is linear, and failure surface in the Pie ( ) plane is a circle (Fig. 7). This is contradictory to 

the experimental results which confirm that the failure surface is not a circle and the linear 

relationship is not valid between octahedral shear and normal stresses (Chen and Han (2008), 

Chen (1982)). It is concluded that the above two parameter models fail to comply experimental 

results. Hence, there is a need to develop refined models with more parameters in order to replicate 

the actual behavior.  

 
4.3 Three-Parameter models 
 

In a step to overcome the problems posed by Drucker-Prager criterion, Brestler and Pister 

(1958) proposed a yield criterion consisting of three-parameters, which is basically an extension of 

the Drucker-Prager yield criterion. The failure form in terms of principal stresses is expressed as 
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where c , t  and b  are the uniaxial compressive strength, uniaxial tensile and biaxial 

compressive strength of concrete respectively. In the invariant form the Brestler and Pister three 

parameter model may be represented as  

 21, JIF 02
2
11  JCIBIA                    (12) 

From the above equation, it is clear that there is a parabolic dependence between I1 and J2, 

which is reflected in Fig. 8. The material constants A, B and C are determined from the 

experimental tests. 

Willam and Warnke (1975) have proposed a three parameter failure criterion in order to 

characterize the characteristics of concrete. In terms of hydrostatic stress σm and deviatoric stress 

τm, the above failure model is represented as  

 

 

 
Fig. 8 Brestler –Pister criterion 

 

 
Fig. 9 Willam Warnke critetion 
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Where  3/1Im  ; 2)52( Jm                      (14) 

The radius of the elliptical curve can be described by the following equation as  
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where c  and t  are the radiuses corresponding to compressive and tensile meridians 

respectively. The three parameters c , t  and   are determined from uniaxial compressive 

strength, uniaxial tensile strength and equal biaxial compressive strength.  Nevertheless, Willam 

Warnke model (Fig. 9) has been found inadequate to representing the concrete compressive failure 

where the ratio  ct   approaches unity. This is due to the linear dependence of octahedral 

normal and octahedral shear stresses. It is also reported that this criterion estimates lower value of 

concrete tensile cracking (Chen (1982)).   

It has reported in the literature that for uni-axial loading, the criteria for cracking and crushing 

depend on tension and compression. Nevertheless, for combined state of stress like tension-

compression, it may be difficult to obtain a simple model. Li and Harmon (1990) have proposed a 

three-parameter model in which the failure surface depends on the deviation in the volumetric 

strain. They assumed that the volumetric strain is non-positive for crushing region as the crushing 

should essentially happen due to compression. The volumetric strain components are related to 

first strain invariant by 

01  zyxI                             (16) 

0 zyx                              (17) 

On the basis of above equation, they have proposed to use different failure equations in stress 

space for three different regions namely tension-tension, compression-compression and tension-

compression instead of unified equations. The failure functions for different regions are mentioned 

below: 

 

 

 
Fig. 10 Li & Harmon Failure Critetion 
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Fig. 11 Menetrey and Willam criterion 
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2
113213 2[0,,    (20) 

Eqs. (18), (19) and (20) represent the failure surface in the region of tension, compression and 

compression-compression respectively.  

where a1, a2, a3 a4 and b1, b2, b3 b4 are the constants determined from the following conditions. 

The C
0
 continuous conditions between separation functions 

0121  IforFF                           (21) 

cfIforFF  132                         (22) 

The uniaxial and equal biaxial compressive failure conditions 

cfforF  3212 ;00                    (23) 

bfforF  3213 ;00                   (24) 

The C
1
 continuous condition is expressed by 
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42123 bJIbF                           (26) 

With the help of equations (18-23), the constants can be determined based on uniaxial 

compressive strength, uniaxial tensile strength and equal biaxial compressive strength of concrete. 

The above failure models capture the behavior of concrete adequately and have been found to be 

simple to implement as different equations are used for different stages. It is also observed from 

the Fig. 10 that the Li and Harmon model is more close to experimental results than Chen and 

Chen model for the cracking region. However, Li and Harmon model adopted the same criterion 
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for compression as proposed by chen and chen (Chen and Chen (1975)). Nevertheless, for this 

criterion the significant deviation of results between the experimental and analytical results has 

been observed in the high compressive regime (Li and Harmon (1990)). 

