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Abstract.   Although shear reinforcement in beams typically consists of steel bars bent in the form of stirrups 
or hoops, the addition of deformed steel fibres to the concrete has been shown to enhance shear resistance 
and ductility in reinforced concrete beams. This paper presents a model that can be used to predict the shear 
strength of fibrous concrete rectangular members without stirrups. The model is an extension of the 
plasticity-based crack sliding model originally developed for plain concrete beams. The crack sliding model 
has been improved in order to take into account several aspects: the arch effect for deep beams, the post-
cracking tensile strength of steel fibre reinforced concrete and its ability to control sliding along shear cracks, 
and the mitigation of the shear size effect due to presence of fibres. The results obtained by the model have 
been validated by a large set of experimental tests taken from literature, compared with several models 
proposed in literature, and numerical analyses are carried out showing the influence of fibres on the beam 
failure mode. 
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1. Introduction 
 

The use of discontinuous, randomly oriented fibres has long been recognized to provide post-
cracking tensile resistance to concrete. As consequence, their use as shear reinforcement in 
reinforced concrete (RC) beams has been the focus of several investigations in the past four 
decades (Mansur et al. 1986, Li et al. 1992, Kwak et al. 2002, Cucchiara et al. 2004, Minelli and 
Vecchio 2006, Dinh et al. 2010, Foster 2010). 

Fibre reinforcement enhances shear resistance by bridging tensile stresses across diagonal 
cracks and reducing diagonal crack spacing and width, which increases aggregate interlock effect. 
The reduction in crack spacing due to the presence of fibres indicates that the use of fibre 
reinforcement could potentially lead to a reduction of the shear size effect in beams without 
stirrups (Minelli 2005), whose shear strength is known to decrease as the overall beam depth 
increases (Bentz 2000). Recently, fibres have been employed in concrete to cast full-scale beams 
(Dinh et al. 2010), indicating that they can safely be used as minimum shear reinforcement in RC 
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beams constructed with normal-strength concrete and within the range of member depths 
considered (455-685 mm). Specially in seismic areas, the optimize mix of fibres and stirrups as  
shear reinforcement provides outstanding results both in terms of cost and decongestion of 
classical reinforcement (Spinella et al. 2012, Colajanni et al. 2012). 

Fibres increase the residual tensile strength of the composite, enlarging the softening branch of 
the stress-strain curve in compression and, hence, significantly enhance the resisting strut area, in 
the final arch resisting mechanism (Minelli and Vecchio 2006). Thus, the major difference in the 
shape of constitutive laws between plain and fibrous concrete lies in their different post-peak 
behaviours, especially for Steel Fibre Reinforced Concrete (SFRC) under tensile stress. 

At the aim of predicting the shear strength of SFRC beams without stirrups, several empirical 
or semi-empirical formulations have been proposed in literature. Numerous researchers have 
extended known formulations, originally suggested for plain concrete beams, to fibrous concrete 
members, providing an additional contribution to shear strength depending on the amount of fibres 
(Ashour et al. 1992, Campione et al. 2006, Foster 2010, Model Code 2010 2010). 

Semi-empirical models are usually obtained by a regression analysis of SFRC beam test data 
for a few fibre types and volume percentages (Vf) and, hence, their use is restricted to the limited 
range of variation of fibre parameters investigated in experimental tests. 

The purpose of this paper is to present the recent upgrading of a semi-rational model for the 
shear strength prediction of SFRC beams without stirrups. The model is based on the upper bound 
principle of the theory of plasticity and limit analysis concepts (Zhang 1997, Nielsen 1999). 
Further, application of the upper bound principle seems to be the simplest way to extent models 
for plain concrete members to cover members with fibrous concrete. 

Some research works (Zhang 1997, Vecchio 2000) on plain concrete shear behaviours have 
shown that slips along the crack can delay or prevent the development of direct strut action 
spanning between the loading and the support points of beams. These certainly imply that sliding 
displacements can occur along the crack and the failure crack can originate from a generic section 
between loading and support point. This failure mechanism is typical of slender beams and it is 
taken into account by plastic theory in an interesting extension of the original plastic solution, 
called Crack Sliding Model (CSM) originally proposed by Zhang (1997). 

A first extension to the case of FRC beams was proposed by Voo et al. (2006), assuming a 
constant value of 0.80 for effectiveness factors in compression and tension, and calculating the 
maximum tensile stress by the Variable Engagement Model (VEM) suggested by the same authors 
(Voo and Foster 2003). Recently, the formulation of CSM for the evaluation of ultimate shear 
strength of RC beams without stirrups has been improved to also determine the ultimate shear 
capacity of short reinforced concrete members (Spinella et al. 2010). In this paper, an appropriate 
residual tensile strength law for fibrous concrete is introduced to take into account the ability of 
fibres to bridge tensile stress across crack. Moreover, the ability of fibres to contain shear crack 
slips and the width of cracks is reproduced by a modification of the efficiency factor as function of 
toughness of SFRC. In addition, the shear size effect is reduced by presence of fibres with respect 
to the case of plain concrete beams, and it is herein taking into account introducing in the CSM the 
dependence of efficiency factor by geometrical properties of fibres which reflects the beneficial 
action of fibres on the shear size effect.  

