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Abstract.  Prediction of concrete properties is an important issue for structural engineers and different 

methods are developed for this purpose. Most of these methods are based on experimental data and use 

measured data for parameter estimation. Three typical methods of output estimation are Categorized Linear 

Regression (CLR), Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). In this paper 

a statistical cleansing method based on CLR is introduced. Afterwards, MLR and ANN approaches are also 

employed to predict the compressive strength of structural lightweight aggregate concrete. The valid input 

domain is briefly discussed. Finally the results of three prediction methods are compared to determine the 

most efficient method. The results indicate that despite higher accuracy of ANN, there are some limitations 

for the method. These limitations include high sensitivity of method to its valid input domain and selection 

criteria for determining the most efficient network. 
 

Keywords:  compressive strength; lightweight aggregate concrete; LECA; multiple linear regression; 

neural networks; data cleansing 

 
 
1. Introduction 
 

Lightweight Aggregate Concrete (LWAC) is not a recent invention in concrete technology and 

it has been known since ancient times (Chandra and Berntsson 2002); however the mechanical 

properties of LWAC are still subject of research (Cui et al. 2012, Andiç-Ç akır and Hızal 2012, 

Golias et al. 2012). There are two major classes of LWAC, non-structural lightweight concretes 

and structural lightweight concretes. The former class has a lower density because of higher air 

voids in the cement paste matrix and lighter aggregates and is commonly used for insulation 

properties.   

Structural Lightweight Aggregate Concrete (SLWAC) is generally used to reduce the dead 

                                           

Corresponding author, MSc student, E-mail: ak_civil85@hotmail.com 



 

 

 

 

 

 

S. Tavakkol, F. Alapour, A. Kazemian, A. Ghanbari and A.A. Ramezanianpour 

weight of a structure which then allows the designer to reduce the size of columns, footings, 

beams, plates, etc (Topcu 1997, Mazaheripour 2011). Furthermore, the weight reduction 

consequently reduces the risk of earthquake damages to the structure, since the earthquake forces 

which should be resisted by the structures are proportional to mass of those structures (Yasar et al. 

2003, Campione et al. 2005). The weight reduction is considerable in long-span bridges, because 

the live load is a minor part of the total load of bridges and a reduction in density leads to 

reductions in not only mass, but also in section size of those bridges (Popovics 1992, Chandra and 

Berntsson 2002). 

Having large number of voids in the aggregates, SLWAC has a lower thermal conductivity and 

a lower coefficient of thermal expansion and therefore resists fire better than normal weight 

concrete. The large number of voids improves its sound insulation ability too (ACI-213, Mor 

1992, Al-Jabri et al. 2008). 

Lightweight concretes can be produced with a density range of approximately 300-2000 kg/m
3
, 

corresponding cube strengths from approximately 1 to over 60 N/mm
2
. These values can be 

compared with those for normal weight concrete with density range of 2100-2500 kg/m
3
 and 

compressive strength range of 15-100 N/mm
2
 (Clarke 1993). However, the definition of SLWC is 

not consistent in different specifications (Kılıç et al. 2009). The density and the uniaxial 

compressive strength of SLWC are defined by EN 206-1 to be 800 to 2000 kg/m
3
 and 8 to 80 

MPa, respectively (TS EN 206-1). SLWAC as defined in ASTM C 330 has a minimum 28-day 

compressive strength of 17 MPa, an equilibrium density between 1120 and 1920 kg/m
3
. It consists 

entirely of lightweight aggregate or a combination of lightweight and normal-density aggregate 

(ASTM C 330). 

Prediction of concrete properties has always been important for structural engineers and 

different methods are developed for this purpose. Most of these methods are based on 

experimental data and employ them for output estimation. Two typical methods of output 

estimation are Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). MLR 

has been widely used for estimation of concrete properties (Zain and Abd 2009, Huang et al. 2010, 

Dafico and Prudencio 2002), and ANN was a subject of great interest in the recent decades 

(Kasperkiewics 1995, Lai and Serra 1997, Yeh 1998, Lee 2003, Pala et al. 2005, Oztas et al. 2006, 

Topcu 2008, Alshihri 2009, Yuzer 2011, Oreta and Ongpeng 2011) 

In this paper, firstly, a statistical method based on cross-sectional linear regression is 

introduced for data cleansing. Afterwards, both MLR and ANN are employed to predict the 

compressive strength of SLWAC. The valid input domain of the applied methods is briefly 

discussed. Considering the proper input domain is of high important; since out-range inputs can 

lead to wrong predictions. However, it is rarely discussed in the literature. Finally the results of 

two prediction methods are compared to determine the most efficient method for estimation of 

SLWAC compressive strength. 