Menetrey and Willam (1995) have presented another three parameter failure criterion which 

satisfies the basic characteristics of a failure surface in meridian plane and deviatoric plane as 

shown in Fig. 11. The failure form of Menetrey-Willam criterion is represented as 
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In terms of stress invariants, the above failure criterion is expressed as 
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In the above equations, m and c are frictional strength and cohesive strength of concrete 

respectively. The cohesion and frictional strength can be calibrated using the uniaxial compression 

and uniaxial tension test results. In order to obtain the smooth trace of the curve in the deviatoric 

plane, the eccentricity should be greater than 0.6. The Menetrey-Willam three parameter model 

possesses parabolic dependence between octahedral shear and normal stresses apart from 

satisfying the criteria in deviatoric sections. The Menetrey-Willam three-parameter model has been 

verified with biaxial and triaxial strength data on plain concrete. The failure criterion includes 

Huber-Mises, Drucker-Prager, Rankine, Mohr-Coulomb as special cases. This criterion has been 

considered to be simplification of Willam Warnke five parameter model.  

 
4.4 Four-Parameter models 
 

In order to meet the geometric requirements of failure model, namely parabolic dependence 

between octahedral shear and normal stresses and also angle of similarity dependence, the more 

refined models have been found to be developed based on phenomenological approach where 

criterion is based on experimental observations of the global shape of the failure contour. Ottosen 

(1977) developed a four-parameter criterion based on phenomenological approach for short-time 

loading of concrete. The meridians and deviatoric plane for the Ottosen model are shown in Fig. 

12. It involves all the essential features of tri-axial stress state and shows good agreement with the 

experimental results. The four parameters in the Ottosen model depend heavily on the ratio of uni-

axial tensile to compressive strength. The Ottosen failure criterion is expressed as 
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where A and B are material constants and  is a function of angle    
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In the above equation, C and D are material parameters 

The four parameters of the Ottosen criterion namely A, B, C and D are determined using the (i) 

uniaxial compressive strength, (ii) Uniaxial tensile strength, (iii) Biaxial compressive strength, and 

(iv) a point on compressive meridian ( oct , oct ). This criterion also suffers from the drawback 

that error in predicting the strength characteristics of concrete increases with the increase in 

compressive strength. Thus, for high compressive stresses, Ottosen criterion may not yield 

accurate results.  

The Hseih-Ting-Chen presented the Ottosen four parameter model in a simplified form as 

(Dede (2010))   
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In the above equation, C1, C2, C3 and C4 the material constants similar to A, B, C and D in 

 

 

 

 
Fig. 12 Ottosen criterion 

 

 
Fig. 13 Hseih-Ting-Chen criterion 
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Ottosen model and are determined in similar way. The above mentioned functional form of the 

Hseih-Ting-Chen model has been found to be a linear combination of three failure criteria, namely 

von-Mises criterion, Drucker-Prager criterion, Rankine criterion. The Hseih-Ting-Chen model 

satisfies almost all the necessary conditions.  Nevertheless, the Hseih-Ting-Chen model still has 

corners along the compressive meridians as shown in Fig. 13, thus smoothness has not been 

achieved which is one of the fundamental characteristics of a failure surface.  Other failure 

criteria have been developed in the past such as Reimann-Janda criterion and Cedolin, Crutzen and 

Dei Poli criterion using four parameters. Nevertheless, these two criteria suffer from the drawback 

of having corners in deviatoric cross-section (Ottosen (1977)). 

 

4.5 Five-Parameter models 
 

Willam and Warnke (1975) modified their three parameter model by including two more 

degrees of freedom which results in the effectiveness of the criterion in high compressive state of 

stress.  

The failure surface of five-parameter model has been expressed conveniently by hydrostatic 

and deviatoric Sections (Fig. 14). The failure surface of the five-parameter model can be described 

by the following equation 
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The elliptical trace is expressed by polar coordinates as  

2222

21222222

)2(cos)(4

]45cos)(4)[2(cos)(2
),(

tctc

ctttcctctcc
m









     (33) 

and the angle of similarity is defined as 
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The tensile and compressive meridians in the five parameter model are expressed by the 

two following equations using second order parabolic form as  
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The above equations may be written in terms of stress-invariants as  
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In above equation six parameters namely a0, a1, a2, b0, b1, b3 are required to define the compressive 

and tension meridians. Since, the two meridians intersect at the hydrostatic axes at a common apex 

of equisectrix, the above six parameters are reduced to five parameters namely a0, a1, a2, b1 and b2. 