The proposed formulation is corroborated by the results of a wide database of experimental 
tests collected in literature, and its efficacy of predicting the shear strength of specimens is 
compared with several models known from literature. Lastly, numerical analyses have been carried 
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out by using the proposed model, showing the effect of steel fibres of governing the failure mode 
of beam. 
 
 
2. Review of crack sliding model formulation 
 

In the theory of plasticity applied to concrete structural elements, reinforcement is assumed to 
resist forces in axial direction only, with yield stress equal to fy. Concrete is assumed to behave as 
a rigid, perfectly plastic material, obeying the modified Coulomb failure criterion with the 
associated flow rule (Nielsen 1999). 

At failure, it is necessary to account for the concrete compression strength reduction owing to 
cracking and softening due to tensile strains regime along the orthogonal direction to compression 
strain. The Modified Compression Field Theory (MCFT) accounts for the effect of cracking by 
operating with a compression strength influenced by a compression softening coefficient (less than 
one), which depends on the level of the transverse tensile strain (Vecchio and Collins 1986). For 
the plasticity models, a so-called effectiveness factor of concrete must be introduced. It is 
determined by correlating the theoretical solutions with test results. In the original plastic solution 
the effective compressive strength is evaluated in the following form (Nielsen 1999) 

        2

, 0.35 / 0.27 1 1/ 0.15 0.58 1.0 0.17 / 2.6c ef c c c cf f f h r a h f              (1) 

where c= effectiveness factor for plain concrete in compression; fc= compressive cylinder 
concrete strength, a= shear span, h and b height and width of beam cross section, As= longitudinal 
reinforcement area and r= 100 As/bh longitudinal reinforcement percentage. As concrete is not a 
perfectly plastic material, the dependency on fc and h reflects compression softening and shear size 
effects. The dependency on r is mainly attributable to dowel action. Eq. (1) proves that c is a 
function of shear span-height ratio a/h. This dependency has been considered unsatisfactory from a 
design point of view (Nielsen 1999). 
 
 

 
(a) (b) 

Fig. 1 Crack pattern in a beam without stirrups at (a) shear failure and (b) first cracking (Spinella et al. 
2010) 
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Thus, for a simply supported rectangular beam loaded with two symmetrically point loads (Fig. 
1(a)), the ultimate average shear stress may be evaluated using the upper bound approach of the 
limit analysis that is to consider the equality between internal and external works (Nielsen 1999). 
However, Zhang (1997) has provided some effective extensions to the original plastic theory, 
based on the consideration that the slippage along a crack, originated in a generic section of the 
shear span, may be more dangerous than slippage along the theoretical cracking line between 
support and load application point on the top level of beam, as is assumed in the original plastic 
solution. Thus, a different starting section of the critical diagonal crack must be determined, so the 
load level necessary to fully develop a diagonal crack in a generic section of the beam along the 
shear span is determined considering a semicircular crack (Fig. 1(b)) for the beam. The average 
cracking stress cr is a function of the effective tensile strength of concrete fct,ef, which, for a beam 
with height h, is calculated as fct,ef= 0.156fc

2/3(h/100)-0.3 (in MPa). The distance from the support of 
the starting section of the critical diagonal crack x is obtained by equating the average shear stress 
failure u and the average cracking stress cr, that is the intersection of the shear capacity and 
cracking load curves in Fig. 1(a). The two curves do not always intersect, because the cracking 
load curve can be lower than the shear capacity curve within the x range. In these cases, the shear 
capacity coincides with the value of the original plastic solution (x= 0). 

Introducing this new concept, Zhang (1997) eliminated the dependence of c by shear span-
height ratio a/h and the effectiveness factor for uncracked concrete only needs to take into account 
micro-cracking and softening effects. If sliding failure takes place in an existing crack, the 
effectiveness factor for plain cracked concrete in compression begins the product of two terms 

      0 0.56 0.27 1 1/ 0.15 0.58c s s cf h r            (2) 

where s= 0.50 is the sliding reduction factor due to the reduced cohesion of cracked plain 
concrete when the yield line follows the diagonal crack path or crosses many cracks; 0 is a 
modified part of the empirical formula (1) obtained in the original plastic solution (Nielsen 1999). 
It also to be noted that the Disturbed Stress Field Model (DSFM), which updates the MCFT, has 
adopted an analogous coefficient to take the influence of crack sliding on compression softening 
into account (Vecchio 2000). 

