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Abstract.  The sensitivity of compressive strength of no-slump concrete to its ingredient materials and 
proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It 
was known that the problem of compressive strength prediction owes high degree of complexity and 
uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical 
and mineral additives, superimposes the problem’s complexity. Traditionally this property of concrete is 
predicted by conventional linear or nonlinear regression models. In general, these models comprise lower 
accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. 
Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this 
regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the 
compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results 
showed that after optimization process, both models are applicable for prediction purposes with similar 
high-qualities of estimation and generalization norms; however, it was indicated that optimization and 
modeling with SVM is very rapid than ANN models. 
 

Keywords:  no-slump concrete; compressive strength; prediction; support vector machine; neural networks; 
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1. Introduction 
 
The compressive strength of concrete is known as the most important mechanical property which 

is generally obtained by measuring concrete specimen’s strength after a standard curing of 28 days 

(Hong-Guang 2000). The problem of compressive strength prediction owes a high degree of 

complexity and uncertainty due to the variable nature of constituent materials, workmanship 

quality, etc. It should be noted that the involved complexity superimposed by application of 

chemical and mineral additives which commonly used to modify the fresh and hardened properties 

of concrete. Linear or nonlinear regression models are usually utilized to predict the compressive 

strength of concrete (Hong-Guang 2000, Sobhani et al. 2010). In general, these models comprise 

lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization 
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requirements (Zain and Abd 2009). Recently, artificial intelligence-based robust systems have 

been successfully implemented in this area; like the neural networks (Sobhani et al. 2010, 

Hong-Guang 2000, Oztas et al. 2006, Bilim et al. 2009), fuzzy systems (Ozcan et al. 2009, 

SarIdemir 2009), adaptive network-based fuzzy inference systems (Sobhani et al. 2010, 

Ramezanianpour et al. 2004), neuro-fuzzy polynomials (Fazel Zarandi et al. 2008). The obtained 

results demonstrate the superior prediction performance of these models in comparison with the 

traditional ones. On the other hand, the need for better prediction norms motivated the researchers 

toward the utilization of more advanced models with higher accuracy and extrapolations features. 

Among these methods, support vector machines, based on the structural risk minimization 

principle (Vapnik 2000, Chou et al. 2011), seem to be a promising method for modeling and 

prediction of concrete's compressive strength as successfully applied in the area of predicting the 

fracture parameters of concrete (Samui and Kim 2012), early warning of hazard for pipelines (Wan 

and Mita 2010), data mining (Tinoco et al. 2010), knowledge discovery (Acevedo-Rodriguez et al. 

2009), structural/non-structural components (Yan and Shi 2010, Chen et al. 2009, Tong et al. 2008, 

Mashford and Marlow 2010, Pal and Deswal 2011), properties of materials (Das 2011, Wang 

2006), and construction management (An et al. 2007, Lam et al. 2009, Cheng and Wu 2009).  

The focus of this paper is on the prediction of the 28-days compressive strength (28-CS) of a 

special type of concrete known as no-slump concrete with optimized support vector machines 

(SVMs) and compares it with optimized neural network (ANN) models. No-slump concrete which 

also known as dry cast concrete is commonly defined as concrete having slump in a range of 0-25 

mm (ACI 211.3 2002, Shelestynsky 1972). The physical properties of no-slump concrete, 

specifically the compressive strength, are very sensitive to its ingredients and mix proportions, so, 

predicting the compressive strength of no-slump concrete is a highly complicated problem that 

requires more accurate and reliable methods for strength prediction.  

The rest of the paper is organized as follows: In Section 2 the methods of modeling including 

SVM and ANN are briefly discussed. Section 2 is devoted to the experimental program conducted 

to prepare the required data for training and testing of proposed models. Moreover in this section 

the methodology of the optimization process is presented. In Section 5 the results are compared 

and discussed. Finally section 6 provides conclusions and highlight of this study.  

 

 

2. Methods of modeling 
 

2.1 Support vector machine 
 
Support vector machine (SVM) is a supervised learning method to analyze the data for 

classification and regression problems. With a given a set of training patterns, each marked as 

belonging to one of two categories, an SVM training algorithm builds a model that assigns new 

examples into one category or the other. More formally, a support vector machine constructs a 

hyperplane or set of hyperplanes in a high- or infinite- dimensional space, which can be used for 

classification, and regression in many tasks like image retrials, financial research, etc. 

Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the 

nearest training data points of any class (so-called functional margin), since in general the larger 

the margin the lower the generalization error of the classifier (Cortes and Vapnik 1995). 

