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Abstract.  In the finite element analysis of reinforced concrete structures, discrete representation of the 
steel reinforcing bars is considered advantageous over smeared representation because of the more realistic 
modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the 
dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked 
concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. 
It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct 
assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The 
dowel action model is incorporated in a nonlinear finite element program based on secant stiffness 
formulation and application to deep beams tested by others demonstrates that the incorporation of dowel 
action can improve the accuracy of the finite element analysis. 
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1. Introduction 
 

Compared to the axial and flexural counterparts, the shear behaviour of concrete structures is 

less predictable, due to the complexity of shear transfer mechanisms and the difficulties in 

numerical modelling, and yet it plays an important role in the overall structural behaviour of 

reinforced concrete members (Bresler and Scordelis 1963). Park and Paulay (1975) suggested that 

the shear resistance of a cracked concrete structure is constituted of: (1) direct transfer of shear 

force by uncracked concrete; (2) direct tensile forces in stirrups; (3) aggregate interlock at crack 

surfaces; and (4) dowel action of reinforcing bars crossing the cracks. Fig. 1 illustrates the above 

internal forces inside a cracked concrete beam. Although often ignored, the dowel action of 

reinforcing bars is definitely an important component of shear transfer in a cracked concrete 

member. Its relative importance depends on several factors, including the geometry of the concrete 

member, the reinforcement layout, the material properties and the crack pattern. 

Being a major component of shear transfer, the dowel action of reinforcing bars has been 

investigated experimentally by a number of researchers (Krefeld and Thurston 1966, Dulacska 

1972, Jimenez et al. 1979, Millard and Johnson 1984, Vintzeleou and Tassios 1986, 1987, 
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Fig. 1 Internal forces in a cracked beam 

 

 

Fig. 2 Bond element 

 

 

Soroushian et al. 1986, 1987, 1988, Pruijssers 1988, Dei Poli et al. 1992, 1993, Mannava et al. 

1999). However, despite decades of research on finite element analysis of reinforced concrete 

structures, there has been basically no explicit consideration of the dowel action in finite element 

modelling (Kwak and Kim 2004, Hassan Dirar and Morley 2005, Oliveira et al. 2008, Pimentel et 

al. 2008, Kazaz 2011, Yu et al. 2011). At the most, a gross allowance was made by lumping the 

dowel action with other components of shear transfer (ASCE 1982). Nevertheless, some years ago, 

a dowel action model for application with smeared representation of reinforcing bars has been 

developed (He and Kwan 2001). In this model, the dowel force and deformation are expressed in 

smeared forms and the dowel stiffness matrix is assembled into the concrete element stiffness 

matrix. It has been applied to analyse deep and coupling beams with certain degree of success (He 

1999, Zhao et al. 2004, El-Ariss 2007). 

The modelling of dowel action for smeared reinforcement is only an interim measure so as to 

be compatible with the existing finite element programs using smeared representation of the 

reinforcing bars. In the long run, for more realistic modelling of the bond-slip behaviour and 

dowel action of the reinforcing bars, discrete representation of the reinforcing bars should be 

adopted instead of smeared representation. One reason is that to account for the bond-slip 

behaviour, the reinforcing bars have to be treated as individual bars and should not be simply 
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smeared into the concrete. Another reason is that the dowel action pushing against the concrete 

core and the dowel action pushing against the concrete cover are not quite the same. In the former 

case, the concrete core acts like an elastic foundation for the dowel bars whereas in the later case, 

the dowel bars tend to peel off the concrete cover and are actually supported by the stirrups 

(Soroushian et al. 1986, 1987). With the reinforcing bars smeared into the concrete, it is difficult to 

differentiate between these two actions. The only way to properly model these actions is to treat 

the reinforcing bars as discrete bars. 