 

 

2. Experimental program 
 

2.1 Materials 
 

Cement used in the mixtures was ASTM C150 type I portland cement. The used lightweight 

aggregate was an artificial Light Expanded Clay Aggregate (LECA). Fig. 1 compares the grading of  
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Fig. 1 Grading of LECA used in this study 

 
Table 1 Physical properties of aggregates 

Aggregate Specific density Water absorption (%) 

Coarse LECA 1.31 5.1 (30 - min) 

Fine LECA 0.9 8.5 (30 - min) 

Natural sand 2.65 2.4 (24 - hour) 

 

Table 2 Characteristics of portland cement 

Property Percentage 

Chemical composition 

CaO 61.5 

SiO2 21.5 

MgO 4.8 

Al2O3 3.7 

Fe2O3 2.8 

SO3 2.5 

Na2O 0.1 

K2O 0.95 

MgO 4.8 

Physical properties 

Blaine (m
2
/kg) 320 

Specific gravity 3.12 

 

 

the used LECA with grading requirements specified in ASTM C 330 for SLWAC. It is observed that 

there is low amount of fine aggregates in LECA used in this study. Furthermore, trial batches indicated 

that by using only LECA as the aggregate, the compressive strength of the mixture would not satisfy 

the ASTM C 330 minimum of 17 MPa. Therefore, the use of ordinary sand was inevitable in order to 

satisfy both grading and strength criteria of ASTM C330. The physical properties of aggregates are 

shown in Table 1, while characteristics of portland cement are presented in Table 2. 
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Fig. 2 Relationship between strength and sand 

content 
Fig. 3 Relationship between strength and w/c 

  

Fig. 4 Relationship between strength and 

cement content 

Fig. 5 Cross sectional plot for strength and 

cement content (w/c = 0.41 and 800 kg < S < 

950 kg) 

 

 

2.2 Mix designs and specimens 
 
A total number of 59 lightweight concrete mixtures were prepared. The proportions were  

determined according to the absolute volume method. In this method, the volume of fresh concrete 

is considered equal to the sum of the absolute volumes of cementitious materials, aggregate, free 

water, and entrained air (ACI 213R-03). Table 3 shows the range of modeling parameters and the 

mechanical properties of the concrete mix designs in this study. Furthermore, Table 4 shows the 

parameters for all mid designs. 

 
2.3 Curing and testing of LWAC specimens 
 

The specimens were moved into a lime-saturated water tank after 24 hours. At the age of 7 

days, they were cured for 48 hours in 105°C. Finally, prior to measuring the compressive strength, 

they were cooled down to the room temperature during 24 hours. Three 100-mm cube specimens 

of each mixture were tested for compressive strength. 

In order to compare the compressive strength of the 28-day specimens with the oven cured 

ones, 21 specimens of 7 different mix designs were cured in the lime-saturated water tank until the 

age of 28 days. Results showed that there is only a maximum difference of 5 percent between the 

compressive strength of specimens cured in the two mentioned conditions. 

154



 

 

 

 

 

 

Prediction of lightweight concrete strength by categorized regression, MLR and ANN 

Table 3 Range of parameters inputs 

Parameter Min. Max. 

Cement content (C) * kg 340.9 472.2 

Water-cement ratio (w/c) - 0.316 0.561 

Sand content (S)* kg 0 1138.6 

Oven dried density (D) kg/m
3
 1119.4 1802.4 

Compressive strength (σ) MPa 10.0 32.0 

* The amounts are given in 1 m
3
 of fresh concrete mixture 

 

Table 4 Parameters of mix designs 
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1 352.6 1001.8 0.41 28.2 21 377.0 822.8 0.41 31.0 41 388.9 830.2 0.44 25.0 

