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Abstract.  In the analysis and design of reinforced concrete frames beam-column joints are sometimes 
assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of 
internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This 
study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior 
ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric 
studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular 
reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints. 
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1. Introduction 
 

Sometimes, in the analyses of reinforced concrete (RC) frames, beam-column joints are 

assumed fully rigid and with an ultimate strength larger than the adjoining members. In other 

cases, beam-column joints are assumed perfectly pinned and with a deformation capacity large 

enough to accommodate the deformations required from equilibrium and compatibility conditions. 

In both cases, the detailing of RC beam-column joints is based in established patterns which are 

expected to produce an adequate solution in terms of load capacity and/or ductility. Even in the 

few cases where the suitability of a particular joint detailing is evaluated, usually this only 

comprises the ultimate load capacity of the joint, ignoring the assessment of compatibility of 

ultimate deformation of the beam-column joint with the adjacent members and of its effect on the 

overall structural performance. 

Actually, the three main mechanical characteristics of a joint – stiffness, strength and ductility – 

can have such a strong influence on the overall behavior of RC frames, so as to render the above 
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simplistic procedures unacceptable.  

Paulay and Priestley (1992) show that, because shear force can be several times larger in joints 

than in the adjoining members, beam-column joints are sometimes the weakest link. Sharma et al. 

(2011), subjected a 3D RC frame, not designed for seismic loads, to a monotonically increasing 

lateral load, and concluded that in order to capture the failure modes and compute a realistic 

capacity curve, the joint shear behavior had to be accounted for in the analysis models. Shin and 

LaFave (2004), further point out that, even joints designed according to current codes or to 

mechanical criteria so as to remain in the elastic range of behavior, hence nearly rigid, are actually 

deformable, generating significant additional rotations between the ends of beams and columns, 

which are usually ignored in structural analysis. Lastly, the ductility of reinforced concrete beam-

column joints is a fundamental aspect regarding structural robustness. 

In this article attention is focused on the effect of the shear deformation of reinforced concrete 

beam-column (RCBC) joints, especially of exterior ones, on the overall behavior of regular 

unbraced frames, for the particular case of quasi-static monotonic actions. In this paper, both 

expressions “unbraced frames” and “sway frames” refer to frames where the resistance and 

stiffness to lateral loads is mainly provided by bending of frame members (beams and columns) 

and their connections. 

The deformation of RCBC joints results essentially from the conjugation of two distinct 

phenomena: (i) shear deformation in the region of the joint where beams and columns intersect and 

(ii) anchorage slip of the longitudinal reinforcement (Biddah and Ghobarah 1999). Shear 

deformation is in many cases the most relevant of these components for sway frame behaviour 

(Altoontash 2004) and is the only one under analysis in this paper. 

Because common RC structures are not, as a rule, very slender, they are not very sensitive to 

second order effects. Nevertheless, the construction of ever more slender RC structures is resulting 

from (i) the expanding use of high strength concrete and steel, to a certain extent due to a 

combination of relative price reduction and their superior performance with respect to durability 

and (ii) the urge for an enhanced architectural functionality linked to increasing span lengths and 

decreasing structural sections. As a result of the increasing slenderness of RC frames, second order 

effects turn out to be significant, particularly in unbraced frames – consequently, the deformation 

of beam-column joints may also become significant as, for instance, in steel sway frames. 

The deformation of RCBC joints can be an important feature also in not so slender frames, 

because the lateral displacement caused by lateral loads is a key element in seismic performance 

analysis based in static nonlinear procedures (pushover analysis). 

Following Gomes (2002), additional second order effects and lateral displacements caused by 

shear deformation of exterior beam-column joints of regular multi-storey sway frames are 

investigated for the particular case of quasi-static monotonic actions. The numerical analysis is 

performed on a representative sub-frame where, in order to circumvent the limitations of a full 

theoretical model, the developed beam-column joint model incorporates experimental data. 

The purpose of this paper is to display the effect of RCBC joint shear deformation, explicitly 

modeled, upon the behavior of unbraced RC regular frames, in order to call attention to the risk of 

ignoring this effect. The paper does not provide explicit practical guidance to design nor a new 

behavior model. RCBC joint models and simplified criteria for evaluation of the effect of RCBC 

joints deformation on the global structural behavior are under development and will be published 

soon. 
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2. Sarsam’s laboratorial results for RC beam-column joints 
 

In this section, we first identify and validate the experimental data available in the literature and 

then explain how to objectively include them in the beam-column joint model – those more 

concerned with the structural model, numerical analysis and main results may skip it. Since RCBC 

joints are major sources of energy dissipation, it is obvious that during a seismic event, the 

stiffness degradation caused by damage of the RCBC joints has to be accounted for. However, 

since the focus of the present study is the quasi-static joint behavior, joint shear stiffness 

degradation caused by cyclic loads is not taken into account in order not to overemphasize RCBC 

joint shear deformation. Hence, the available results from earthquake and cycling loading tests are 

not of much use, which leaves us with the experimental results of Roeser (Hegger et al. 2003, 

Roeser 2002) and Sarsam (Sarsam 1983, Sarsam and Phipps 1985). This study made use only of 

Sarsam’s experimental data. 

