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Abstract. Using appropriate raw materials for cement is crucial for providing the required products.
Monitoring relationships and analyzing distributions in a cement material quarry are important stages in
the process. CaO, one of the substantial chemical components, is included in some raw materials such as
limestone and marl; furthermore, appraising spatial assessment of this chemical component is also very
critical. In this study, spatial evaluation and monitoring of CaO concentrations in a cement site are
considered. For this purpose, two effective regression-based models were applied to a cement quarry
located in Turkey. For the assessment, some spatial models were developed and performance comparisons
were carried out. The results show that the regression-based spatial modelling is an efficient methodology
and it can be employed to evaluate spatially varying relationships in a cement quarry. 
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1. Introduction

Cement is a formed construction product composed by blending various raw materials and firing

them at a high temperature for providing precise chemical proportions of silica, lime, alumina and

iron in the final product, known as cement clinker. Availability of the main components of cement

including limestone, clay, mudstone and shale, has vital importance for an effective manufacturing

(Wilson and Kosmatka 2011). Such raw material deposits (sedimentary rocks) are common

lithologies and may vary considerably in their chemistry. The evaluation of the distribution of

chemical components in these deposits is an essential to provide uniform sources for production.

The continuous quality of cement production is possible only if the raw mix possesses ideal

composition and furthermore if variations in this composition remain within the narrowest possible

range. CaO content of cement raw material is 65% and limiting values is between 60% and 69%

(Labahn 1983). The raw material composition is usually characterized by certain ratios, called

standards. They are in fact proportioning formulas into which the percentages of the various oxides

to compute the optimum lime (CaO) content of the mix, the so-called Lime Standard. This standard

indicated as CaO content of mix, is the most promising characteristic of mix. The lime standard

obtains a criterion for calculating the optimum lime content. The measured content of CaO present

in the raw material is measured as a percentage of maximum CaO content which can be integrated

by the acidic oxides (SiO2, Al2O3, Fe2, O3) in the most lime-rich clinker phases under technical

* Corresponding author, Ph.D., E-mail: bulent.tutmez@inonu.edu.tr

DOI: http://dx.doi.org/10.12989/cac.2012.10.5.457 



458 Bulent Tutmez and Ahmet Dag

limitations of burning and cooling (Barnes and Bernsted 2001). 

Assessment of the relationships in a spatial system such as limestone or clay quarry needs some

modelling tools (Asad 2011). In addition, selection of the effective analysis tool is the corner stone

of successful (may be robust and accurate) estimations (Onur et al. 2008). In spatial data analysis,

spatial regression models (Goovaerts 1997, Schabenberger and Gotway 2005) have been widely

employed in different problems. All statistical methods for spatial data have to take the correlations

of the observations into consideration to provide accurate, meaningful conclusions. Therefore,

spatial correlation-based appraisal of a cement quarry can be the most reliable approach to evaluate

the distributions of chemical components (Almeida et al. 2004).

In this work, two powerful algorithms such as regression kriging (RK) (Wackernagel 1998, Hengl

et al. 2007) and geographically weighted regression (GWR) (Fotheringham et al. 2002) are applied

to a quarry in Turkey. The main objective of the study is to analyse the CaO distributions based on

spatial relationships. The spatial analysing methods are used to detect the relationships in the

deposit and modelling the relationships via regression-based algorithms on a comparative manner

composes the frame of the paper. 

The rest of the paper is structured as follows. Section 2 states the problem and methods used in

the study. Section 3 gives the real case study. Section 4 presents the results and discussion and

finally Section 5 concludes the paper.

2. Method

2.1 Statement of problem

Because the measured concentrations of a chemical variable are described by the coordinates, the

sample data obtained from the quarry should be considered as spatially varying data. In this

structure, each measurement is associated with a location and there is at least one implied

connection between the location and the measurement of chemical variable.

In a general spatial modelling approach, if we know the actual values of input variables and

models are known, a model can be used to appraise the chemical variable of interest, z. For the

estimation of a concentration at a sample point, some neighbouring locations and weighting

structures are used.

2.2 Regression kriging

Regression Kriging (RK) is a geostatistical analysis technique to examining the distribution of

regionalized variables in a spatial system. In general, a geostatistical technique comprises of three

main stages: (1) exploration of the data to characterize its spatial continuity; (2) structural analysis

to build a semivariogram model and (3) application of kriging for estimation. 

The semivariogram is a statistical function which denotes how the data vary spatially across the

area of interest. The variation between points is measured using the semivariance. Pooling together

pairs of data at geographic distance h, the experimental semivariogram γ(h) of the sample can be

written as
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  (1)

where N(h) is the number of sample pairs within the distance interval h; Z(xi), Z(xi+h) is the sample

value at two points separated by the distance interval h. Once the experimental semivariogram

function has been computed from the sampled values at different locations, the next step is to fit a

parametric semivariogram by a method such as the weighted least squares method (Cressie 1993).

In geostatistical theory, it is assumed that a random function Z(x) includes a trend parameter f(x)

that can be modelled as a linear function of smoothly varying secondary variable. The random

function can be modelled as a combination of trend a random variable

(2)

where  is the random variable of mean zero and with a variogram that presents its spatial

relationships. Estimation of the variogram can obtain a prediction of z at unsampled site, x0. The

model is an integration of the trend prediction, f(x0), and a kriged estimate of .

The information obtained from semivariograms used to appraise the observations in the site was

considered by kriging techniques. Ordinary kriging is a process of estimating variable values at

unmeasured location as follows

 (3)

where Z*(x0) is the kriged or predicted value at location x0, Z(xi) is the known value that used for

estimating value at location x0 and λi is kriging weight which is the solution of the kriging system

(Goovaerts 1997).