With discrete representation, the reinforcing bars are modelled by discrete one-dimensional 

steel bar or frame elements. To model the bond-slip behaviour of the reinforcing bars, the steel 

elements are connected to the concrete through bond elements, which simulate the bond-slip 

behaviour of the steel-concrete interface. A commonly used bond element is the 4-noded interface 

element developed by Goodman et al. (1968), as depicted in Fig. 2. Each such bond element is 

assumed to have infinitesimal thickness. It has two pairs of duplicated nodes. The duplicated nodes 

in each pair have the same coordinates but independent degrees of freedom. Among them, one is 

connected to the steel reinforcement while the other is connected to the concrete. The difference in 

displacement of the duplicated nodes along the steel-concrete interface is taken as the slip. 

In theory, to model the dowel action of the reinforcing bars, the steel elements modelling the 

reinforcing bars are required to have flexural stiffness. For this reason, the reinforcing bars have to 

be modelled by frame elements having at each node two translational degrees of freedom and one 

rotational degree of freedom. Herein, a numerical method of incorporating the dowel stiffness of 

the reinforcing bars into the adjoining concrete elements so that the steel elements do not need to 

have flexural stiffness and therefore can be in the form of the simpler bar elements with no 

rotational degree of freedom is proposed. 

 
 
2. Modelling of concrete, steel reinforcement and bond 
 

2.1 Modelling of concrete 
 
The concrete is modelled by 3-noded triangular plane stress elements for two-dimensional 

analysis. Before cracking, the principal directions are taken as the coordinate axes of the local 

coordinate system. After cracking, the crack directions (the directions perpendicular to and parallel 

to the crack plane) are taken as the coordinate axes of the local coordinate system. Once the 

concrete has cracked, the crack directions are fixed and not allowed to rotate. 

To account for the biaxial behaviour, the biaxial stress-strain relation is described via equivalent 

uniaxial strains, which are defined by 
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where e1 and e2 are the equivalent uniaxial strains, 1 and 2 are the principal strains, v1 and v2 are 

the Poisson‟s ratios, and the subscripts 1 and 2 denote quantities in the major and minor principal 

directions, respectively. For the sign convention, tension is positive and compression is negative.  
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Fig. 3 Biaxial strength envelope of concrete 

 

 

The principal stresses 1 and 2 are each assumed to be a single variable function of e1 and e2, 

respectively, so that the biaxial stress-strain relation is effectively decomposed into two separate 

uniaxial stress-strain relations. 

The tensile and compressive strengths in the principal directions are determined based on the 

biaxial strength envelope developed by Kupfer and Gerstle (1973), as illustrated in Fig. 3. The 

strength envelope consists of four distinct zones, namely, the tension-tension (T-T), tension-

compression (T-C), compression-compression (C-C) and compression-tension (C-T) zones. For a 

principal direction in tension, the uniaxial stress-strain curve proposed by Guo and Zhang (1987) 

is adopted, with the peak tensile stress ft replaced by the tensile strength of concrete determined 

from the strength envelope. For a principal direction in compression, the uniaxial stress-strain 

curve proposed by Saenz (1964) is adopted, with the peak compressive stress fc replaced by the 

compressive strength of concrete determined from the strength envelope. 

From the stress-strain curves, the principal stresses 1 and 2 are obtained, and the secant 

stiffness values in the two principal directions Ec1 and Ec2 are evaluated as 1/e1 and 2/e2, 

respectively. The constitutive matrix of concrete  'Dc  in the local coordinate system is derived as 
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in which G is the shear modulus. Before cracking of concrete, the shear modulus is taken as the 

initial elastic shear modulus G0. After cracking, the shear modulus is taken as βG0, in which β is a 

dimensionless shear retention factor ranging from 0.0 to 1.0 to account for the aggregate interlock 
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effect. Based on the formula proposed by He and Kwan (2001) and the modification proposed by 

Ng (2007), the value of β is taken as 
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where t0 is the tensile strain at peak tensile stress. Generally, as e1 increases to beyond t0, the 

aggregate interlock effect gradually diminishes. The value of β0 is taken to be 0.4, as proposed by 

Walraven (1980) based on experimental results. 