Vapnik (Vapnik 2000) proposed ε-support vector regression (SVR) by introducing an 

alternative ε-insensitive loss function (Vapnik 1998). Generally speaking, the purpose of the SVR 
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is to find a function having at most ε deviation from the actual target vectors for all given training 

data and have to be as flat as possible (Pal and Deswal 2011). A brief description of the SVR 

methodology is presented as follows: 

Let the n array vector xi have real value yi, and let F(x), be a set of real functions that contains 

the regression function )(0 xf . Considering the problem of approximating the set of data,  

 ),),...(,( 11 nn yxyx  with a linear function, bxwxf  ) .()(  the optimal regression function is 

given by minimizing the empirical risk R 
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Now the objective is to find a function )(xf with minimum deviation of ε from the actual 

observed targets yi for all of the training data and at the same time it is as flat as possible.  

This is equivalent to minimizing the following function 
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Where the first term 2/2w  considering the flatness of function and the second term 
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 calculate empirical risk the C is a penalty value that tune trade off between 

empirical risk  and flatness of function with the larger C factor the training error was decreased 

but the generalization performance of the function was decreased as well. Eq. (3) could be 

represented as the dual optimization problem and this optimization problem can be solved with 

Lagrange method as follows 
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Subject to these constrains 
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The training data with nonzero Lagrangian multipliers ),( *

ii   are called support vectors. 

The final solution could be as follows 
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Table 1 Different types of kernel function 

Type of classification Kernel Function 

Polynomial degree   d

i

T

i xxxxK  1)()(   
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2

)( 

ixx
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Where nsv is the number of support vectors 

In the real situation linear regression is uncommon, as in the case of most engineering 

applications, in this case SVM regression is mapping the input data x into a high-dimensional space 

that is called feature space by a non-linear mapping. In the feature space, linear regression can be 

done (Yinfeng et al. 2008). To this means, SVM uses a kernel function )( ji xxK  .  

So when the optimum values i  and 
*

i  are obtained, the regression function is given by 
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Any function which satisfies Mercer condition (Vapnik 2000) can be used as the kernel function. 

Some common kernel functions are listed in Table 1. The kernel parameters should be carefully 

chosen because they have an important role in accuracy of SVM solution and its complexity. The 

SVMs performance is largely governed by the type of kernel function being used kernel function, 

choosing an appropriate kernel function and kernel parameters for each application problem is very 

important  in order to guarantee satisfactory results. 

It should be noted that tuning of SVM parameters is still a heuristic process and the parameters 

specified by user are (1) Type of kernel function and the parameters, (2) The value of the penalty 

factor C and (3) The value of ε-insensitive. 

 

2.2 Artificial neural networks 

 

Artificial neural networks (ANN) are computing systems made up of a number of simple, 

highly interconnected processing elements (PEs), which process information by their dynamic 

state response to external inputs (Fausett 1994, Sobhani et al. 2010). The architecture of an ANN 

is composed of an input layer of neurons or namely processing elements (PEs), one or several 

hidden layers (HLs) of neurons and output layer of neurons. The neighboring layers are fully 

interconnected by weight. The input layer neurons receive input data and transmit them to the 

neurons of the hidden layer without performing any calculation. Layers between the input and 

output layers are called HLs and may contain a large number of hidden processing units. Finally, 
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Table 2 The chemical and physical properties of cementitious materials 

Chemical analysis (%) / Properties 
Cement Silica fume 

  

Calcium oxide (CaO) 61.9 0.6 

Silica (SiO2) 21.2 90.9 

Alumina (Al2O2) 4.2 0.6 

Iron oxide (Fe3O2) 4.6 0.7 

Magnesia (MgO) 3.4 1.3 

Sodium oxide (Na3O) 0.6 0.4 

Potassium oxide (K2O) 0.5 1.1 

Sulfur trioxide (SO2) 1.7 – 

Bogue potential compound composition, %   

Tri calcium silicate (C3S) 52.74 – 

Di calcium silicate (C2S) 20.31 – 

Tri calcium aluminate (C3A) 3.35 – 

3 days compressive strength, kg/cm2 223 – 

7 days compressive strength, kg/cm2 306 – 

28 days compressive strength, kg/cm2 414 – 

Initial setting time 150 – 

min Final setting time 190 – 

min Specific surface, cm2/g 3296 – 

 

Table 3 The physical and mechanical properties of the aggregates 

Type Specific gravity (g/cm3) Absorption (%) Fineness modulus 
Passing from 

75 μm sieve 

Fine aggregate 2.53 2.6 3.2 1.1 

Coarse aggregate 2.56 1.46 - 0.4 

 

 

the neurons of output layer produce the network predictions (Fausett 1994). Each neuron of a layer 

other than the input layer computes first a linear combination of the outputs of the neurons of the 

previous layer, plus a bias. The coefficients of the linear combinations plus the biases are called 

weights. Then, neurons in the HL apply a nonlinear function as activation function to their inputs 

(Fausett 1994, Adeloye et al. 2006). A systematic algorithm like backpropagation is utilized to 

tune the connecting weights on the base of the error observed between the real and estimated data 

till a satisfactory result is achieved. 