2 376.0 903.4 0.36 28.5 22 400.2 994.6 0.32 29.5 42 389.9 1008.3 0.39 28.3 

3 377.5 976.0 0.41 30.0 23 401.5 964.3 0.38 29.0 43 393.5 840.1 0.41 26.0 

4 377.4 907.0 0.36 23.9 24 401.5 986.3 0.34 31.0 44 385.6 438.6 0.53 18.3 

5 377.8 887.4 0.40 24.0 25 401.6 947.2 0.41 28.0 45 386.9 312.9 0.53 16.3 

6 378.8 501.1 0.41 19.0 26 402.4 949.2 0.41 29.0 46 398.2 737.6 0.47 23.0 

7 378.0 608.4 0.40 22.0 27 405.8 870.1 0.38 24.6 47 403.3 747.1 0.47 21.3 

8 379.8 449.8 0.45 19.0 28 406.8 650.0 0.38 24.1 48 455.1 1053.1 0.43 26.5 

9 378.4 909.3 0.38 24.0 29 400.0 521.4 0.47 23.2 49 456.9 1138.6 0.44 31.0 

10 353.7 1094.2 0.41 32.0 30 403.2 951.0 0.41 24.0 50 442.2 711.5 0.47 21.5 

11 353.7 1094.2 0.41 29.0 31 381.4 852.9 0.42 30.2 51 443.6 713.8 0.47 22.5 

12 373.6 1050.3 0.41 31.2 32 381.9 892.8 0.41 29.0 52 443.6 713.8 0.47 21.7 

13 376.6 821.8 0.42 29.6 33 382.2 905.9 0.41 26.5 53 450.9 538.7 0.48 19.1 

14 376.6 821.9 0.42 29.9 34 402.1 1034.5 0.41 28.0 54 450.9 538.7 0.48 19.6 

15 376.7 768.4 0.41 27.0 35 377.1 813.9 0.38 30.0 55 450.9 538.7 0.48 17.0 

16 378.7 1064.7 0.41 30.0 36 340.9 469.0 0.51 17.9 56 452.0 540.1 0.48 16.8 

17 379.0 1065.5 0.41 30.5 37 355.8 805.4 0.50 25.6 57 457.7 0.0 0.54 10.0 

18 366.3 829.3 0.42 29.9 38 363.9 1023.0 0.46 28.1 58 467.2 281.7 0.55 13.0 

19 376.1 1057.5 0.41 27.3 39 364.9 321.3 0.44 17.5 59 471.6 568.9 0.56 18.0 

20 376.9 822.4 0.41 31.3 40 366.1 598.7 0.41 23 
     

 

Table 5 Classification of parameters 

Parameter Group Range 

C 

Low C < 380 kg/m
3
 

Medium 380 kg/m
3 
≤ C < 430 kg/m

3
 

high 430 kg/m
3 
≤ C 

w/c 
Low w/c < 0.42 

high w/c ≥ 0.42 
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Table 6 Defined groups and number of experiments 

C w/c Notation No. of experiments 

High High HH 12 

Medium High MH 7 

Low High LH 6 

High Low HL 1 

Medium Low ML 13 

Low Low LL 20 

 
 
3. Prediction model set up 
 

The compressive strength of SLWAC depends on the aggregates characteristics (grading, size 

and strength), cement content, water-cement ratio, curing conditions, etc. (kilic et al. 2009). In the 

present paper the compressive strength (σ) relationship with sand content (S), water-cement ratio 

(w/c), and cement content (C) is studied. A basic method for this investigation is plotting the σ 

values against S, w/c, and C separately (Figs. 2-4). It can be seen that there is significant linear 

relation between σ and S and a recognizable linear relation between σ and w/c, while the plot of σ 

and C is almost randomly scattered. It can be postulated that σ is depended linearly on S and w/c, 

but the relationship between σ and C needs further investigation, because absence of a linear 

regression does not mean a relationship is not present. Fig. 4 shows the cross-sectional plot of σ 

and C, where S varies in the range of 800-950 Kg and w/c is 0.41. It can be seen that for constant 

values of S and w/c, the relationship between σ and C is not monotonic and it can be well 

estimated with a parabola. 

 

 

4. Categorized linear regression and data cleansing 
 

Simple linear regression is a popular statistical method for predicting the value of a dependent 

parameter, Y, based on an independent parameter (predictor), X. In problems with higher 

dimensions, it is possible to choose the most effective parameter as the main predictor and 

categorize the rest into groups; then, fit a linear regression between the dependent variable and the 

main predictor in each category. Consider Y depended on Xp, as the main predictor, and X1, X2, …, 

Xn. Categorizing this problem will lead into m1×m2×…×mn categories and a corresponding linear 

regression, where mi is the number of stratums for independent variable Xi. 