 

2.2 Modelling of steel reinforcement 
 

The steel reinforcement is modelled by 2-noded bar elements. To account for the elastic, plastic 

and strain hardening behaviour of the steel reinforcement, the stress-strain relation proposed by 

Mander (1984) is adopted. As proposed by Mander, the steel stress s is related to the steel strain s 

by  

sss E  0   for 0sys Ef                        (4a) 

 ys f   for shssy Ef  0   
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where Es0 is the initial elastic modulus, fy is the yield strength, fu is the ultimate tensile strength, sh 

is the strain at start of strain hardening, u is the ultimate strain, and n is a coefficient depending on 

the strain hardening property of the steel. From the stress and strain values, the secant stiffness of 

the steel Es is evaluated as s/s, and the constitutive matrix of steel reinforcement  'Ds  in the 

local coordinate system is derived as 

  


















000

000

00s

s

E

'D                                (5) 

 

2.3 Modelling of bond 
 
The 4-noded bond element depicted in Fig. 2 is employed to model the bond between the steel 

reinforcement and concrete. The bond stress-slip relation follows that recommended by CEB-FIP 

Model Code 1990 (CEB 1993), which is given as 
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 pb    for 21 sss b                             (6b) 
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in which b is the bond stress, p is the peak bond stress, f is the residual bond stress, sb is the bond 

slip, and s1, s2 and s3 are the slip at start of peak bond stress, slip at end of peak bond stress and slip 

at start of residual bond stress, respectively. 

Initially, the secant bond stiffness kb is taken as 200 N/mm
3
, as recommended by the Model 

Code 1990. Then, as bond slip occurs, the bond stress b is determined from the bond stress-slip 

relation in Eq. (6), and the secant bond stiffness kb is evaluated as b/sb. Having obtained the secant 

bond stiffness, the stiffness matrix of the bond element in the local coordinate system is derived 

following the procedures developed by Goodman et al. (1968) with the area of interface taken as 

the length of the bond element times the total perimeter of the steel reinforcing bars. 

For the concrete, steel and bond elements, upon deriving the stiffness matrices in their 

respective local coordinate systems, the corresponding stiffness matrices in the global coordinate 

system are obtained by the usual coordinate transformation. 

 
 
3. Dowel force-displacement relation 
 

Let the dowel force be denoted by Vd and the dowel displacement be denoted by Δd. The Vd - Δd 

relation may be derived from experiments. Based on experimental results, Dulacska (1972), 

Millard and Johnson (1984) and Dei Poli et al. (1993) recommended a linearly elastic-perfectly 

plastic relation, while Soroushian et al. (1986) suggested adding a gently descending branch to the 

Vd - Δd curve. In reality, whether the Vd - Δd curve should have a descending branch is dependent 

on the ductility of the dowel action. If the peak dowel force is attained by yielding of the dowel 

bars and ample restraints in the form of stirrups have been provided to sustain the dowel force at 

the post-peak stage, the dowel action should be ductile. Assuming that the above conditions are 

satisfied and the dowel action is sufficiently ductile, a linearly elastic-perfectly plastic Vd - Δd 

curve with no descending branch is adopted. 

The linearly elastic-perfectly plastic dowel force-displacement relation adopted follows that of 

He and Kwan (2001). Mathematically, it is given by 

 Vd = kd0 Δd for Δd ≤ Δd0                           (7a) 

 Vd = Vd0 for Δd > Δd0                                          (7b) 

where kd0 is the initial dowel stiffness, Vd0 is the peak dowel force (or dowel strength), and Δd0 is 

the dowel displacement at peak dowel force. Fig. 4 depicts the dowel force-displacement curve. 

The initial dowel stiffness kd0 may be established by treating the reinforcing bar as a beam and 

the surrounding concrete as an elastic foundation. According to the beam-on-elastic-foundation 

theory, the foundation may be modelled as a bed of Winkler springs so that the reaction force from 

the foundation at any point may be assumed to be proportional to the deflection of the beam at that  
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Fig. 4 Dowel force-displacement curve 

 

 

(a) Contraflexural deformation of dowel bar 

 
(b) Modelling of elastic foundation by Winkler springs 

Fig. 5 Dowel action modelled as a beam on elastic foundation 

 

 

point. Cutting the reinforcing bar at the point of contraflexure, the bar may be treated as a semi-

infinite beam resting on the foundation subjected to a concentrated load Vd at one end, as shown in 