 

2.1 Summary of Sarsam’s laboratorial results 
 

Sarsam tested five exterior reinforced concrete beam-column joints, numbered from EX1 to 

EX5, subjected to quasi-static (single cycle) loads. The purpose of his investigation was to study 

the effect of joint reinforcement, applied moment-to-shear ratio and column axial load on the 

behavior of exterior RCBC joints. Fig. 1 presents the geometry of the five specimens, the load 

configuration, the reinforcement detailing and concrete strength values. The reinforcement bars 

were hot rolled deformed taken from the same supply batch and all the tested samples exhibited a 

yield plateau. The experimental average yield strength was about 500 MPa and the modulus of 

elasticity about 200 GPa. All specimens except EX2 had closed ties (hoops) in the joint. Loading 

was applied in two stages. Stage 1: apply the concentric load P to the column. Stage 2: while 

keeping the value of P fixed, apply transverse load at the beam tip and increase its magnitude until 

joint or beam failure. 

All specimens exhibited joint diagonal cracking after testing. Up to diagonal cracking there was 

no noticeable difference in behavior between specimens with and without joint hoops. After 

diagonal cracking the influence of hoops became evident and specimen EX1, similar to EX2 but 

with joint hoops, revealed a much stiffer response than specimen EX2. Actually, specimen EX2 

was the only one that failed due to joint shear, exhibiting afterwards a quick rise in joint 

deformation together with a continuous drop in joint load-carrying capacity. In the other specimens 

the failure occurred in the beam. After failure, specimen EX2 exhibited concrete spalling and 

cracks up to 2.5 mm wide on the three exposed faces of the joint. The joints of the other specimens 

exhibited only hairline cracks. 

Specimen EX2 was excluded from the present study because (i) it has no joint hoops and hence 

it does not fulfill current technical specifications (see 2,3) and (ii) this study is intended to evaluate 

only the influence of RCBC joints deformation (not its strength), thus only full-strength joints 

were selected, i.e., joints stronger than neighbor beams and columns; but the proposed analysis 

procedure could have been applicable to this specimen. From the remaining specimens, the most 

rigid (EX1) and the most flexible (EX3) were selected for this study, see Fig. 2, in order to offer 

the widest range of joint shear stiffness. These two specimens differ mainly in the concrete 

strength and the distance va  from the face of the column to the location of the beam load, which 

equals the moment-to-shear ratio at the joint.  

Fig. 2 shows the experimental moment-rotation relationships obtained by Sarsam (1983). In  
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Fig. 1 Exterior RCBC joint tested by Sarsam (Sarsam 1983, Sarsam and Phipps 1985) 

 

 
 

Fig. 2 Sarsam’s experimental moment-rotation results for RCBC joints and fitted curves 

 

 
 

Fig. 3 Alternative conjugate pairs of joint generalized variables: (a) ( , ) M , (b) jh,mean( , )V  
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this figure, the rotation is the mean shear deformation of the joint   (Fig. 3) while the bending 
moment bM  refers to the beam cross section at joint periphery (face of the column). Note that 

the peak value of the bending moment b,maxM  in the experimental curves depicted in Fig. 2 does 
not correspond to the joint shear resistance. Since the collapse of specimens EX1 and EX3 was 
due to beam bending failure, these curves cannot reflect joint behavior until joint collapse. This 
“incompleteness” of Sarsam’s records, regarding joint deformation in the neighborhood of its 
collapse, does not compromise the validity of our main conclusions. Actually, if experimental data 
for joint behavior until its collapse were available and had been employed, the practical outcome 

would be an even larger effect of joint deformation because usually joint flexibility increases 
greatly in the eminence of its collapse.  

In order to remove local irregularities characteristic of sets of experimental data, we fit to 

Sarsam’s data the smooth curve proposed by Richard and Abbott (1975), see Fig. 2. 

 

2.2 Experimental data rescaling 
 

When the beam-column joint deformation results predominantly from bond-slip inside the 

joint, the joint behavior can be reasonably modeled by an elastic hinge at the beam end. This 

model has been successfully employed in the simulation of seismic behavior of reinforced concrete 

framed structures by Anderson and Townsend (1977) and Townsend and Hanson (1973). However, 

whenever the joint shear behavior is relevant, such a simple characterization becomes inadequate, 

because the bending moment and joint shear deformation are not work-conjugate (Borkowski 1988), 

i.e., the bending moment at the beam’s end is not the unique internal force associated with joint 

shear deformation. Hence, Sarsam’s experimental data should not be used directly for structural 

systems whose geometries or support/loading conditions differ from his.  