 

 
3. Materials and methods 

 

3.1 Materials 

 

Standard Type II Portland cement (American Society for Testing and Materials 2009a) was 

used in this study, with silica fume as supplementary cementitious materials. Moreover, siliceous 
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Table 4 No-slump concrete mix designs 

Mix 
Cement 

(kg/m3) 

Silica 

fume 

(kg/m3) 

Water 

(kg/m3) 

Fine 

aggregation 

(kg/m3) 

Coarse 

aggregation 

(kg/m3) 

Filler 

(kg/m3) 
w/cm 

Average 

compressive 

strength 

(MPa) 

NSC-1 350 0 95.2 575.9 1273 0 0.27 61.1 

NSC-2 350 0 98.5 558.2 1325.4 0 0.28 54 

NSC-3 339.5 0 97.7 655.3 1273 10.5 0.28 65.7 

NSC-4 339.5 0 97.6 535 1247 10.5 0.28 62.2 

NSC-5 336 0 97.6 535 1247 14 0.28 54.5 

NSC-6 332.5 0 97.7 655.3 1273 17.5 0.28 63.1 

NSC-7 329 0 97.6 535 1247 21 0.28 52.2 

NSC-8 325.5 0 97.7 655.3 1273 24.5 0.28 64.1 

NSC-9 410 0 117.8 491.2 1273 0 0.29 59.9 

NSC-10 350 0 100.9 460.3 1419.8 0 0.29 61.9 

NSC-11 350 0 102.6 535 1247 0 0.29 64.2 

NSC-12 332.5 17.5 105.6 535 1247 0 0.3 62.2 

NSC-13 380 0 118.1 354.2 1440.6 0 0.31 60.5 

NSC-14 350 0 107.6 535 1247 0 0.31 61.5 

NSC-15 325.5 24.5 107.8 535 1247 0 0.31 65 

NSC-16 343 0 107.6 535 1247 7 0.31 61.2 

NSC-17 320 0 97.7 671.8 1247 38.5 0.31 63.2 

NSC-18 346 27.3 115.6 484 1289 156.3 0.31 76.7 

NSC-19 380 0 121.1 502.5 1325.4 0 0.32 67.4 

NSC-20 320 0 102.2 679.1 1259.7 19 0.32 62.8 

NSC-21 320 0 103.2 665.6 1234.2 57 0.32 60.3 

NSC-22 350 0 120.4 526.2 1325.4 0 0.34 63.5 

NSC-23 350 0 119 710.6 1121.5 0 0.34 59.6 

NSC-24 350 0 120 623.3 1208.7 94 0.34 61.1 

NSC-25 252.6 19.6 95 828 1206 0 0.35 66.7 

NSC-26 345.2 27.1 129.9 482 1282 155.5 0.35 71.2 

NSC-27 375 0 134 1300 600 0 0.36 64 

NSC-28 332.5 17.5 129.9 509.8 1325.4 0 0.37 61.4 

NSC-29 343 27 136.9 480 1278 154.9 0.37 71.2 

NSC-30 252.6 19.6 103.4 836 1063 135 0.38 62.7 

NSC-31 258.9 0 98.4 835 1083 135 0.38 55 

NSC-32 350 0 139.7 591.3 1145.5 188 0.4 58.3 

 

 

filler with more than 99.0% SiO2 was used as neutral filler. The chemical and physical properties 

of cement and silica fume are shown in Table 2. 

Fine river sand and crushed stone with properties shown in Table 3 were used as fine and 

coarse aggregates. Table 4 shows concrete mix design which was used for production of no-slump 

concrete. 
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Fig. 1 The schematic structure of the system 

 
Table 5 Range of inputs and output 

Input variables 
Range 

Minimum Maximum 

Cement (kg/m3) 252.6 410 

Silica fume (kg/m3) 0 27.3 

Water (kg/m3) 95 139.7 

Fine aggregate (kg/m3) 354.2 1300 

Coarse aggregate (kg/m3) 600 1440.6 

Filler (kg/m3) 0 188 

Water to cementitious material 0.27 0.4 

Output (Target value)   

28 days-compressive strength (MPa) 50 78 

 
 

3.2 Database 

 
To collect the required data for training and testing the models, three samples of each mix 

design shown in Table 4 were provided, and then compressive strength of these samples was 

determined in 28 days according to the ASTM C39 (American Society for Testing and Materials 

2009b). Totally 96 records of no-slump concrete were gathered by the above mentioned procedure. 