Fig. 5. From the analytical solution for the beam-on-elastic-foundation problem (Hetenyi 1958), 

the deflection of the dowel bar x̂  at any point is derived as 

   xx
IE

V
ff

fss
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ˆcosˆexp
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where x̂  is the distance of the point from the dowel force, Is is the moment of inertia of the 
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reinforcing bar (for a circular bar with diameter s, Is = πs
4
/64), and λf is a parameter representing 

the relative stiffness of the foundation (i.e., the surrounding concrete). In the above equation, the 

value of λf is given by 

4

04 ss

sf

f
IE

k 
                                 (9) 

in which kf is the foundation modulus. Based on experimental results, Dei Poli et al. (1992) 

showed that kf could vary from 75 to 450 MPa/mm and Soroushian et al. (1987) proposed the 

following formula for kf 
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where cf is a coefficient ranging from 0.6 for a clear bar spacing of 25 mm to 1.0 for larger bar 

spacing, kf is expressed in MPa/mm, fc is expressed in MPa, and s is expressed in mm. 

The shear deformation of the beam has been neglected in the above classical solution for the 

beam-on-elastic-foundation problem. Nevertheless, it can be shown using the estimation method 

given by Essenburg (1962) that for this particular case of steel bars embedded in concrete, the 

shear deformation is small enough to be regarded as negligible. Hence, the above classical solution 

with shear deformation neglected is adopted for the derivation of the Vd - Δd relation. 

Substitute 0ˆ x  into Eq. (8), the relation between the dowel force and the dowel 

displacement under elastic condition is obtained as 

 dfssd IEV 
3

0 
                           

 (11) 

from which the initial dowel stiffness kd0 can be obtained as 

 
3

00 fssd IEk                               (12) 

On the other hand, the peak dowel force Vd0 is affected by a number of factors, including the 

diameter of the dowel bar, embedment length of the dowel bar, concrete cover thickness, concrete 

strength, steel yield strength and width of concrete member (Jimenez et al. 1979). It is not 

possible, at least at this stage, to take into account all these factors in the estimation of the peak 

dowel force. For simplicity, the following formula proposed by Vintzeleou and Tassios (1987) is 

adopted 

 ycsd ffV 2

0  3.1                             (13) 

It is noteworthy that Eq. (13) is very similar to that stipulated in CEB-FIP Model Code 1990 

(CEB 1993) for a dowel bar subjected to a concentrated dowel force acting right at the shear plane. 

It is only that in the Model Code 1990 formula, the constant 1.3 in Eq. (13) has been removed and 

an upper limit of fyAs/√3 (As is the cross-sectional area of the dowel bar) has been imposed on Vd0. 

The dowel force-displacement relation is well-defined by Eqs. (7), (12) and (13). To formulate  
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Fig. 6 Adjoining concrete elements 

 

 

the dowel stiffness matrix, the secant dowel stiffness kd is evaluated as 
3

0 fss IE   using Eq. (12) 

when the dowel action is still elastic and as 
ddV 0  using Eq. (13) when the dowel action has 

become plastic. 
 

 

4. Modelling of dowel action 
 

In the proposed numerical model for dowel action, the dowel stiffness of the steel reinforcing 

bars is incorporated into the adjoining concrete elements, so that the steel elements do not need to 

have flexural stiffness and thereby can be modelled by bar elements with no rotational degrees of 

freedom. This is done by identifying the concrete elements adjoining each steel element and then 

superimposing the dowel stiffness matrix onto the stiffness matrices of the adjoining concrete 

elements. One reason for doing so is that in many existing finite element programs, although the 

steel reinforcing bars are modelled by discrete one-dimensional elements to allow for bond slip, 

they are just modelled by bar elements with no rotational degrees of freedom. Another reason is 

that the dowel force and displacement can actually be transformed into the shear stresses and 

strains in the adjoining concrete elements, as depicted below. 

Consider a dowel bar adjoining two concrete elements, as shown in Fig. 6. The two adjoining 

concrete elements are numbered as i and j. The dowel stiffness of the dowel bar is partly 

apportioned to the concrete element i and partly apportioned to the concrete element j on a pro-

rata area basis. Let the area of concrete element i be Ai and the area of concrete element j be Aj. 