Alternatively, the shear deformation of beam-column joints can be simulated with Krawinkler 

type models (Krawinkler 1978). With some of these models it is possible to condense in a single 

static variable the contribution to shear at the joint of all the internal forces at the neighbor beam 

and column ends. Moreover, according to Charney and Marshal (2006), these are the models 

whose deformation mode is closer to actual joint shear deformations. These are the reasons why 

the Krawinkler type model developed by Mitra and Lowes (2007) was adopted in this study. 

According to Kim, LaFave and Song (2009), Hanson and Conner (1967) defined the shear 

force at mid-height of the joint jh,max( )V  to be the best measure of the stress field in the RCBC 

joint; nowadays, this definition is accepted by most technical specifications.  

In the following lines, Mitra and Lowes (2007) model is briefly described together with the 

static variable it uses to characterize joint shear behaviour jh,mean( )V . The relations between 

(i) jh,meanV , (ii) jh,maxV  and (iii) the experimental data reported by Sarsam are next investigated. 

The RCBC joint model developed by Mitra and Lowes (2007) is composed of two pairs of 

parallel rigid straight bars hinged together and placed along the joint periphery. One hinge is 

elastic and characterized by the joint moment-rotation relationship,  M , between angular 

distortion   and distortional moment M , see Fig. 3(a). In order to simulate bond-slip inside the 

joint and shear deformation at the beam and column ends Mitra and Lowes (2007) model also 

contains springs (not represented in Fig. 3) connecting the beams and columns to the rigid bars. 

However, since only joint shear deformations are accounted for in this study, these additional 

springs were assumed fully rigid. 

397



 

 

 

 

 

 

Ricardo J. T. Costa et al. 

 
Fig. 4 Internal forces and moments at periphery of joint 

 

 

Using the reference system of internal forces and moments iF  represented in Fig. 4 to express 

equilibrium with respect to the initial configuration, for the general case where the joint links two 

columns and two beams, we get the first order approximation for M   
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which, for the particular case of Sarsam ś experimental specimens (Fig. 1), gives  
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where b v c2 L a h . The last expression reveals that the relation between bM  and the 

distortional moment M  
is not univocal. As stated before, this means that the b M  relation 

does not characterize the joint panel behavior properly. The conversion of the b M  relation to 

 M  using Eq. (2) rescales Sarsam’s experimental records, providing a beam-column joint 

characterization independent of the structure. 

The first order joint internal work associated to the pair of variables ( , ) M  is given by 
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where   is the relative displacement between the top and bottom edges of the joint panel and 

jh,meanV  is a measure of the joint (horizontal) shear force, Fig. 3(b), with magnitude 

  
6 12

jh,mean 7 4 10
b b

1

2

 
     

M F F
V F F F

h h
                  (5) 

Therefore, the pair jh,mean( , )V  can be used instead of ( , ) M  to characterize the joint shear 

behavior, see Fig. 3(b), (Kato et al. 1988, Roeser 200). 

As stated before, besides M , or jh,meanV , there is yet another static quantity which can be 

used to characterize the system of forces at the periphery of a beam-column joint – the horizontal 

shear force at mid-height of the joint, jh,maxV ,which is the maximum horizontal joint shear force. 

In the literature, this is the most commonly used option to characterize beam-column joint strength 

and behavior (CEN 2004b, ACI Committee 318 2008, CEN 2005).  

In order to compute jh,maxV  note that the nodal moment 6F  (and similarly 12F ) is equivalent 

to a force couple of oppositely directed horizontal forces with magnitude 6 b/F z  and arm bz , 

where 6 b/F z  is the beam longitudinal compressive force, equal to its longitudinal tension force, 

carried by concrete and longitudinal reinforcement at the beam’s end cross section. Assuming also 

a uniform cross sectional stress distribution of the axial force at the beam’s end, the horizontal 

force equilibrium condition at mid-height of the joint gives 
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                     (6) 

The relation between jh,maxV  and M  (or jh,meanV ) is not univocal because it depends of the 

distribution of internal forces and moments at the periphery of the joint, i.e., it is not invariant with 

respect to the structure overall geometry, load and support conditions. Hence, only when the 

distribution of internal forces and moments at the periphery of the joint is known a priori can the 

jh,max V  relations given in the bibliography be used in Mitra and Lowes (2007) model. 