The main predictor is supposed to be the sand content (S) of mixture. The cement content (C) is 

stratified into three groups, while water-cement ratio (w/c) is divided in two groups as presented in 

Table 4. 

This categorization divides the data into 6 groups. Table 5 shows these groups and the number 

of experiments in each one. It can be seen that there is only one experiment with high amount of 

cement and low water-cement ratio, therefore modeling is abortive in this group.  

Categorizing continuous predictors is not recommended to be used in prediction models 

(Royston et al. 2006, Fedorov et al. 2009); In fact, it is used in this paper for data cleansing. The 

proposed method is based on the strength and significance of the correlation in each group. 

The strength of a linear regression is indicated by the correlation coefficient, R, but is actually 

measured by the coefficient of determination, R
2
. R

2
 is always less than 1, and the greater it is, the  
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Fig. 6 Flow chart for proposed cleansing method 

 

 

stronger the correlation is. There is always a possibility that even a high value of R
2
 is merely by 

chance. This possibility increases by decreasing the count of samples for a constant value of R
2
. 

The significance of a relationship is expressed in probability levels, p (for example significant at p 

= 0.05). This tells how unlikely a given correlation coefficient, R, will occur given no relationship  

in the population. It is assumed that the sampling distribution of i is t-students. The simplest 

formula for computing the appropriate t value to test significance of a correlation coefficient is 

(Rawlings et al. 1998, Chattefuee and Hadi 2006) 

𝑡 = 𝑅 
𝑛−2

1−𝑅2                                 (1) 

where n is the size of sample. According to the t value of a regression, the probability level in 

which the regression is significant can be found from the table of t-student distribution. Note that 

the degree of freedom of the distribution is n-2. 

A relationship can be strong and yet not significant, conversely, a relationship can 

be weak but significant. The key factor is the size of the sample. For small samples, it is easy to 

produce a strong correlation by chance and “significance” must be considered. For large samples, 

it is easy to achieve significance, and one must pay attention to the “strength” of the correlation. 

Therefore, removing a suspicious experiment from the samples may increase the correlation 

coefficient, but simultaneously, it may decrease the significance of the relationship. 
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In the present paper a cleansing method based on the significance and strength of regression is 

employed which can be seen in Fig. 6 and is described in below steps: 

1) Calculate the correlation coefficient between the compressive strength and sand content in 

each group. 

2) Calculate the significance of the correlation coefficient, which is defined as 1-p. 

3) Calculate the relative error of predicted compressive strength for each member of the group, 

and omit the member with the highest error. 

4) Repeat the previous steps for the remained members. If both the significance and correlation 

coefficient improved, the omission would be confirmed, and the process would continue. 

Otherwise, the omitted member would be restored, and the process finishes. 

 

 

 

Fig. 7 Cleansed experimental data and corresponding regression lines 

 
Table 7 Key parameters of the linear regression in each group before and after cleansing 

Group 
Before cleansing After cleansing 

Count R
2
 Significance Count R

2
 Significance 

HH 12 0.9559 0.9999999 12 Not changed 

MH 7 0.9456 0.9999402 6 0.9902 0.9999947 

LH 6 0.8308 0.9971475 5 0.9411 0.9984575 

ML 13 0.4258 0.9960943 8 0.9013 0.9999601 

LL 20 0.5343 0.9999582 15 0.8146 0.9999990 

 

Table 8 Capabilities of neural networks with different number of hidden layers (after Heaton 2008) 

No. of hidden layers Capability 

none Representing linear separable functions 

1 
Approximating any function that contains a continuous mapping from one finite 

space to another 

2 
Representing an arbitrary decision boundary to arbitrary accuracy with rational 

activation functions and can approximate any smooth mapping to any accuracy 
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The cleansing method was applied on the experiments. Table 6 shows the strength and 

significance of the linear regression in each group before and after cleansing. The cleansed 

experimental data and corresponding regression lines are shown in Fig. 7. In the following sections 

the cleansed data are used. 