The dowel stiffness is apportioned to the concrete element i according to the distribution 

coefficient αi = Ai/(Ai+Aj) and to the concrete element j according to the distribution coefficient αj 

= Aj/(Ai+Aj). 

In the concrete element i, the strain vector  i  can be evaluated as  iB  i  in which  iB  

and  i  are the strain matrix and displacement vector respectively of the concrete element i. By 
coordinate transformation, the strain vector  i'  in the local coordinate system in which the two 
coordinate axes are parallel to and perpendicular to the dowel bar can be obtained as 

       iii BT'                               (14) 

In the above equation,  T  is the transformation matrix of the dowel bar given by 
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Table 1 Properties of deep beams analysed 

Properties 
Specimens 

NNN-1 NHN-1 NNW-1 NHW-1 

Beam breadth (mm) 127.0 127.0 127.0 127.0 

Beam depth (mm) 254.0 254.0 254.0 254.0 

Effective depth (mm) 215.9 215.9 203.2 198.1 

Shear span (mm) 215.9 215.9 203.2 198.1 

Span (mm) 431.8 431.8 406.4 396.2 

Tensile strength of concrete (MPa) 2.2 3.3 2.1 3.2 

Compressive strength of concrete (MPa) 44.6 98.6 40.3 92.8 

Tension reinforcement 2 × 19 mm 2 × 19 mm 
2 × 19 mm + 

2 × 12.8 mm 
4 × 19 mm 

Compression reinforcement - - 2 × 12.8 mm 2 × 12.8 mm 

Shear reinforcement - - 
6.4 mm @ 

101.6 mm c/c 

6.4 mm @ 

99.1 mm c/c 

Tension reinforcement area (mm
2
) 567.7 567.7 825.8 1135.5 

Compression reinforcement area (mm
2
) 0 0 258.1 258.1 

Tension reinforcement ratio (%) 1.8 1.8 2.6 3.5 

Compression reinforcement ratio (%) 0 0 0.8 0.8 

Yield strength of longitudinal 

reinforcement (MPa) 
420.6 420.6 420.6 420.6 

Yield strength of shear reinforcement 

(MPa) 
- - 324.1 324.1 

Note:  means bar diameter while c/c means centre to centre spacing. 
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in which c and s denote respectively the cosine and sine of the angle between longitudinal 
direction of the dowel bar and the global x-axis. From the local strain vector  i' , the shear strain 
perpendicular to the dowel bar i'  can be extracted and the dowel displacement can be obtained 

as s i'  where s  is the length of steel bar element. Put together, the dowel displacement is 
derived as 

      iisd BT  100                         (16) 

Using the energy principle, the dowel stiffness matrix  diK  of the dowel stiffness 
apportioned to concrete element i is derived as 
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Likewise, the dowel stiffness matrix  djK  of the dowel stiffness apportioned to concrete 
element j is derived as 

         j
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in which the subscript j refers to that of the concrete element j. 

It should be noted that the dowel stiffness matrices given in Eqs. (17) and (18) are each 
superimposed onto the element stiffness matrix of the respective adjoining concrete element. 
Hence, the dowel stiffness of the reinforcing bars is incorporated into the adjoining concrete 

elements and the reinforcing bars can be modelled simply by bar elements. It should also be noted 
that according to the classical solution for the beam-on-elastic-foundation problem (Hetenyi 1958), 
the dowel deformation is fairly localised and significant only within a length of d  = f/π . 
Hence, to properly simulate the dowel action, the length of the steel bar elements s  must be 
shorter than d . 

 

 
5. Applications to analysis of deep beams 
 

5.1 Deep beams analysed 
 

The proposed numerical model for the dowel action of discrete reinforcing bars is applied 

herein to analyse reinforced concrete deep beams tested by others to study its applicability and 

accuracy. The shear behaviour of deep beams, being a major category of shear critical members, 

has been researched quite extensively (Smith and Vantsiotis 1982, Hwang et al. 2000, Russo et al. 