These five parameters are determined from experimental results which are uniaxial compressive 

strength, biaxial compressive strength, uniaxial tensile strength and triaxial compressive strength 

at two different stages. The five – parameter model has been used extensively to model the 

concrete behavior (Yan and Pantelides (2006)) and found to give satisfactory results. Bhargava et 

al. (2006) performed the three-dimensional finite element modeling of confined High-Strength 

concrete columns in which the non-linear behavior of concrete material has been idealized by 

Willam-Warnke five-parameter model. It has also been reported in the paper that Willam-Warnke 

model is widely accepted and sophisticated criterion to predict the nonlinear material behavior of 

confined concrete. Ribeiro and Oliveira (1998) conducted elasto-plastic analysis of RC plates 

using the Reissner's model and used Willam-Warnke five parameter criterion to model the concrete 

behavior in compression. Mansour (2010) in his study on theoretical analysis of tunnel lining used 

Willam-Warnke five parameter model as a yield and failure criteria for concrete.  

It has been a general consensus that the failure criterion should be different for reinforced 

concrete. The above statement is augmented by Seow and Swaddiwudhipong (2005)) that the 

failure surface of Willam and Warnke five parameter model intersects the negative hydrostatic axis 

under very high compressive stresses which is contrary to the real behavior of steel fibre 

reinforced concrete (Seow and Swaddiwudhipong (2005)). They have discussed the failure surface 

for concrete under multi-axial load and developed a unified approach using five-parameters. This 

new five-parameter model works well for different strengths of concrete and also for steel 

 

 

 
Fig. 14 Willam –warnke five-parameter model 
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Table 1 Summary of various failure models 

Type of failure criteria Type of failure model Failure model 

Hydrostatic pressure independent One parameter model 

Rankine criterion 

Tresca criterion 

von-Mises criterion 

Hydrostatic pressure dependent 

Two parameter model 

Mohr Coulomb criterion 

Drucker-Prager criterion 

Leon criterion 

Vallabhan-Mehta criterion 

Mills-Zimmerman criterion 

Three parameter model 

Brestler & Pister criterion 

Willam & Warnke criterion 

Li & Harmon criterion 

Hoek & Brown criterion 

Menetrey & Willam criterion 

Chen & Chen criterion 

Lade criterion 

Four parameter model 

Ottosen criterion 

Hseigh Ting Chen 

De-Boer Dresenkamp criterion 

Reimann-Janda criterion 

Five parameter model 

Willam Warnke five parameter criterion 

Podgorski criterion 

Modified five parameter criterion 

Seven-Parameter model Boswell-Chen criterion 

 

 

fiber reinforced concrete under various loading conditions. Many failure models have been 

developed in the recent past based on the unified approach so that the same failure criteria can be 

applied to different materials as well (Hinchberger (2009), Seow and Swaddiwudhipong (2005). 

The failure surface of the five parameter model proposed by Seow and Swaddiwudhipong (2005) 

is represented by 
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In Eq. (39)   is a parameter used to modify the failure surface to incorporate the effect of 

steel fiber reinforcement.  In the case of plain concrete, the value of   equals unity; 
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Finite element analysis was carried out to show the wide range of applicability of new five-

parameter model especially in steel fibre reinforced concrete (Seow and Swaddiwudhipong 

(2005)). 

 
4.6 3 Recent developments 
It has been recently established that the performance based failure criterion be adopted for 

normal and high strength concretes in order to define the maximum strength of concrete. This falls 

under the category of unified strength criterion as like Seow and Swaddiwudhipong (2005). Folino 

et al. (2009) reported that the compressive strength and mortar qualities are the two most 

important parameters to define the failure surface of concrete. However, it has been reported that 

no parameter has been established to measure the quality of mortar in the failure criteria. They 

have developed the failure model in which the form of maximum strength surface varies 

depending on the quality of material, thus incorporating the effect the material quality in the 

failure criterion. It has also been reported that this strength criterion leads to better results than 

reported by Seow and Swaddiwudhipong (2005). The four material parameters are required to 

define this criterion.  

In the recent times, the use of nonlinear strength criteria based on unified approach is being 

used as failure criteria of concrete. Du et al. (2010) recently proposed four-parameter failure 

criterion based on unified approach and concluded that the criterion works satisfactorily in 

predicting the failure criterion of concrete. The use of such models in finite element analysis is 

relatively easy as it encompasses several other criteria as special cases.  

Some failure models have not been discussed in order to avoid complexity. The various failure 

models are summarized & reported in Table 1. 