The CSM has been validated by Zhang (1997) on a large database of data collected in literature. 
The tests considered by the author for the model corroboration have been characterized by values 
of a/h > 2, thus most specimens collapse for diagonal tension. Because the CSM is not able to 
reproduce the arch action, validated numerical results fails for a/h < 2. In order to eliminate this 
drawback, the CSM has been improved retaining the correlation of the effectiveness factor for 
plain concrete in compression by the a/h ratio for a/h < 2, i.e., assuming the additional term f4 = 
[1.0+0.17(a/h-2.6)2] in Eq. (2) only for a/h  2.6 (Spinella et al. 2010). 
 
 
3. Upgrading of crack sliding model to SFRC Large beams 
 

In order to extend the CSM formulation to fibrous concrete beams, two important issues are: 
the evaluation of the tensile stress bridged across the shear crack at failure; and the capacity of 
model of adequately reproducing the size effect in shear. 
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Fig. 2 Analytical constitutive tensile law proposed by Lim et al. (1987) 
 
 

3.1 Post-cracking tensile strength of SFRC 
 
The presence of fibres into the mixture of concrete allow to sew the cracks during the load 

process and allocate stress in a wide region of beams. To model this experimental evidence a first 
step is the use of a reliable constitutive law for fibrous concrete in tension, reproducing the 
toughness of mixture. 

The residual tensile stress of SFRC plays a key role in the shear failure mechanism of the beam, 
especially for slender structural elements, and several analytical relationships have been proposed 
in literature (Lim et al. 1987, Li et al. 1992, Foster et al. 2006, Lee et al. 2011). In this work, the 
elastic-plastic model suggested by Lim et al. (1987) is used to evaluate the residual post-crack 
tensile strength of fibrous concrete. 

Lim et al. (1987) proposed an analytical constitutive model for fibrous concrete in tension as 
function of strain, applying a linear technique of homogenization. The authors of the suggested 
constitutive law assumed a linear-elastic behaviour of composite until the first crack strain cr, 
which is calculated also taking into account the presence of fibres in the mixture. Then, the 
ultimate tensile strength after cracking (tu) is almost instantly reached, thus an horizontal branch 
is proposed by the authors to reproduce the residual tensile strength. This plateau is placed at the 
following stress value (Fig. 2) 

0 02 2f
tu l f f l ct

f

l
V F f

d            (3) 

In which lf = fibre length; df = fibre diameter; Vf = volumetric percentage of fibre; l = length 
efficiency factor for fibre; 0 = 0.405 the fibre orientation factor and f the average bond strength 
between matrix and fibre. The F=Vf(lf/df) is the fibre factor with =f/fct (Spinella et al. 2010), 
while l is depending of the critical length lc=(fudf)/(2f): if lf is less or equal to lc then l=0.5, 
else l=(1-lc/2lf). Therefore, besides the geometric characteristics of the fibres, the ratio between 
the tensile strength of fibres (fu) and the bond fibre-matrix interface strength (f) rules the fracture 
of fibre. The f value is calculated as function of matrix tensile strength (fct), shape of fibre (hooked, 
plain or crimped), and type of matrix (concrete or mortar) as suggested by Voo and Foster (2003). 
In the typical case of concrete matrix, f=2.5fct or f=1.2fct for hooked and plain fibres, respectively 
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(Voo and Foster 2003). Furthermore, the residual tensile strength for fibrous concrete (3) depends 
on the tensile strength of plain concrete (fct), which can be evaluated as 0.45fcm

0.4 (in MPa) as 
suggested by Bentz (2000). In the proposed model the residual tensile strength of fibrous concrete 
(fct,ef) is assumed equal to the residual tensile strength (tu). 

 
3.2 Crack sliding factor for fibrous concrete 
 
As previously introduced, Zhang (1997) suggested to use an efficiency factor to evaluate the 

effective compressive strength of plain concrete defined as c=0s (Eq. (2)), where s is the crack 
sliding reduction factor. It takes into account the reduced cohesion of cracked plain concrete when 
the yield line follows the diagonal crack path or crosses many cracks. The original value of crack 
sliding factor chosen by Zhang (1997) for plain concrete beams is equal to 0.50, to adequately 
represents the strong influence of slips along cracks on the effective compressive strength of 
concrete. 

The presence of fibres in the mixture limits both cracks width and slips along edges of a shear 
crack, thus the effective area of compression strut crossed by tensile stress is supposed larger for 
fibrous than plain concrete. Consequently, it is reasonable to assume that the sliding factor for 
fibrous concrete (sf) has to be more than 0.50 and dependent by the amount of fibres in the 
mixture and its geometrical and mechanical characteristics. In a previous work (Spinella et al. 
2010), a constant value equal to 0.82 has been proposed for the sf parameter, taking into account 
the ability of fibres to contain slips along the crack edges, and obtaining satisfactory results 
specially for small-medium scale specimens. 