For all models, 79 samples were randomly assigned to training phase and the remaining 17 

samples allocated to testing phase. 

 

3.3 Framework for modeler systems 

 
The schematic structure of the modeler systems is shown in Fig. 1. As suggested in this figure, 

the inputs are the amounts of cement, silica fume, water, fine aggregates, coarse aggregates and 

filler of each mix design per unit volume of concrete. Range of inputs and output is provided in 

Table 5. 
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Matlab software and its corresponding neural network toolbox [Math Works] and an open code 

Matlab-based toolbox named as SVM-KM (Rakotomamonjy 2005) utilized to construct and 

training the ANN and SVM models respectively. In both cases Matlab GA toolbox [MathWorks] 

was used for optimization purposes. 

 

 

4. Results and discussion 
 

To evaluate the performances of both models, three indexes; mean squared error (MSE), mean 

absolute error (MAE) and correlation factor (CF) were used. MSE and MAE values are calculated 

as follows 

n

yy
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Where 
elmod

iy is real output and 
real

iy is predictive output and 𝑛 is the number of samples. 

The correlation factor (CF) is the value that represent the amount of dependency between two 

datasets; CF value of 0 is represent the complete independency between datasets  and  the value 

of 1 represent complete dependency and it means two data sets have same direction. The CF 

calculated as follows 

),(),(

),(
),(

realrealmodelmodel

realmodel
realmodel

YYCOVYYCOV

YYCOV
YYCF


           (10) 

Where  ),...,(
modelmodel

2

model

1

model

nyyyY  and ),...,(
realreal

2

real

1

model

nyyyY  , and  

),( realmodel YYCOV  is the covariance of  
modelY  and

reralY . 

 

4.1 Modeling with SVM 
 
As mentioned, the tuning of SVM parameters is a heuristic process, so to achieve the optimized 

SVM a GA (Table 6) was utilized. Gaussian kernel was used in proposed model so the optimizing 

parameters were as C (Penalty factor),   ( -insensitive zone radius) and   (standard 

deviation of Gaussian function). The fitness function of GA was chosen as Root Mean Squared 

Error (RMS) between real 28 days compressive strength and model prediction. Fig. 2 shows a 

fitness plot for 50 populations. CPU time for GA tuning process is 65 seconds which demonstrates 

a good optimal point in the optimization process. The optimized SVM was then utilized for 

training and testing purposes with respect to the collected data sets. Table 7 summarizes the 

performance indexes for training and testing data sets. Correlation factor achieved with both 

training and testing data sets were as 0.982 and 0.9473 respectively which demonstrate a higher 

correlation of experimental observations with SVM-predicted results. The results for MSE and 
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Table 6 Configuration of GA for optimization process 

Item Parameter value/method 

Population size 50 

Max generation 100 

Selection method Stochastic Uniform 

Crossover method Scattered 

Crossover rate 0.8 

Mutation rate 0.1 

 

 
Fig. 2 GA tuning of SVM parameters 

 
Table 7 SVM model results for training and testing data sets  

Training set Testing set Run Time 

CF MSE MAE CF MSE MAE 
Parameter optimization: 60 seconds* 

0.982 0.9616 0.7536 0.9473 2.479 1.0941 

* For all of optimizations PC with 2.53 GHz Core2Dou CPU and 4 GB Ram was used 

 

 

MAE for both training and testing data sets demonstrate a higher interpolation and extrapolation 

accuracy and generalization properties respectively. 

 

4.2 Modeling with neural networks 
 
Similar to SVM, an optimization procedure was applied to determine the optimal neural 

network considering the same database. 