 
 
5. Concluding remarks 
 

Based on the detailed review made on the behavior of concrete and failure criteria, the 

following salient observations have been made. 

The experimental behavior of concrete subjected to uniaxial, biaxial, triaxial loading performed 

by various investigators has been reviewed. Since the von-Mises, Tresca and Rankine failure 
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criteria depend on only one parameter and not possessing the smooth deviatoric plane, it has been 

reported in the literature that these failure models fail to capture the behavior of concrete 

adequately. Addition of Rankine criterion to von-Mises and Tresca to include tension-cutoff 

condition, makes these criteria two-parameter models. Nevertheless, these failure models are 

insensitive to hydrostatic pressure and the shape of the deviatoric plane does not comply with the 

characteristics of failure surface of concrete. Hence the above one parameter failure models are 

adopted as a failure criterion for concrete. The Mohr-Colomb criterion widely used as a failure 

criterion for concrete because of its hydrostatic pressure dependence, but has straight edges and 

sharp corners in the failure surface in the deivatoric plane. The straight edges essentially mean that 

the linear interpolation has been used between the tensile and compressive meridian. The Drucker-

Prager failure criterion gives better results than Mohr-Coulomb criterion because of the 

smoothness of the failure surface in the deviatoric section. The Mohr-Coulomb and Drucker-

Prager criteria results to Tresca and von-Mises criteria respectively as special cases. Furthermore, 

the Rankine’s criterion can be added to either Mohr-Coulomb or Drucker-Prager criteria to 

extrapolate these two-parameter models into three-parameter model. Several investigations have 

been conducted on the behavior of concrete subjected to biaxial stress state of concrete and 

concluded that the biaxial compressive strength of concrete is higher than uniaxial compressive 

strength of concrete. Nevertheless, most of the researchers have suggested that not much variation 

was observed between the biaxial tensile and uniaxial tensile strength of concrete. Thus, it has 

been reported that minimum three parameters, namely (i) uniaxial compressive strength (ii) 

uniaxial tensile strength and (iii) biaxial compressive strength are required to predict the behavior 

of concrete. Thus, the use of Mohr-Coulomb, Drucker-Prager criteria have been found having 

limitations in predicting the response of concrete. On the experimental investigations, various 

three-parameter models have been proposed. The Menetrey-Willam three parameter model has 

been considered the simplification of Willam-Warnke five parameter model and possesses the 

desired characteristics of a failure surface. Brestler and Pister have also proposed a three parameter 

model. While Menetrey-Willam failure model has the parabolic dependence between octahedral 

shear and normal stress, Brestler and Pister has the circular section in the deviatoric plane. The 

extensive investigations lead to the representation of the failure surface with the help of four 

parameters. Ottosen and Hseih-Ting-Chen model falls in this category. Hseih-Ting Chen model is 

considered a computationally simple than Ottosen, the failure model has edges in the failure 

surface in the deviatoric plane. The Willam-Warnke five parameter model (1975) has been the best 

pick over all the above mentioned failure criteria because of its versatility in satisfying all the 

characteristics of the failure surface and also its performance in predicting the behavior of concrete 

(Ribeiro and Oliveira 1998; Fanning 2001; Mansour 2010). The above mentioned failure criteria 

including five-parameter Willam-Warnke model are based on monotonic loading condition and is 

applicable only for plain concrete.  

The new five parameter model proposed by Seow and Swaddiwudhipong (2005) is based on 

unified approach and its applicability has been found to be better than five parameter model 

especially for steel fibre-reinforced concrete (SFRC). Experimental investigations by Seow and 

Swaddiwudhipong (2005) confirm that the new unified 5-parameter failure surface is suitable for 

concrete strengths ranging from 20 MPa to 165 MPa and also for SRFC. The comparison of 

Willam-Warnke five parameter failure model with the unified failure model was mentioned in 

Seow and Swaddiwudhipong (2005). The advantage of unified approach is that it is not restricted 

to only one type of materials. Other failure models have been found to be developed based on this 

unified approach. Recently, performance based failure criterion has also been developed by 
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incorporating the quality of material as performance index parameter. The performance based 

criterion has been found to be in use for different range of materials ranging from normal strength 

concrete to high strength concrete. Nevertheless, five parameter Willam-Warnke model (1975) and 

the Menetrey Willam three parameter model (1995) have all the credentials to be used as a failure 

criterion for plain concrete.  
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