However, for the particular case of Sarsam’s specimens, since they are statically determined, it is 

straightforward to relate jh,maxV  to jh,meanV  (or M ). Taking into account Sarsam’s specimens 

geometry, Eq. (6) can be rewritten as 
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Solving Eq. (2) for 6F  b( ) M  and introducing the result in (7) gives 
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which, for Sarsam’s specimens geometry, leads to jh,max jh,mean/ 1.4V V . 

The characterization of RCBC joints by means of relationships jh,max V  or jh,mean V  is 
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said objective because it gives a description of their shear behavior which is independent of the 

length of beams and columns, loading and support conditions. For instance, shear in the beam-

column joint of the sub-frame increases with the column length, for constant bending moment at 

the beam end; this trend is satisfied by Krawinkler type models but not by Anderson and 

Townsend (1977) joint model. 
 

2.3 Shear behavior and resistance of RC beam-column joint  

 

The literature offers several shear resistance models for RCBC joints (e.g., Paulay and Priestley 

(1992), Vollum and Newman (1999), Bakir and Boduroglu (2002), Kotsovou and Mouzakis 

(2012)) but only a few behavior models. The best known behavior models are based on the 

“Modified Compression Field Theory” (MCFT) from Vecchio and Collins (1986) and the 

“Softened Truss Model” (STM) from Hsu (1988). In both these models the joint is assumed to be a 

RC plane truss under a plain stress state produced by uniformly distributed normal and shear 

forces applied to the plate border. Good results from the application of MCFT and STM have been 

reported (Biddah and Ghobarah 1999, Lowes and Altoontash 2003) but, in fact, these models are 

rather complex and some simplifying assumptions are hard to justify for beam-column joints. 

Moreover, according to Kitayama, Otani and Aoyama (1991), the contribution of the truss 

mechanism is relevant to the joint shear behavior only under good bonding conditions of the 

longitudinal reinforcement of beam and column. Hence, these behavior models are expected to 

diverge from experimentally determined behavior as the magnitude of the forces in the joint 

increase. 

More recently, Roeser (2002) and LaFave and Kim (2011) put forward simpler behavior models 

establishing constitutive relations jh  , with jh jh,max c j/( ) V h b . Roeser employed 

experimental results of beam-column joints subjected to a monotonic (non-cyclic) loading, while 

Kim and LaFave applied a Bayesian statistical methodology to a large data base of beam-column 

joints subjected to cyclic loadings. Using Eqs. (2) and (8) to convert Sarsam’s experimental 

relations b M  to the jh   format, we can evaluate them against these behavior models, 

see Fig. 5 Note that Roeser’s constitutive relation accounts for only two hoops (closed ties) as 

effective in the joint while Kim and LaFave’s accounts for all hoops (three). Roeser’s assumption 

follows Hamil (2000) who recommends that in RCBC exterior joints the transverse reinforcement in 

the beam compression zone should not be considered. In addition, Roeser’s constitutive relation was 

modified in order to include the elastic shear deformation, assumed to be linear, in the uncracked 

phase of concrete. Fig. 5 shows that the predictions of both models agree reasonably well with the 

experimental data – the differences found between experimental results and these two models are 

close to what could be expected in the early current stage of development of behavior models for 

RCBC joints in shear (LaFave and Kim 2011).  

Now let’s evaluate Sarsam’s experimental results against the shear strength of RCBC joints as 

given by codes of practice. Except for the reference in Annex J to strut-and-tie models of corner 

beam-column joints, EC2 (CEN 2004a) does not directly refer to the required resistance of beam-

column joints neither to the design and detailing of their reinforcement. Therefore, ACI 318M-08 

(ACI Committee 318 2008) and ACI 352R-02 (ACI-ASCE Committee 352 2002) 

recommendations were followed in order to assess the shear strength of joints EX1 and EX3. ACI 

318M-08 recommends a minimum area of reinforcement given by   
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Fig. 5 Sarsam’s joint shear behavior experimental results plotted against the relationships 

proposed by Roeser (2002) and LaFave and Kim (2011) 
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               (9) 

which gives 
2

v,min / 0.139 mm /mmA s  for specimen EX1 and 20.121mm /mm  for EX3. In 
both cases 2

v / 1.188 mm /mmA s  and thus ACI 318M-08 conditions for a quasi-static action are 
satisfied. Sarsam’s specimens also satisfy the maximum distance between shear reinforcement in 
the joint indicated by ACI 352R-02. Hence, joint shear resistance can be estimated by  

        n c j cMN 0.083 MPa m mV C f b h                   (10) 

where, for the joints tested by Sarsam (1983), 15C . This expression gives n 297 kNV  for 

specimen EX1 and 256 kN  for EX3. 