Herein, a step forward is performed introducing a dependency of sliding factor for fibrous 
concrete by the mechanical and geometrical characteristics of fibres. The fibre factor (F) is the 
parameter that best represents the increase in toughness of concrete due to the presence of fibres in 
the mixture, thus the crack sliding factor for FRC is defined as follows 

,max

1sf s

F

F




 
 

   
 

     (4) 

 
 

 
(a) (b) 

Fig. 3 Crack sliding factor as a function of fibre and concrete properties 
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with F,max the maximum admissible value of fibre factor. Imposing the condition tu/fct=1 in the 
Eq. (3), the upper bound value of fibre factor is obtained as F,max=1/(20l). 

In Fig. 3(a), the F,max is plotted for various values of the length efficiency factor of fibre, l, 
which is a parameter depending by the geometrical and mechanical characteristics of fibres. 
Improving the bond strength between fibre and matrix, the value of l increases and the maximum 
value of fibre factor decreases. As shown in Fig. 3(b), where the curves of F versus 

)/(1/ max, FFvv ssf   ratio are plotted, the cohesion of cracked plain concrete is enhanced and 

slips along shear crack are reduced thanks to the toughness of material (Fig. 3(b)). Since the 
geometrical (lf and df) and mechanical properties (fu) of fibre and concrete (fct) are known, the 
length efficiency factor (l) and the aspect ratio (lf/df) are defined. The length efficiency factor 
allows to evaluate F,max in Fig. 3(a) and the corresponding curve in Fig. 3(b). Choosing the value 
of Vf, the fibre factor F is handily calculated (F=Vf lf/df ) and the vsf/vs ratio can be obtained. 

 
3.3 Effect of fibres on size effect in shear 
 
Several studies (Adebar et al. 1997, Parra-Montesinos 2006) produced a number of 

experimental researches on the shear resistance of SFRC beams. Even though these studies can be 
certainly considered a good advancement for understanding the shear behaviour of fibrous 
concrete beams, some of them are characterized by tests on small-medium scale specimens (h < 
300 mm). Recently, campaigns of tests on full scale beams (h ≥ 300 mm) worldwide carried out 
(Sharma 1986, Imam et al. 1998, Noghabai 2000, Barragàn 2002, Rosenbusch and Teutsch 2003, 
Minelli 2005, Dinh et al. 2010, Minelli and Plizzari 2010), allow to collect a sufficiently large 
database to investigate the positive effect of fibres on size effect in shear. 

The addition of fibres promotes a progressive evolution and stable development of several 
shear cracks in beams without stirrups subjected to transversal loads, and as consequence a more 
ductile behaviour is usually observed with evident flexural failure. The size effect is mitigated as 
highlighted by larger vertical deflection of specimen than those usually observed in reference plain 
concrete beams. In addition, fibres are able to control the development of shear crack width when 
the external loads increase, and allowing a spread of shear stress in a wider region of beam than 
that observed for plain concrete beams. This experimental behaviour is a clear evidence of size 
effect mitigation due to fibres, which provide a wide residual strength after the emergence of first 
shear crack and they allow a multi-cracking in shear with small width (0.15-0.25 mm). 

Aiming at taking into account these experimental evidences, the recommendations of RILEM 
TC162-TDF (Vandewalle 2002) suggest a semi-empirical method to calculate the average crack 
spacing of fibrous concrete, based on the formulation proposed by Eurocode 2 (1993), and the 
beneficial effects due to fibres is considered by the geometrical term ks/(lf/df)≤1, with ks a reference 
value for the fibre aspect ratio (lf/df) set equal to 50. It needs to be noted, that the effectiveness 
factor originally proposed for plain concrete beams (2) takes into account the size effect in shear 
introducing in 0 a term f2=0.27(1+1/h0.5) which depends by the root square of specimen’s height 
as obtained by Nielsen (1999) on the basis of a large experimental campaign. This term contributes 
to take into account the compression softening effect due to slip along shear crack, which increases 
with the height of beam. Therefore, the beneficial effect of fibres is herein introduced in the 
analytical expression of effectiveness factor, modifying the f2 term, functions of height root square, 
with the following formulation 
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Fig. 4 Shear size effect in the effectiveness factor as function of beam depth 

 
 

 
2

0

1
0.27 1

1
f

h

f
h h h

 
  
    

     (5) 

being h=50/(lf/df)≤1; and h0 a reference beam height set equal to 300 mm. 
In Fig. 4, the term f2f (5) versus the depth of beam is plotted for several value of h (0, 0.5 and 

1). The curves show that when the value of h is increased, the detrimental effect due to size effect 
in shear is reduced, specially for large beams. Nevertheless, it is intuitive that the amount of fibres 
can affect the size effect in shear also. Therefore, the f2f term should be influenced by Vf value, and 
an experimental campaign in this way could be provide interesting enhancements. 
 