2005). Basically, it has been found that the dowel action of reinforcing bars can play an important 

role in the shear behaviour of deep beams, especially when the amount of shear reinforcement 

provided is relatively small (He and Kwan 2001). Furthermore, since the dowel action becomes 

more fully developed after the concrete beam has cracked and can last until the whole concrete 

beam has failed, its contribution to the shear resistance of the concrete beam increases as the beam 

cracks and enters into the post-peak stage. Hence, the dowel action of reinforcing bars may 

contribute significantly to the shear strength and ductility of the concrete beam. 

The beams chosen to be analysed by the proposed discrete reinforcing bar and dowel action 

model are the deep beam specimens NNN-1, NHN-1, NNW-1 and NHW-1 tested by Xie et al. 

(1994). These deep beams have been analysed before by He (1999) using the old fashioned 

smeared reinforcement approach. Fig. 7 and Table 1 present the geometric layout, reinforcement 

details and material properties of the deep beams. The four deep beam specimens have the same 

cross-sections of 127.0 mm breadth by 254.0 mm depth. Because of the difference in longitudinal 

reinforcement, the deep beam specimens NNN-1, NHN-1, NNW-1 and NHW-1 have effective 

depths of 215.9 mm, 215.9 mm, 203.2 mm and 198.1 mm, respectively. They were each subjected 

to a single point load acting at mid-span. The shear span to effective depth ratios (av/d) of the four 

beam specimens were all fixed at 1.0. 

The first two specimens were singly-reinforced with no stirrups provided while the latter two 

specimens were doubly-reinforced with stirrups provided as shear reinforcement. The first and  
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(a) Specimens NNN-1 and NHN-1 

      
(b) Specimen NNW-1 

    
(c) Specimen NHW-1 

Fig. 7 Deep beam specimens analysed (dimensions in mm) 

 

 

third specimens were cast of normal-strength concrete with fc slightly higher than 40 MPa whereas 

the second and fourth specimens were cast of high-strength concrete with fc slightly higher than 90 

MPa. The yield strengths of the longitudinal and shear reinforcements were 420.6 MPa and 324.1 

MPa, respectively. The elastic modulus and coefficient n of the reinforcing steel were not reported 

and are assumed to be 200 GPa and 2.0, respectively. For the longitudinal reinforcement, which is 

modelled by discrete bar elements, the ultimate tensile strength, strain at start of strain hardening 

and ultimate strain are taken as 740 MPa, 1.0% and 12.0%, respectively. For the shear 

reinforcement, which is modelled as smeared reinforcement, the ultimate tensile strength, strain at 

start of strain hardening and ultimate strain are taken as 540 MPa, 2.1% and 16.7%, respectively. 

For the bond between steel reinforcement and concrete, the material parameters pertinent to 

deformed bars recommended in Model Code 1990 are adopted. Accordingly, the peak bond stress 

p and residual bond stress f are taken as 2.0fc
0.5

 and 0.3fc
0.5

, respectively, and the slip parameters 

s1, s2 and s3 are taken as 0.6 mm, 0.6 mm and 1.0 mm, respectively. 
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(a) Specimen NNN-1 

 
(b) Specimen NHN-1 

Fig. 8 Load-deflection curves of Specimens NNN-1 and NHN-1 

 

 

(a) Specimen NNW-1 

 
(b) Specimen NHW-1 

Fig. 9 Load-deflection curves of Specimens NNW-1 and NHW-1 
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5.2 Results and discussions 
 
The above deep beam specimens are each analysed twice, first with the dowel action of discrete 

reinforcing bars ignored and again with the dowel action of discrete reinforcing bars incorporated. 

The analytical load-deflection curves so obtained are compared to the corresponding experimental 

load-deflection curves by Xie et al. (1994) and the computed load-deflection curves by He (1999) 

using the smeared reinforcement approach in Figs. 8 and 9. Xie et al. reported the experimental 

peak loads of NNN-1, NHN-1, NNW-1 and NHW-1 as 311.5 kN, 483.0 kN, 473.7 kN and 645.0 

kN, respectively. From these peak load values, the effects of using high-strength concrete and/or 

providing compression and shear reinforcements on shear strength may be assessed as follows. By 

using high-strength concrete to cast the deep beam, the peak load was increased by 55% (NHN-1 

versus NNN-1) when shear reinforcement was not provided and by 36% (NHW-1 versus NNW-1) 

when shear reinforcement was provided. Furthermore, by providing compression and shear 

reinforcements, the peak load was increased by 52% (NNW-1 versus NNN-1) for normal-strength 

concrete deep beam and by 34% (NHW-1 versus NHN-1) for high-strength concrete deep beam. 