According to the calculated moment-curvature relationships for the beam, the ultimate bending 

resistance of Sarsam’s beams is R 52.1kNmM  for specimen EX1 and R 51.9 kNmM  for 

EX3. Assuming b b0.85z d  and ignoring the benefic effect of the column shear force, gives a 

maximum horizontal joint shear force jh,max 227 kNV  for specimen EX1 and jh,max 226 kNV  

for EX3. These results indicate that the beam-column joints in Sarsam’s EX1 and EX3 specimens 

satisfy current technical regulations because their design guarantees that the structure collapse is 

initiated in the beam, i.e., the joints were not under designed. 

Although ACI 352R-02 recommendations for the development length dhl  of beam 

reinforcement are not met by any experimental data available for non-cyclic beam-column joint 

behavior (Sarsam 1983, Roeser 2002), the shear strength of the joints and the strength of 

reinforcement anchorage in beams and columns were enough to guarantee that the joint was stronger 

than the beam. Moreover, the deformation of reinforcement anchorage in beams and columns was 

not taken into account in the numerical analysis (only the joint shear deformation was accounted for) 

and the joint shear experimental behavior is close to that expected by Roeser (2002) and LaFave and 

Kim (2011) RCBC joints models. In view of these aspects the experimental results published by 

Sarsam were deemed valid and representative of common RC framed structures for the present study. 
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3. Numerical non-linear structural analysis 
 

3.1 Assumptions 

 

The behavior of multi-storey sway frames, assuming the regularity of their geometry, 

mechanical properties and loading, can be approximated by the behavior of a representative sub-

frame (Kollár 1999). With such a sub-frame, two distinct but interconnected consequences of joint 

shear deformation are investigated: (i) reduction in the load-carrying capacity of the frame and (ii) 

magnification of the transverse deflections of the frame members for a given loading. The  sub-

frame model incorporates the shear behaviour of two RCBC exterior joints experimentally 

determined by Sarsam (1983) (Fig. 2 and Fig. 5). Even though the use of broad-spectrum 

analytically defined relationships for joint shear behaviour could lead to wider-ranging results, this 

generalization was sacrificed to what is deemed to be a more realistic description of joint shear 

deformation.  

It must be emphasized that in RCBC joints designed according to current seismic design codes 

bond-slip is often the major source of deformation; hence it should also be considered in a more 

universal analysis. The present study aims to show that the deformation of RCBC joints is 

important and should not be disregarded; hence, if all sources of joint deformation had been taken 

into account, the relevance of joint deformation would have been even greater. 

Fig. 6(b) shows the initial and deformed configurations of the sub-frame as well as the loading 

conditions. This sub-frame system represents part of a typical regular multi-storey sway frame, 

which will be called the original frame, depicted in Fig. 6(a). It includes one joint linking together 

one beam, whose length is half the length of the beams in the original frame, and two columns, 

whose length is half the length of the columns in the original frame. The sub-frame has a hinge 

support at the bottom end of the lower column and a simple hinge support at the beam right end. 

There is a pair of point loads, one horizontal, H, and the other one vertical and concentric, P, 

applied at the free end of the upper column. (It is clear that the axial force is zero in the beam.) The 

total sway deflection of the loaded section is similar to the inter-story drift of the corresponding 

floor of the original frame. Thus, H  and P represent the contribution of all floors above the 

typical one under analysis. 

 

 

 
 
 

Fig. 6 (a) Bending moment diagram of regular multi-storey sway frame subjected to lateral loads, (b) 

initial and deformed configurations of the sub-frame implemented in the numerical analysis 
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If we assume that there is no relevant horizontal load transfer between exterior columns and 

interior columns in the original frame, i.e., the axial force in the beams is negligible, then the sub- 

frame behavior is representative of the overall behavior of the original frame. 

The beam and column cross sections are symmetric with respect to the plane defined by beam 

and column centerlines, and their dimensions are considered small when compared to the member 

length, so that the Bernoulli-Euler-Navier hypothesis is assumed to be valid. Small strains and 

rotations are assumed, preserving cross sectional geometry and lengths orthogonally projected to 

the initial configuration. Hence, the strain field in the linear elements is defined by small normal 

strains parallel to the element axis. The normal stresses are computed from these strains by means 

of (i) MC90 (MC90 (1990)) non-linear concrete stress-strain relationship (analogous to the one in 

section 3.1.5 of EC2 (CEN 2004a) and (ii) the reinforcement steel elastic-perfectly plastic stress-

strain diagram in section 3.2.7 of EC2 (CEN 2004a). 