 
4. Analysis method and results 
 

As above mentioned, many researches are available in literature regarding the shear resistance 
of beams without stirrups (Adebar et al. 1997, Parra-Montesinos 2006) and in a previous work a 
large database has been compiled (Spinella et al. 2010). For full-scale beams, however, few 
experimental results can be found in literature. Therefore, a literature survey is performed to find 
experimental series of SFRC shear tests where height is varied (h ≥ 300mm). From this survey, 
eight separate test series (Sharma 1986, Imam et al. 1998, Noghabai 2000, Barragàn 2002, 
Rosenbusch and Teutsch 2003, Minelli 2005, Dinh et al. 2010, Minelli and Plizzari 2010) are 
found consisting of a total of 45 beams (Table 1). Only tests reported by the researchers as shear 
failures are included and any reported flexural or bond failures are removed from the datasets. 

Table 1 summarizes the data sets by author/s of testing, and the capacity of each specimen is 
reported as shear stress (u,exp). Note that tests are included independently of their a/d ratios despite 
the fact that shorter a/d ratios exhibit a different failure mode than shallow beams, but the 
proposed analytical model is independent by shear span-depth ratio. 
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Table 1 Details and observed ultimate shear stress of test specimens 

Geometry  Reinforc.  Fibres    

b h a/d    fy  Vf lf/df  fcf exp,u

(mm) (mm)   (%) (MPa)  (%)   (MPa) (MPa)

Minelli (2005); Hooked ended fibres 

200 480 2.5  1.04 512  0.38 50  24.8 1.49

200 480 2.5  1.04 512  0.64 48  61.1 2.14

Minelli and Plizzari (2010); Hooked ended fibres 

250 1000 2.9  1.05 555  0.64 63  32.1 1.16

250 1000 2.9  1.05 555  0.96 63  33.1 1.49

250 1500 3.0  0.99 518  0.64 63  32.1 1.34

250 1500 3.0  0.99 518  0.96 63  33.1 1.54

Barragan (2002); Hooked ended fibres 

250 300 3.5  2.83 500  0.50 67  32.1 2.34

250 450 3.3  3.08 500  0.50 67  32.1 1.78

250 500 3.3  2.41 500  0.50 67  32.1 1.61

250 600 3.5  2.73 500  0.50 67  32.1 1.98

Dinh et al. (2010); Hooked ended fibres 

152 455 3.4  1.96 496  0.75 55  44.8 2.34

152 455 3.4  2.67 448  1.50 55  31.0 1.78

152 455 3.4  2.67 448  1.50 55  44.9 1.61

152 455 3.4  2.67 448  1.00 80  49.2 1.98

152 455 3.4  1.96 496  0.75 79  43.3 2.34

205 685 3.5  2.06 455  0.75 55  50.8 2.70

205 685 3.5  2.06 455  0.75 80  28.7 2.76

205 685 3.5  1.56 455  0.75 55  42.3 2.79

205 685 3.5  1.56 455  0.75 80  29.6 1.79

205 685 3.5  2.06 455  1.50 55  44.4 3.49

205 685 3.5  2.06 455  1.50 80  44.4 3.38
 

Geometry Reinforc. Fibres    

b h a/d  fy Vf lf/df  fcf exp,u 　

(mm) (mm) (%) (MPa) (%)   (MPa) (MPa)