The analytical peak loads of NNN-1, NHN-1, NNW-1 and NHW-1 obtained with the dowel 

action of discrete reinforcing bars ignored are 306.7 kN, 433.9 kN, 459.2 kN, and 650.5 kN, 

respectively. The first three analytical peak loads are slightly lower than the respective 

experimental values whereas the last analytical peak load is almost the same as the respective 

experimental value. Although these analytical peak loads seem to agree quite closely with the 

experimental results, the analytical load-deflection curves, as shown in Figs. 8 and 9, do not agree 

well with the experimental load-deflection curves. Basically, the analytical load-deflection curves 

with the dowel action of discrete reinforcing bars ignored agree well with the respective 

experimental load-deflection curves only at the pre-peak stage and are significantly lower than the 

respective experimental load-deflection curves at the post-peak stage. Overall, the analytical load-

deflection curves with the dowel action ignored show a more brittle failure mode than that 

observed in the experiments. 

The analytical peak loads of NNN-1, NHN-1, NNW-1 and NHW-1 obtained with the dowel 

action of discrete reinforcing bars incorporated are 323.8 kN, 478.1 kN, 479.1 kN, and 664.1 kN, 

respectively. These analytical peak loads match very closely with the respective experimental 

values. Furthermore, as shown in Figs. 8 and 9, the analytical load-deflection curves agree 

reasonably well with the experimental load-deflection curves at both the pre-peak and post-peak 

stages. Relatively, the analytical load-deflection curves agree better with the respective 

experimental load-deflection curves at the pre-peak stage than at the post-peak stage. At the post-

peak stage, the analytical load-deflection curves sometimes appear to be quite erratic because of 

occasional numerical instability during the analysis of the deep beams at the post-peak stage. 

Another problem is that for the deep beams cast of high-strength concrete, the analytical load-

deflection curves are somewhat higher than the respective experimental load-deflection curves at 

the post-peak stage, indicating a more ductile failure mode than that observed in the experiments. 

Overall, it may be said that with the dowel action ignored, the analytical peak load would tend 

to be slightly lower than the experimental value and the analytical load-deflection curve would at 

the post-peak stage become significantly lower than the experimental curve showing a more brittle 

failure mode than the reality. With the dowel action incorporated, the analytical peak load would 

be closer to the experimental value and the analytical load-deflection curve would agree better 

with the experimental curve. Hence, the dowel action of reinforcing bars should always be taken 

into account in the finite element analysis. However, for high-strength concrete beams, the  
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Fig. 10 Crack patterns of deep beam specimens 

 

 

analytical load-deflection curve with the dowel action incorporated would tend to be higher than 

the experimental curve at the post-peak stage, indicating a more ductile failure mode than the 

reality. One main reason is that although in reality the high-strength concrete should be more 

brittle than the normal-strength concrete, in the finite element analysis, the high-strength concrete 

and normal-strength concrete were assumed to have stress-strain curves with similar shape and 

ductility (only the strength values are different). To resolve this problem, it is recommended that 

for concrete, stress-strain curves reflecting gradual reduction in ductility as strength increases 

should be used instead. 

The computed load-deflection curves obtained by He (1999) using the smeared reinforcement 

approach are also plotted in Figs. 8 and 9 for comparison. In He‟s analysis, the reinforcing bars 

were smeared within the concrete elements assuming perfect bond between the reinforcing bars 

and the surrounding concrete. Hence, the bond slip of the reinforcing bars was neglected. 