For the case of neural network model, a two-staged optimization procedure was adopted. At 

first stage, a topology optimization was carried out to construct the optimal architecture and then 

neuron’s weight was optimized. In the topology optimization phase (Sobhani et al. 2010, Uysal 

and Harun Tanyildizi 2011, Oztas et al. 2006), an initial neural network architecture having two 

hidden layers was adopted with variable number of PEs which designated to be trained by 

Levenberg–Marquardt back propagation algorithm. Log-sigmoid and linear transfer functions were 
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Fig. 3 (a) ANN topology optimization and (b) ANN initial weight optimization 

 
Table 8 ANN model results for training and testing data sets 

Training set Testing set Run time 

CF MSE MAE CF MSE MAE Topology optimization: 100 min* 

Weight optimization: 150 min* 0.982 0.9616 0.7536 0.9473 2.48 1.0941 

*For all of optimizations PC with 2.53 GHz Core2Dou CPU and 4 GB Ram was used 

 

 
Fig. 4 Comparison of SVM and ANM predictions with experimental observations for training data set 

 

 

also utilized in hidden and output layers respectively. The mean square error of neural network 

model was considered as a genetic algorithm’s fitness function. On this basis, number of neurons 

in each hidden layer as parallel processing elements and then their initial weight were optimized 

using GA setting (Table 6) similar to the one used for SVM optimization process  (Adeloye and 

Munari 2006, Hagan and Menhaj 1994). Figs. 3(a) and (b) shows the progress of GA optimization 

for topology optimization phase and initial weight optimization respectively. After completion of 

optimization process which takes 100 min for topology phase and 150 min for weight tuning phase, 

the optimized architecture was found to be comprising of 3 and 7 neurons in the first and second 
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Fig. 5 Comparison of SVM and ANM predictions with experimental observations for testing data set 

 

 
Fig. 6 Comparison between SVM and ANN in facing with different size of training data set 

 

 

hidden layer respectively. The results of predictions by optimized ANN are presented in Table 8 

which demonstrates a quite similar result comparing the optimized SVM model in Table 7.  

 

4.3 Comparing SVM and ANN 
 

Tables 7 and 8 indicate similar results for optimized SVM and optimized ANN model 

respectively. The only difference is very large run-time of ANN model in comparison to SVM. 

The optimization procedure of SVM takes only about 60 seconds; however, it needs about 100 min 

and 150 min for topology optimization and weight optimization process respectively with ANN 

model. The observed difference could be related to the fact that the learning process of SVM is a 

direct solution with no need of trial and error procedure as needed for ANN. Another reason could 

be related to the fact that SVM requires few parameters in comparison to ANN.  

Moreover comparisons of SVM and ANN prediction results with experimental observations are 

depicted in Fig. 4 and 5 respectively for training and testing data set. As seen, SVM and ANN 
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models were satisfactory in the prediction of compressive strength of no-slump concrete both for 

training and testing data set.  

Some errors could be observed in Fig. 5 with maximum values corresponding to the samples 2 

and 8 with relative error of 6.5% and 4.7% respectively. It should be noted that these amounts of 

error values are very low and might be negligible in practical situations.  

 

4.4 Effects of varied number of training-testing sets on performance of predictions 
 
To study the effects of the size of training data, several training sets were created to test both 

SVM and ANN models. Nine dataset containing (10,86), (20,76), (30,66), (40,56), (50,46), (60,36), 

(70,26) , (80,16), (90,6) samples were used for training purposes for both SVM and ANN models. 

In each training run the SVM and ANN models were optimized for corresponding training data set 

size. For example when the data set is composed of (50,46) data group set, then 50 data used for 

training and optimization task.  

The results suggest that the error norms of both optimized SVM and ANN are similar, but the 

state of testing for SVM and ANN are quite different. Fig. 6 depicts the testing error for SVM and 

ANN. It was observed that the maximum errors for testing set were 112.6 and 181.6 respectively 

for SVM and ANN. This suggests that ANN is more sensitive to the variation in training and 

testing set in comparison to SVM. However SVM is more robust with a continuous decreasing 

trend of error amount. The robustness of SVM might be related to its design that aids in 

optimization process with less parameters and structures. 

 

 

5. Conclusions 
 

In this paper, optimized support vector machines and optimized neural network models were 

developed for prediction of the compressive strength of no-slump concrete. It was found that both 

proposed ANN and SVM models are able to predict the compressive strength of no-slump 

concrete with a high degree of accuracy and generalization quality; however, SVM is preferred 

due to its unique and robust features summarized as follows:  

(1) Unit architecture of SVM simplifies its application comparing with the ANN.   

(2) SVM models include lower parameters for optimization purposes than ANN models which 

facilitate the optimization procedure.  

(3) In general, SVM learn samples faster than ANN. In fact SVM tries to find a direct solution for 

estimated regression function; however, ANN deals with a time-consuming procedure of multiple 

connecting-weight adjustments. 

(4) The results of this study suggest that the SVM models are more robust and less sensitive than 

ANN models when encountering the problems with a deficient training data.  
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