 

3.2 Procedure for non-linear analysis 

 

The numerical assessment of the effect of deformation of RCBC joints requires a geometric and 

material non-linear analysis. The implemented iterative procedure is based on the General Method 

in section 5.8.6 of EC2 (CEN 2004a), previously proposed in CEB (1974), except that creep is not 

taken into account. To begin with, the cross section thrust-moment-curvature relationship for the 

column and the moment-curvature relationship for the beam are computed using a standard fiber 

model analysis taking into account the geometric and material characteristics of specimens EX1 

and EX3 given by Sarsam (1983). Subsequently, the concentric vertical force P is first applied and 

then a load control analysis is performed where the horizontal force H is progressively increased in 

small increments H  until it reaches its maximum value. For each pair (P, H), the numerical 

solution is calculated as follows (CEN 2004a, Westerberg 2004): (i) establish the equilibrium 

equations in the current deformed configuration and calculate the updated bending moment at a 

fixed number of closely spaced cross sections, (ii) determine the curvature using the previously 

computed constitutive relationships for each cross section, (iii) determine the updated deformed 

configuration by double integration of the curvature, assuming linear variation between these cross 

sections, (iv) go back to step (i) while convergence in the deformed configuration is not achieved, 

(v) record deformed configuration (including the displacement d) and matching loads (P, H). If, 

for a given increment H , there is no equilibrium configuration, this iterative scheme will not 

converge. In this case, go back to the previous recorded solution, decrease H  and proceed with 

this new updated increment. The positive horizontal force increment H  can be successively 

decreased, till it reaches a value below a small tolerance, minH . When, for a given vertical force 

P , this happens, the last value of H  for which an equilibrium solution was numerically found is 

defined as the maximum horizontal force max max[ ]H H P . The ultimate state of the sub-frame, 

associated to maxH , may correspond to (i) a material failure, (ii) the maximum experimentally 

registered value of M , or (iii) a stability failure associated with a limit point, see Section 3.3. 

The H d  curves thus determined correspond to standard pushover curves.  

The effect of the shear deformation of RCBC joints was evaluated in a second order analysis, 

i.e., where the equilibrium equations refer to the updated deformed configuration, by comparing 

the solutions for the sub-frame considering deformable joints with those considering rigid joints, 

always including the non-linear material behavior of the beam and columns. For the non-rigid 

case, the constitutive relation for joint shear behavior is one of the two presented in section , based 
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on Sarsam’s experimentally obtained results. 

 

3.3 Characterization of the collapse modes 

 
The critical elements in the sub-frame are the joint itself and the three cross-sections at the joint 

periphery, where it interfaces with the columns and beam. During the iterative analysis, for each 

load combination, it is necessary to monitor (i) the internal bending moment at sections c1, c2 and 

b (see Fig. 6(b)), E,c1 E,c1[ , ]M M P H , E,c2 E,c2[ , ]M M P H  and E,b E,b[ , ]M M P H , 

respectively, which cannot exceed the matching cross-section strength, i.e., R,c1 R,c1[ ]M M P , 

R,c2 R,c2[ ]M M P  and R,bM , and (ii) the distortional moment at the joint E, E, [ , ] M M P H  

which cannot exceed the maximum experimentally recorded value, ,maxM . To evaluate the risk 

of material collapse or of surpassing the maximum experimentally recorded value ,maxM , the 

following non-negative parameters were defined 

E,c1 E,c2 E,b
1 c1 2 c2 3 b 4 j

R,c1 R,c2 R,b ,max

, , ,




              
M M M M

M M M M
 

If the combination of external forces under analysis corresponds to a material failure or the 

attainment of ,maxM , (at least) one of the e  has unit value, i.e., max 1, ,4max [ ] 1  e e .   

On the contrary, in the case of a stability failure, max  can be, and in general is, less than one.  

The stability failures identified in the present study are associated to a limit point in the column 

and resulted from the sudden bending stiffness reduction (Bažant and Cedolin 2003) due to beam 

reinforcement yielding – this is almost coincident with the attainment of the ultimate strength at 

the critical section where yielding takes place, and is identified by a value for max  slightly 

below unity.  

The value of max  as well as the element where this maximum ratio is attained are 

incorporated in the graphical representation of results in Section 4. 
 

 

4. Numerical analysis results 
 

4.1 Parametric analysis 

 

In the parametric analysis, four parameters were considered: the horizontal force H, the vertical 

force P and the simplified slenderness of the beam, b b/L h , and columns, c c/L h . The concentric 

vertical force P is defined by means of the non-dimensional axial force in the upper column, 

c c c/ /( ) n P N P A f , which takes values in the range [0.1,0.6] , a positive value meaning 

compression. The slenderness b b/L h  and c c/L h  take values in the discrete sets {5,10,15}  and 

{5, 7.5,10} , respectively. These values cover the range which can be realistically expected for 

buildings in present and near future.  