 

 

5. Multiple linear regression 
 

MLR is a method used to model the linear relationship between a dependent variable, Y, and 

one or more independent variables, Xi. In fact, the simple linear regression is a special case of 

MLR. The relationship between Y and X1, X2, … , Xp, is formulated as a linear model 

𝑌 = 𝛽
0

+ 𝛽
1
𝑋1 + 𝛽

2
𝑋2 + ⋯ + 𝛽

𝑃
𝑋𝑃                                            (2) 

where 𝛽0 ,𝛽1 ,𝛽2 ,…, and 𝛽𝑃 are constants referred to as the model partial regression coefficients 

or simply as the regression coefficients. The regression coefficients are found based on least 

squares method. Eq. (2) is a linear relation between the response and predictors; however, the 

relationship between the response and a certain predictor is not always linear. In this case the data 

should be transformed to make the relationships linear. 

According to Figs. (2)-(4), the relationship between σ and S as well as the relationship between 

σ and w/c are assumed to be linear, and considering, Eq. (3) describes the relationship between σ 

and C is supposed to be parabolic. Eq. 3 describes the relationship between σ and its predictors 

𝜎 = 𝛽
1
𝐶2 + 𝛽

2
𝐶 + 𝛽

3
𝑆 + 𝛽

3
 𝑊𝐶 + 𝛽

0
                       (3) 

To transform the data and make the relationship linear, 𝐶2 is introduced as a new independent 

variable, say C2. Eq. (4) is the transformed equation 

𝜎 = 𝛽
1
𝐶2 + 𝛽

2
𝐶 + 𝛽

3
𝑆 + 𝛽

3
 𝑊𝐶 + 𝛽

0
                         (4) 

The regression coefficients can be found using any spreadsheet software such as MS-Excel 

(LINEST function). Eq. (5) is the final resultant equation for predicting the compressive strength 

of SLWAC using MLR. The coefficient of determination, R
2
, is 0.9352. In this equation S and C 

are expressed in tons. 

𝜎 = −261.049𝐶2 + 189.057𝐶 + 16.037𝑆 − 15.909 𝑊𝐶 − 14.263            (5) 

 
 
6. Artificial neural network 
 

An Artificial Neural Network is similar to a function with a set of inputs and a set of outputs. A 

neural network consists of many simple elements called neurons. A neuron may have many inputs 

but a single output. The value of each input multiplies by its corresponding coefficient, referred to 

as its weight. The products is then summed up and feed to a function referred as transfer function 

(or activation function), to produce the single output. The neurons are arranged in layers. Eq. (6) 

expresses the process in a single neuron 

𝑂 = 𝑓  𝑤𝑖𝑥𝑖 + 𝑏                                                        (6) 
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where O is the output, f is the activation function, xi is an input value, wi is its corresponding 

weight, and b is the bias value which can be considered as weight of a constant input equal to 1. 

The appropriate values for weights are calculated in a process called training. A set of inputs with 

known targets (resulted from experiment) is fed into the network, and in each epoch the weight 

changes in a manner which decreases the error between the output of the network and the target 

values. Many alternative training processes are available such as back propagation (BP) and 

cascade correlation (CC) schemes (Alshihri et al. 2009), but the BP is the most popular training 

method (Topcu 2008, Alshihri et al. 2009). 

There are three types of layers, namely input layer, hidden layer, output layer. There is one 

neuron for each input value in the input layer. No calculation is performed in this layer. The 

computations are carried out in hidden layer(s). The output layer, which consists of neurons with 

linear activation function, produces the output of hidden layer and transforms it to the target scale. 

 
6.1 Topology of neural network 
 
The first step to determine the topology of an ANN is to decide on the number of hidden layers. 

Currently, there is no theoretical reason to employ more than two hidden layers. In fact, for many 

practical problems, there is no reason to use an ANN even with more than one hidden layer 

(Heaton 2008). Table 7 summarizes the capabilities of neural network architectures with various 

hidden layers. 

According to Table 7 , only one hidden layer is employed in the present research. The training 

method is the back-propagation with the Levenberg–Marquardt algorithm. In this method the 

experimental data are divided into three groups, namely training, validation, and test. The training 

data are used to train the network and find the appropriate weight values. The validation set, stops 

the training process when overfitting is observed. Overfitting is modeling the noises and errors of 

data which may cause diversion in interpolations. The test set, is an unseen data set which is 

employed to evaluate the performance of the network. 