Sharma (1986); Hooked ended fibres 

150 300 2.0 1.61 400 1.00 83  48.6 3.03

Imam et al. (1998); Hooked ended fibres 

200 350 2.5 1.87 550 0.75 75  110.0 4.48

200 350 1.8 3.08 550 0.75 75  109.5 8.80

200 350 2.5 3.08 550 0.75 75  110.0 4.74

200 350 3.5 3.08 550 0.75 75  111.5 3.48

200 350 4.5 3.08 550 0.75 75  110.8 3.53

Noghabai (2000); Hooked ended fibres 

200 300 2.8 4.30 500 1.00 50  91.4 6.60

200 500 2.9 3.06 590 1.00 86  76.8 3.52

200 500 2.9 3.00 590 1.00 86  76.8 3.81

200 500 2.9 3.00 590 0.50 86  69.3 3.51

200 500 2.9 3.00 590 0.75 86  68.0 3.85

300 700 3.0 2.90 590 1.00 40  76.8 2.60

300 700 3.0 2.90 590 0.75 86  60.2 2.98

Rosenbusch and Teutsch (2003); Hooked ended fibres 

200 300 3.5 3.56 400 0.20 67  49.9 2.12

200 300 3.5 3.56 400 0.40 67  46.5 2.31

200 300 3.5 3.56 400 0.60 67  51.3 2.98

200 300 3.5 2.83 500 0.50 67  32.1 2.34

200 450 3.3 3.08 500 0.50 67  32.1 1.78

200 500 3.4 2.41 500 0.50 67  32.1 1.61

200 600 3.5 2.73 500 0.50 67  32.1 1.98

200 300 1.5 1.81 400 0.25 67  43.7 1.59

200 300 1.5 1.81 400 0.75 67  42.8 1.70

200 300 2.5 1.15 400 0.25 67  42.5 0.77

200 300 2.5 1.15 400 0.75 67  41.1 1.00

200 300 2.5 1.81 400 0.25 67  42.5 1.00

200 300 2.5 1.81 400 0.75 67  41.1 1.34

200 300 4.0 1.81 400 0.25 67  43.7 1.26

200 300 4.0 1.81 400 0.75 67  42.8 1.79

 
 

The studies varied with the aspect ratio of steel fibre (lf/df), size of the beams tested as well as 
the amount of fibre in concrete. Due to this variation, the experimental data collected is divided 
into high (fcf ≥ 50 MPa) and normal (fcf < 50 MPa) strength concrete (HSC and NSC) because this  
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Fig. 5 Comparison between experimental and analytical results for NSC and HSC beams with different 

values of effectiveness factors 
 
 
parameter significantly affects the shear behaviour of SFRC beams. In fact, the normal strength 
SFRC beams are more affected by the shape of the fibres, which is less significant in the case of 
HSC beams. 

Thanks to the handily proposed formulation, it can analyze data using a simple spreadsheet. 
In Fig. 5, the values of the ratio between experimental results given in literature and the 

analytical values (u,exp/u,anl), predicted by using the proposed model, namely CSMf, are reported 
together with its mean value and the Coefficient Of Variation (COV) calculated as the ratio 
between standard deviation and mean. 

First, the constant value of crack sliding factor (sf) previously proposed (Spinella et al. 2010) 
and equal to 0.82 is used (Figs. 5(a) and (b)). The values of mean obtained are slightly 
conservative both for normal and high strength fibrous concrete (1.15 and 1.18, respectively), and 
excessive values of COV are obtained (0.50 and 0.26, respectively) specially for fcf<50 MPa. 

374



 
 
 
 
 
 

Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups 

These results confirm that the constant value of sf is appropriate to capture the experimental 
response of specimens, but the model returns a wide variation of results. 

Introducing the proposed upgrade (Eq. (5)) to the term of size effect in the effectiveness factor 
0, the analytical model improves its ability to reproduce the response of SFRC beams subjected to 
transversal loads. As shown in Figs. 5(c) and (d), where the f2f term (5) is taken into account, the 
mean values become a little bit unconservative, but close to one (0.93 and 0.96 for normal and 
high strength concrete, respectively) and the COVs are less than values previously obtained (0.39 
and 0.16 for NSC and HSC, respectively). Finally, the expression of crack sliding factor (4) is used 
(Figs. 5(e) and (f)), and the CSMf is optimized, returning appreciable value of statistical 
coefficients: 1.03 and 1.02 for the mean and 0.38 and 0.17 for the COV. 

The effectiveness of CSMf is proved by the reliable estimation of shear strength, independently 
by the cylinder strength of material in compression. Many equations have been proposed by 
numerous researchers to predict the shear strength of SFRC beams based on experimental 
investigations. The majority of the proposed formulations contain the fibre factor (F), which 
illustrates the combined effect of the fibre aspect ratio and fibre content on the shear strength of 
SFRC beams. It can also be noticed that the inverse of the span depth ratio (d/a) is used in most 
equations to reproduce the arch effect. In this study the models suggested in the Model Code 2010 
(2010) and by Foster (2010), Kwak et al. (2002), Sharma (1986), Campione et al. (2006), Imam et 
al. (1998), Khuntia et al. (1999) and Narayanan and Darwish (1987) are used to perform a 
comparative analysis with the herein proposed model (CSMf) for predicting the shear strength of 
SFRC beams. 

By analyzing the results (Fig. 6), accurate predictions for high strength SFRC beams are 
observed from the approach suggested from Imam et al. (1998)’s model, with a mean value of 
1.03 and a COV equal to 0.15, while for normal strength SFRC beams the average of predictions 
(=0.98) is slightly not-conservative and the COV reaches a wide value (= 0.42). The approaches 
suggested in the Model Code 2010 (2010) and by Foster (2010), respectively, allow to obtain an 
accurate prediction of the shear strength for normal strength SFRC beams (Figs. 6(a1) and 6(b1)), 
while they become too conservative for the high strength SFRC specimens (Figs. 6(a2) and 6(b2)). 