In order to evaluate the effect of the shear deformation of RCBC joints, we compare the second 

order solution of the sub-frame with deformable joints (labeled “NRig”) with that of the sub-frame 

404



 

 

 

 

 

 

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior  

with rigid joints (“Rig”). For a given load level, the rigid joints solution can be thought of as an 

approximation to the more exact deformable joints solution, their difference giving the absolute 

error. The relative error   is defined by the ratio of the absolute error to a reference solution. 

High values of | |  indicate an excessive error of the rigid joints solution, meaning that this 

approach should not be used in common practice to replace the one with deformable joints. For the 

case of maximum allowable lateral load, according to ENV 1993 (CEN 1994, Gomes et al. 1998), 

a steel beam-column joint should be considered semi-rigid for | | 5 %  . Due to the lack of 

specifications for reinforced concrete structures, this limit was adopted also for RC beam-column 

joints. Accordingly, joint deformation is deemed relevant if the value of parameter   associated 

to the effect of joint shear deformation upon the maximum allowable horizontal load H is larger 

than 5%. 

 

4.2 Effect of joint shear deformation on maximum allowable lateral load 

 

This section considers the maximum value attainable by the horizontal force H on a second 

order analysis of the sub-frame for fixed values of the vertical load P or, more specifically, how 

this maximum value of the load changes when the shear deformation of the joint is taken into 

account, NRig
maxH , or not, Rig

maxH . 

Fig. 7 depicts the maximum allowable value of the horizontal load for both cases of rigid and 

non-rigid joints, represents de value of max ( 100)  and identifies the corresponding critical 

element (“b” for beam and “j” for joint). This figure reveals that the maximum allowable 

horizontal load value decreases when (i) the slenderness of the column c c( / )L h  or beams 

b b( / )L h  increases, (ii) the axial compressive loading on the column increases or (iii) the joint 

shear deformation is incorporated, i.e., NRig Rig
max maxH H . Moreover, when P increases, maxH  

decreases almost linearly and the absolute difference between NRig
maxH  and Rig

maxH  increases. As 

expected, Fig. 7 also shows that, for the same loading conditions, i.e., same loads P and H, the 

more slender the column is, the more stressed is the joint (i.e., jhV increases with the ratio c c/L h ). 

Hence RCBC joints are prone to be the critical elements in slender frames. 
Let us define 

  
NRig Rig
max max

Rig
max

 


 H H
H H

P
H   

                      (11) 

which gives the relative reduction of the maximum lateral load due to joint shear deformation.  

Fig. 8 depicts the variation of
 

[ ]H P , confirming that this parameter is always negative, i.e., joint 

deformation reduces maxH . This figure also depicts the 5% critical boundary, showing that the 

reduction of lateral load capacity due to joint shear deformation is effectively significant. This 

provides clear evidence of the need (i) to include joint shear deformation in the analysis of 

unbraced RC regular frames, and (ii) to define criteria which identify the cases where the 

contribution of joint shear deformation can be neglected. In fact, many combinations of the 

parameters c c b b( , / , / )n L h L h  cause a relative decrease of the maximum allowable horizontal load 

greater than 5%. 
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Fig. 7 Maximum allowable value of the horizontal load 

 

 
 

Fig. 8 Relative reduction of the maximum horizontal load due to joint shear deformation 

 

 

As an alternative to the investigation of the reduction of the maximum value of H for a given 

value of P, we could study the reduction in the vertical load capacity for fixed values of H, but this 

is omitted for brevity.  

Fig. 8 also presents the cases for which the structure is too flexible according to section 

10.10.2.1 of ACI 318 (ACI Committee 318 (2008)) for rigid RCBC joints. Even when these cases 

are ignored, the deformation of RCBC joints still has a significant impact on the reduction of  

lateral load capacity in regular sway frames. 

 

4.3 Effect of joint shear deformation on transverse deflections 

 

We now consider the effect of joint shear deformation on the lateral deflection (second order 

analysis) of the tip loaded section of the sub-frame, d, which is equivalent to the inter-storey drift.  
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Fig. 9 Variation of column tip deflection with axial load 

 

 
Fig. 10 Magnification of column tip deflection due to joint shear deformation 

 
 
Fig. 9 depicts this deflection (i) for each pair of loads 

NRig
max( , )P H  for both rigid and deformable 

joints and (ii) for each pair of loads 
Rig
max( , )P H  for rigid joints only, showing that deflections 

increase with (i) the increase of the slenderness of the sub-frame, i.e., with increasing c c/L h  and 

b b/L h  ratios, and (ii) the inclusion of the joint shear deformation. The total deflection of the sub-

frame with rigid joints 
RigRig
max[ ]d H  can be decomposed into two pieces: the first one 