There is no general rule for selecting the number of neurons in hidden layer (Kewalramani and 

Gupta 2006, Lin et al. 2003). Some authors suggested some rules of thumbs which relate the 

number of neurons to the number of input and output variables and the number of training patterns  

 

 

 

Fig. 8 Comparison of maximum R for test data for two different methods of trial and error procedure 
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(Rogers 1994, Swingler 1996, Heaton 2008), but these rules do not guarantee generalization of the 

network (Alshihri et al. 2009). In the present paper, trial and error is employed to develop a stable 

network with high accuracy prediction. 

The trial and error process is performed using a MATLAB code and its ANN toolbox. The 

number of neurons and their activation functions were subject of the trial and error process. 

Furthermore, each network is initialized and trained 100 times to increase the possibility of 

occurrence of the best initial weights. Note that the training, validation, and test sets should not 

change too many times randomly. Random selection of sets increases the probability of selecting a 

misleading set for testing the network. The misleading set is a set which produces a high 

coefficient of determination with inappropriately located data, for example very close to the 

training data. In the present research the sets are chosen once randomly but in a guided and 

inspected manner. The neuron number of the hidden layer was in the range of 1-20 and the layer 

activation function is chosen among three MATLAB built-in functions: Logsig, Tansig, and 

Purelin. Logsig and Tansig are non-linear sigmoid functions, while Purelin is a simple linear 

transfer.  

Although the value of correlation coefficient shows the strength of the network, but it should be  

noted that there are always several sources of uncertainty in input and output values. Furthermore, 

not all of the effective parameters can be considered in modeling. Therefore, there must be a 

difference between the correlation coefficient of any modeling with the perfect value, 1. The 

difference is inversely proportional to the accuracy of experimental data and modeling complexity. 

Thus, there should be something wrong with a network with an extremely high R. For example, 

Fig. 8 compares two different method of trial and error procedure. In the first method, the subsets 

(train, validation, test) are once chosen guided randomly and are not a subject of numerous trial 

and error steps. In the second method, the data set is partitioned in the trial and error loop, and 

therefore so many different kind of partitioning is tested. As mentioned before, this method 

increases the possibility of choosing an inappropriate set for testing data, for example data so close 

to the training data or inappropriately jammed in a limited range of values. It can be seen in Fig. 8 

that the R values of the second method are very close to 1 with the maximum value of 0.9985. This 

high value of R is meaningless due to the presence of error and uncertainty in the experimental 

data. Furthermore, the R value is not growing with increasing neuron numbers in the second 

method. Therefore the second method of trial and error should be avoided. 

 

6.2 Finding the most efficient topology 
 
Fig. 9 shows the correlation coefficient for training, testing and all data, which were obtained 

after 100 times of weight initialization, for each totpology. Both maximum and average values of 

all 100 attempts are included. According to the values of maximum R (Fig. 9 (a), (b), and (c)), It 

can be seen that increasing the neuron numbers while their activation function is purelin, does not 

increase capability of the network. This is due to the fact that the combination of several linear 

functions is a linear function itself; even increasing the number of hidden layers would not 

increase the network performance. The capability of networks with either tansig or logsig 

activation function is similar and it is growing by increasing the number of neurons, but the 

capability is approximately constant for networks with more than 10 neurons. Studying Fig. 9 (d), 

(e), and (f) indicates that the average R value for networks with tansig and logsig activation 

function moves apart after reaching a certain number of neuron numbers, which hints logsig 

activation function to be a better choice. This might be because of the output range of these 
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functions. The output range of tansig is (-1,1), however, the target values are mapped in the range 

of [0,1] which almost coincides with the output range of logsig, (0,1). This fact would not 

influence the maximum strength of the network, but it may decrease occurrence possibility of the 

maximum strength, which will lead to a lower average value of R. 

Note that the maximum values plotted in Fig. 9 for different data subsets are not corresponding to 

each other, in other words, a network giving the highest R value for testing data does not guarantee 

to produce the highest value of R for the whole data. Therefore, one should choose the best 

network according to the correlation coefficient of all three subsets (train, validation, and test) and 

the whole data. Fig. 10 shows a cross sectional plot, i.e. where two parameters out of three are kept  

 

 

 

Fig. 9 Relationship between correlation coefficient and neuron numbers 
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Fig. 10 Cross sectional plots (C = 432 kg ; w/c = 0.478) 

 
 

    

 
Fig. 11 Cross sectional plots of the selected ANN model-Relationship between compressive 

strength and (a) sand content (b) w/c (c) Cement content 

 
 

constant, of two ANN models and their R values. Eq. (4) is also plotted as a reference value. It can 

be seen that deciding on the correlation coefficient of only one subset can be misleading. 