Nevertheless, the dowel action of the reinforcing bars was allowed for using a dowel action model 

similar to the present one (He and Kwan 2001). From He‟s computed load-deflection curves, it can 

be seen that the computed peak loads match quite closely with the experimental results but the 

computed load-deflection curves do not agree well with the experimental load-deflection curves at 

the post-peak stage. Particularly, the computed load-deflection curve often descends more rapidly 

than the respective experimental load-deflection curve indicating a smaller deformability of the 

deep beams than that observed in the experiments. An obvious reason is that in He‟s analysis, the 

bond slip of the reinforcing bars has been neglected and, as a result, the deflection of the deep 

beam at the post-peak stage tended to be underestimated and the deep beam failed at a relatively 

small deflection. Hence, the smeared reinforcement approach, which is not capable of accounting 

for the bond slip of the reinforcing bars, is not desirable. 
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Lastly, the crack patterns obtained by the present analysis with the dowel action incorporated 

are displayed in Fig. 10. The cracks are nearly vertical near the mid-span location and are 

generally more inclined closer to the supports. Right at the supports, the cracks are inclined at 

approximately 45° to the vertical. Furthermore, the finite element analysis results reveal the 

following structural actions. Between the inclined cracks extending from the loading point to the 

supports, concrete struts are formed. The concrete struts are subjected to compression and the 

lower end of each concrete strut tends to move laterally outward. The longitudinal reinforcing bars 

at the bottom of the beam tie back the concrete struts to prevent the lateral outward movement of 

the lower ends of the concrete struts. Because of such tie back action, bond slip between the 

longitudinal reinforcing bars and the surrounding concrete occurs near the supports. At the same 

time, the portion of concrete underneath the inclined cracks moves downward. This causes the 

shear reinforcement to develop tension and the longitudinal reinforcing bars crossing the inclined 

cracks to develop dowel action to hold back the downward movement of the concrete. Shear 

sliding along the inclined cracks also occurs and thus the inclined cracks are not purely tension 

cracks. Summing up, it may be concluded that for a reinforced concrete deep beam, the bond slip 

of reinforcing bars, the dowel action of reinforcing bars and the aggregate interlock against shear 

sliding of cracks are all important. Proper modelling of all these structural actions is needed for 

finite element analysis. 

 

 

6. Conclusions 
 

In the finite element analysis of concrete structures, discrete representation of the steel 

reinforcing bars is a more realistic way to reflect the interactions between the reinforcement and 

the surrounding concrete than smeared representation. There are several reasons. First, the 

positions of the reinforcing bars are more precisely defined. Second, the bond slip of the 

reinforcing bars can be allowed for. Third, the dowel action of the reinforcing bars can be more 

appropriately modelled. However, as the dowel action is accompanied by flexural deformation, the 

reinforcing bars should in theory be modelled by frame elements with rotational degrees of 

freedom. Herein, a dowel action model for discrete reinforcing bars, in which the dowel stiffness 

of the reinforcing bars is incorporated into the adjoining concrete elements so that the reinforcing 

bars can be modelled simply by bar elements with no rotational degrees of freedom, is developed. 

The beam-on-elastic-foundation theory is employed to derive the dowel stiffness and an existing 

formula based on experimental results is used to derive the dowel strength. This dowel action 

model has been incorporated in a finite element program based on secant stiffness formulation for 

post-peak analysis of concrete structures. 

The above finite element program has been applied to the analysis of deep beams with well 

documented experimental results. Numerical results verified that the incorporation of both the 

dowel action and the bond slip of the reinforcing bars would significantly improve the accuracy of 

the analysis, not only in terms of the peak load but also in terms of the load-deflection curve at 

pre-peak and post-peak stages. Generally, with the dowel action taken into account, the ductility of 

the deep beam would be more accurately revealed and with the bond slip taken into account, the 

deformability of the deep beam would be better simulated. From the finite element analysis results, 

the following structural actions in deep beams are observed: (1) concrete struts are formed 

between the inclined cracks extending from the loading point to the supports; (2) bond slip occurs 

mainly in the longitudinal reinforcement near the supports; (3) dowel action occurs mainly in the 
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longitudinal reinforcement crossing the inclined cracks; and (4) shear sliding occurs along the 

inclined cracks. Hence, for deep beams, the bond slip of reinforcing bars, dowel action of 

reinforcing bars and aggregate interlock against shear sliding of cracks are all important and 

should be properly modelled. 
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