NRigRig
max[ ]d H  is associated with NRig

maxH , and the second 
Rig NRigRig Rig
max max[ ] [ ]d H d H  with the load 

increment Rig NRig
max maxH H . (Total deflection of the sub-frame with deformable joints only presents 

the first of these components.) Fig. 9 shows that the drift hardly varies with P. Moreover, and 
perhaps rather unexpectedly, when we compare total deflection for deformable joints with total 
deflection for rigid joints, it shows that the increment due to joint deformation is almost 

independent of P. This justifies the almost linear variation of maxH  with P  observed in Fig. 7, 
because the increase of bending moments due to increasing P is compensated by the decrease of 
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the maximal horizontal force maxH . In fact, admitting that the constant bending resistance R,bM  
is the conditioning parameter, the bending moments distribution at collapse does not change a lot – 

their magnitude increases only slightly with P along the columns. Therefore, the invariability of 

R,bM  and ,maxM  balances the effects of P and H. Accordingly, it is the difference of maximum 
drift between the rigid and deformable joint cases, 

NRig RigNRig Rig
max max[ ] [ ]d H d H , which increases 

with the structure slenderness – not the maximum column rotation, 
NRig RigNRig Rig

cmax max( [ ] [ ])/d H d H L , 
which is approximately constant – that explains why the more slender the sub-frame, the higher 
the reduction of the transverse load carrying capacity defined by maxH .  

If we now consider the variation of deflection due to joint deformation for NRig
maxH , we get the 

relative transverse drift magnification 

 
NRig Rig

NRig



d

d d

d
                             (12) 

whose values are depicted in Fig 10. Note first that the magnification is surprisingly high, i.e., 

joint deformation can almost double the transverse drift. Note also that the smaller the slenderness 

b b/L h  the larger d . A simple explanation for this result is that deformable joints are more 

effective in stiff structures than in deformable ones. This trend for the variation of the transverse 

drift is pointed out because it opposes the one obtained for H (Fig. 8) and means that, depending 

on the quantity being analyzed, the RCBC joint shear deformation might be equally relevant in 

slender and in bulky frames, e.g., for a pushover analysis. 

These opposite trends are not due to RC nonlinear material behavior and can also be observed 

in frame structures with linear material behavior. Fig. 10 also shows that the relative magnification 

of the transverse drift generally increases with c c/L h  and P. However, when the failure cause 

changes from material to instability the transverse drift diminishes with increasing P. 

 

 
5. Conclusions 
 

The present study shows that the shear deformation of exterior beam-column joints can have a 

relevant impact in the quasi-static short-term structural behavior of RC regular unbraced frames, 

and should thus be considered in the analysis and design of this type of structures.  

Because of the large number of parameters influencing the behavior of a complete frame, the use 

of a simpler sub-frame is recommended as a first step for clarifying this effect. Results on RCBC 

joint deformation relevance using complete frames will soon be published by the authors. 

The relative reduction of maximum allowable horizontal load H  and the relative increase of 

horizontal displacement (drift) d  were the parameters used in this study to evaluate the relevance 

of RCBC joint shear deformation. 

In steel frames (CEN 1994, Gomes et al. 1998, Faella et al. 2000, Gomes 2002), the flexibility 

of the joint is deemed relevant to overall structural behavior when it originates a load capacity 

reduction above 5%. If the same criterion is applied to RC structures, our parametric study shows 

that RCBC joint shear deformation may have a relevant impact upon structural behavior, i.e., it can 

reduce the load capacity of regular frames more than 5%. This reduction is higher (i) in slender 

frames, i.e., with higher b b/L h  and c c/L h ratios and (ii) with higher column compressive forces. 

It was also shown that RCBC joint shear behaviour has a strong influence in lateral 

deformation of regular reinforced concrete unbraced frames. From the parametric study it was 
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concluded that the RCBCJ shear deformation may easily increase lateral displacement in more 

than 50%. This increase is higher in regular frames with (i) higher c c/L h  ratios, (ii) lower b b/L h  

ratios, and generally speaking, (iii) higher column compressive forces. 

The present study covers a large range of frame slenderness values and load conditions, 

particularly of common unbraced sway frames which can be found nowadays or are likely to be 

found in the near future. However, this study is linked to a particular set of experimental data and 

RCBC joint shear behaviour depends on factors that were not accounted for, and which may increase 

or reduce joint shear stiffness, namely, reinforcement detailing, joint slenderness, joint eccentricity, 

presence of transversal elements, etc. Hence, the results from the parametric study should be 

carefully examined in order to avoid abusive generalizations. 

Note finally, that our conclusions would have been even more striking, had we not ignored 

(i) serviceability limit states and (ii) other significant contributions to joint deformation, namely 

the beam and columns rebars slippage inside the joint and the consequent beam and column end 

additional rotations. 
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