Prediction equations overestimating shear strength can be dangerous for designers as the 
amount of shear reinforcement needed to prevent shear failure contains much more uncertainty. 
Although a small shear strength overestimation can be tolerated as in the case of Imam et al. 
(1998)’s model, larger shear strength overestimations as in the case of some of the previously 
proposed models (Sharma 1986, Narayanan and Darwish 1987, Kwak et al. 2002) for NSC beams 
cannot be used in practice unless a proper safety factor or reduction factor is incorporated with the 
equations. 

The model proposed by Sharma (1986) is inaccurate compared to those of the other models for 
NSC beams (Fig. 5(d1)). This is because of its simplicity, which does not even include the fibre 
aspect ratio, fibre volume or the reinforcement ratio, whereas numerous studies clearly indicate 
that these have substantial effect on the shear strength of SFRC beams (Narayanan and Darwish 
1987). For most of the considered cases the equation proposed by Sharma (1986), which is 
currently being used by ACI, predicts the shear strength with a larger amount of scatter than many 
of the other proposed equations. Sharma (1986)’s equation is also simple and only contains the 
concrete tensile strength and the shear-span to depth ratio. Therefore, it could not handle larger 
variations in database, such as those found with SFRC beams considered in this study. 
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Fig. 6 Comparison between experimental and analytical results for NSC and HSC beams performed by 
several models 

 
 
5. Numerical analysis 
 

The analyzed results of experimental tests on fibrous concrete beams without stirrups subjected 
to shear load show that fibres are highly effective in reducing the chance to obtain a brittle shear 
failure. As known in literature, this experimental behaviour is analytically represented by the Kani 
Valley (Kani 1967). It is a 3D surface which represents the relative shear capacity (Vu/Vfl) or the 
ratio between the shear at failure and the shear at the theoretical flexure failure, as function of the 
a/d ratio and the geometrical percentage of flexural reinforcement (). 

A numerical analysis carried out with the proposed model is performed to reproduce this 
experimental evidence. To this aim, the valleys of diagonal shear failure are drawn. 

The investigation is performed by assuming three different beam depths: 300, 600 and 900 mm; 
four different values of volumetric percentage of fibres and fibre factor: Vf = 0, 0.33, 0.67 and 1%;  
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Fig. 7 Valleys of diagonal failure for NSC and HSC and for different fibre factor and beam depth values 

 
 
F = 0, 0.5, 1 and 1.5. The variation of longitudinal reinforcement percentage is limited to a range 
of 0.5% to 2% to reflect practical arrangements. Finally, hooked ended fibres, with a length of 30 
mm, a diameter of 0.5 mm (lf/df = 60) and a yield strength of 1000 MPa are considered. The 
cylinder strength of concrete (fcf) and the yield strength of steel (fy) are assumed equal to 40 MPa 
and 400 MPa, respectively. 

To evaluate the relative flexural capacity, the bending moment corresponding to flexural failure, 
Mfl, is calculated according to the formulation proposed by Imam et al. (1998) for fibrous concrete 

    2 21
2 0.83 0.75 2.15

2fl yM f bd Fbd           (6) 

where F is the fibre factor distinguished by F for the definition of the  coefficient; and  a 
parameter which depends by F, , fy and fcf. 

Fig. 7 shows that shear failure domains are extended by using low fibre factor values and high 
longitudinal reinforcement percentage. This trend is different for each value of the beam depth, 
being greater for small scale beam. 

Increasing the amount of fibre in the mixture (F= 0.5, 1.0) the shear failure valley tend to 
disappear (Fig. 7). However it is still wide for deep beams, while in case of small-medium beams 
the domain of shear failure is extended to a/d ratios between 1.0 and 3.5. 
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This trend is confirmed in Fig. 6(d) where F= 1.5 is assumed. The valley of diagonal shear 
failure is narrower, while shear collapse is reported just for a few a/d ratios and high longitudinal 
reinforcement ratios. This behaviour is emphasized for small beams, where the fibres strongly help 
to tighten the shear failure valley. 

As seen in Fig. 7, despite the CSM has been updated for predicting the behaviour of short 
beams by introducing an additional term (Spinella et al. 2010), depending on a/h ratio, and 
determined by tests on plain concrete members, it still predicts a shear failure for beams with a/d ≈ 
1. In these conditions, experimental tests show a shear capacity higher than flexural ones, which 
the former that depends by the compressive strength of concrete. Such deep beams tend to be 
substantially stronger than shallow beams as they resist load with a direct compression strut to the 
support and are more appropriately modelled by strut-and-tie analysis rather than the shear 
equations. 
 
 
4. Conclusions 
 

A simple mechanical model is proposed for shear capacity prediction of fibrous concrete beams 
without stirrups under transversal loads. 

The model has been derived on the basis of plastic theory and limit analysis and takes into 
account the fibre concrete contribution to shear strength, including the high residual post cracking 
tensile strength of SFRC. To this aim, the constitutive plastic law suggested by Lim et al. (1987) 
has been used. 