According to aforementioned criteria, a network with 8 neurons and logsig activation function 

is chosen as the best network. The R value of the testing subset is 0.978 while it is 0.980 for the 

whole data set. The corresponding R
2
 values are 0.956 and 0.961, respectively. Fig. 11 shows a 

few cross sectional plots of the selected ANN model in which the predictions of MLR and ANN 

are compared. 
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7. Input domain of models 
 

The input domain of a modeling can be defined as the range of experimental data fed to it. 

Although it is a very important property of the modeling, it is often neglected. A model predicts 

the response value by interpolation in its input domain, and it may be able to extrapolate to some 

extent out of its input domain. A first guess is to limit the domain to the minimum and maximum 

values of input parameters, which is called min-max domain in this paper. For example Table 3 

presents the min-max domain in the present research. But in fact, the real range of experimental 

data is a subset of its min-max domain.  

Fig. 12 shows the pair-wise plot of input parameters of experimental data. It can be seen that 

considering the pair-wise distribution of parameters, the input domain shrinks to a smaller area and 

any model fed by these data will extrapolate out of the domain limited to the dashed line. 

ANN is not suitable for extrapolation (Capecchi et al. 2010, Nazari and Mozafari 2011) 

because of its flexibility. Therefore the ANN model trained in this paper is not suitable to be used 

out of the range specified in Fig. 12. 

 
 

 

 
 

(a) Cement content vs. normalized w/c (b) Cement content vs. normalized sand content 

 
(c) Normalized w/c ratio vs. noormalized sand content 

Fig. 12 Pair- wise plots of input parameters for experimental date 
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Fig. 13 Contour plot of Eq. (4) (straight lines) and ANN model (curved lines) 

 

 

Fig. 14 Target values vs. predicted values for ANN, MLR and categorized linear regression 

 
 

MLR can extrapolate to some extent because it fits a relation to the data which can be true even 

out of experimental output range. Fig. 13 shows the contour plot of Eq. (4) (straight lines) as the 

reference and the contour plot of ANN model (curved lines). It can be seen that the contour plots 

are only close to each other near the main diagonal of the figure. Superposing Fig. 13 on Fig. 12 

(C) can explain why these two models are too much far in some area. Obviously the two series of 

contour plots fall apart in areas which are out of the input domain. Although none of the contours 

are experimental data and one cannot easily decide which one is correct, the pattern of ANN 

contours seems to be wrong in the area out of the input domain (Fig. 12(C)).  

Fig. 14 presents target values against predicted compressive strength by ANN, MLR and 

categorized linear regression methods. As mentioned earlier, degree of freedom is higher for 

categorized linear regression method comparing to MLR approach; therefore it leads to a higher 

coefficient of determination. Despite this high R
2
 value, application of categorized linear 

regression method is not recommended for prediction of SLWAC compressive strength due to its 

high degree of freedom, which is 10 in the present study. According to Fig. 14 and considering R
2
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values, ANN is the most accurate method for prediction of SLWAC compressive strength. The 

main limitation for the method is its high sensitivity to the proper input data, which must be in its 

valid input domain. ANN should not be used as a black box tool, since it may lead to misleading 

results and predictions. 

 
 
8. Conclusions 
 

In this study, a statistical method based on cross-sectional linear regression was introduced for 

data cleansing. Then, MLR and ANN approaches were employed to predict the compressive 

strength of SLWAC and the results were compared. Results indicated that the compressive 

strength value of SLWAC is successfully predicted using cement content, sand content and w/c as 

inputs. Although the accuracy of ANN approach was higher than MLR, there are some limitations 

to be considered. These limitations for application of ANN include high sensitivity to validity of 

input data and selecting the most efficient network.   

Furthermore, multi-linear regression method can be used to extrapolate to some extent because 

it fits a relation to the data which can be true even out of experimental output range; however, 

ANN is not suitable for extrapolation because of its high flexibility. For sure, extrapolation even 

by employing MLR should be always done bearing in mind the fact that it may digress from the 

reality. 
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