The effectiveness factor of fibrous concrete in compression has been modified for deep beams, 
by introducing an additional term depending on the shear span-depth ratio (Spinella et al. 2010). 
The reduction slide factor for fibre concrete, sf, has been increased for fibrous concrete respect to 
plain concrete and as function of fibre toughness, taking into account the ability of fibres in 
reducing slips along shear cracks. 

The ability of fibre of mitigating the shear size effect has been taken into account by an 
appropriate analytical term in the efficiency factor. It is function of the geometrical characteristic 
of fibres. 

The comparison between experimental and analytical values of ultimate shear stress shows the 
ability of the CSMf model as modified to determine both the collapse strength of fibrous concrete 
beams and the section where the critical diagonal crack starts from the bottom face of the beam. 

The formulation proposed in this study for several configurations of SFRC beams is able to 
produce more precise results than those of the other models proposed in literature since this study 
considers a semi-rational model and reproduces an experimental behaviour by an analytical 
scheme, whereas some of the previous equations proposed by different researchers which are 
developed on the basis of regression analyses and are often unable to capture the physical 
mechanism of shear failure. 

The numerical analyses indicate that the addition of steel fibres enhanced ultimate loads of 
NSC and HSC beams. This enhancement is evident in the Kani Valleys plotted for several values 
of fibre factor and beam height. The use of fibre factor greater than 0.5 allows the disparition of 
the shear failure for small beams, while for large beams a wide amount of fibres (i.e., toughness) is 
needed to obtain a ductile behaviour.  
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Appendix 
 

As an illustration of the calculation involved, consider beam B18-3b tested by Dinh et al. 
(2010). The geometrical and material properties of the beam are as follows: b= 152 mm, h= 455 
mm, a/d= 3.44, r= 2.67%, Vf= 1.50%, lf/df= 30.0/0.55= 54.5, fcf= 31.0 MPa, and experimental 
average shear stress at failure u,exp= 2.56 MPa. In the following, steps of calculation of shear 
strength are illustrated: 

1. Being  = 2.50 (hooked end fibres), then the fibre factor F = 2.05 and Fmax = 2.47. 
Therefore, the residual tensile strength (Eq. (3)) fct,ef = tu = 1.52 MPa and the crack sliding factor 
for FRC (Eq. (4)) sf = 0.91. 

2. For the effectiveness factor in compression, first estimate h = 0.92, second use the Eq. (5) 
to calculate the term f2f = 0.89, third use Eq. (2) to obtain 0 = 0.82 and, consequently, the effective 
compressive strength is 0fsffcf = 0.82×0.91×31 = 23.2 MPa. 

3. Iteratively, calculate the starting section of the critical diagonal crack xc as the intersection 
(if it exists) between the average shear stress failure u(x) and the average cracking stress cr(x) 
(Fig. 1(a)): xc/h = 0.23. 

4. Finally, find the analytical average shear stress at failure calculating the u in 
correspondence of the critical diagonal crack section (xc): u,anl= u(xc) = 2.53 MPa. 
Note that all calculations involved are simple in nature and just few iterations (usually less than 
five) are needed. 
 
 
Notations 
 

a  Shear span 
As  Longitudinal reinforcement area 
b, d, h Width, effective depth and depth of beam cross section 
h0  Reference value for beam depth 
df, lf  Diameter and length of fibre 
fc, fc,ef Cylinder and effective compressive strength of concrete 
fcf, fctf Cylinder compressive strength and direct tensile strength of fibrous concrete 
fct, fct,ef Direct and effective tensile strength of concrete 
fcft, fcft,ef Direct and effective tensile strength of fibrous concrete 
fy  Yielding stress of rebar reinforcement 
f2, f2f  Term responsible of size effect in the effectiveness factor for plain and fibrous 

concrete 
F, F Fibre factors 
F,max Maximum value of fibre factor 
lc  Critical length of fibre 
ks  Reference value for fibre aspect ratio 
Mu, Mfl Ultimate and nominal flexural capacity 
r  Geometrical percentage of longitudinal reinforcement 
Vf  Fibre volume percentage 
x  Distance between the support and critical crack 
h  = 50 lf/df  ≤ 1 
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,   Fibre bond factors 
  Diagonal crack angle 
  Parameter in the formulation of flexural capacity (Imam et al. 1998) 
0l Parameter in the formulation of Lim et al. (1987)’s model
0  Effectiveness factors for concrete in compression 
s, sf Crack sliding factors for plain and fibrous concrete 
  Geometrical percentage of longitudinal reinforcement 
cfcf Tensile tension of concrete, fibres and fibrous concrete 
fu  Yielding stress of steel fibre 
tu  Residual tensile strength of SFRC 
f  Mean shear stress between fibre and matrix 
u,exp, u,anl Experimental and analytical ultimate shear stress 
u, cr Ultimate and cracking shear stress 
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