As given in Eq. (4), a spatial interpolation of an unknown location (k0) using the measured values

 can be made via summing the predicted drift and residuals

(4)

where the first component, deterministic part (drift)  can be computed by linear regression, and

the second component, residual (error)  can be predicted by ordinary kriging as follows (Stacey et

al. 2006)

(5)

In Eq. (5),  denotes the estimated drift model coefficients,  is the predictor at location k0,

p is the number of predictors,  is kriging weight calculated by the spatial dependence function

and  is residual of the regression. The regression coefficient vector  is estimated from a least

squares technique such as ordinary least squares (OLS) or, preferably, generalized least squares

using the spatial relationships between the variables (Cressie 1993, Hengl et al. 2007)

(6)

where  gives a vector of p+1 predicted drift model coefficients, C represents the covariance

matrix of the errors, q indicates the matrix of independent variables, and z denotes the vector of
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ẑ k0( ) m̂ k0( ) ê k0( )+=
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observed values of the target variable.

In the system presented in Eq. (5), first the drift model coefficients are estimated using least

squares, then the covariance function of the errors is determined to provide the GLS coefficients

(Hengl et al. 2007). In addition, the interpolated residuals by kriging are added to the fitted drift and

thus, the estimated values are obtained. The model can be written as follows (Christensen 2010)

(7)

where  is the estimated value at location k0, q0 is the vector of p+1 estimators, q is the matrix

of predictors at all measured locations, and λ0 is the vector of n kriging weights used to take the

errors.

2.3 Geographically weighted regression (GWR)

Since the spatial natural systems have heterogeneous properties, the relationships can be varied in

space. If the coefficients vary in space, it can be taken as an indication of non-stationary. Therefore,

spatial procedures, which should cope with the spatial non-stationary of empirical relationships,

should be considered.

In the matrix form of regression equation, the vector of parameters to be estimated, β, is constant

over space and which is estimated by

(8)

On the other hand, GWR has been proposed to analyse spatially varying relationships based on

areal modelling perspective. GWR has a kernel-based modelling structure. In the mechanics of

GWR, the observations are weighted in accordance with their distance from the kernel centre (Fig.

1). The parameters for GWR can be estimated by solving Eq. (9) as follows

(9) 

where  represents an estimation of β, and  is an n by n matrix whose off-diagonal

elements are zero and diagonal elements are geographical weights of each of the n observed data
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Fig. 1 A spatial kernel
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for regression point I (Fotheringham et al. 2002). 

Sometimes, instead of , W(i)can be used as weighting scheme based on the proximity of

the regression point i to the data points around i without an explicit relationship being stated. There

are many weighting schemes which express wij as a continuous function of distance dij. In practice,

the following Gaussian function is used extensively. 

(10)

where  is the Euclidean distance between the location of measurement i and the centre of the

kernel j, and b is the bandwidth of the kernel. If i and j coincide, the weighting of data at that point

will be unity and the weighting of the other data will decrease according to a Gaussian curve as the

distance between i and j increases (Fotheringham et al. 1998). 

The weighting is a crucial step in the modelling process and it completely relies on the bandwidth

of the function. If b is too small, insufficient data fall within the smoothing window, and a noisy fit,

or large variance, will result (Paez et al. 2002). However, if b is too large, the local model may not

fit the data well within the smoothing window, and important features of the mean function may be

distorted or lost completely. Thus, the fit will have large bias. From an ideal methodological view,

one might like to define a separate bandwidth for each estimation point (Tutmez et al. 2012).

3. Experimental studies

In this section, the regression models introduced in the previous section are applied to a real

quarry. The distribution of CaO concentrations in the field is considered based on a spatial

regression perspective.

3.1 Data and structure identification 

The raw material quarry of Adana Cement Factory was considered for the case study (Fig. 2). The

quarry occurred with marl, marly-limestone and limestones. Data used in this study belong to marl

units which are more favourable than marly-limestone and limestone (Alkan 2007). The data

comprising of 67 measurements were randomly divided into two subsets: the training set (55

samples) and the validation set (12 samples), respectively.

Structure identification (variable and feature selection) has crucial importance for the recent

modelling problems (Guyon and Elisseeff 2003). In the model, in addition to spatial positions of

measurements (coordinates), thickness was selected as auxiliary input variable. From these inputs,

CaO concentrations were estimated. To examine the relationships between coordinates and CaO

values, scatter diagrams were designed. As can be seen in Figs. 3 and 4, there are clearly big effects

of coordinates on CaO concentrations. Thus, a spatial analysis of the data is necessary. 

3.2 RK model

A regression kriging model should comprise of two main parts which are deterministic part (drift)

and residual term. First the deterministic part of variation is estimated, and then the variogram

function of the errors is employed to provide the GLS coefficients. Next, the residuals are re-
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computed, from which an updated variogram function is determined, and so on. Fig. 5 indicates the

relationships between residuals and fitted values. In addition, the final experimental variogram of

residuals is given in Fig. 6.

For kriging estimation, the experimental variogram was stated by a spherical structure and range

value was defined as 4. By using the spatial structure, weighted estimations of residuals were

carried out. Finally, the results derived from kriging interpolation were added to drift and estimated

values were provided. 

Fig. 2 Map of Quarry
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Fig. 3 Training data

Fig. 4 Testing data
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3.3 GWR model

The GWR analysis has been carried out using a Gaussian distance decay function with a fixed

spatial kernel. The bandwidth may be selected manually, or an optimal bandwidth can be identified

using an approach such as cross-validation. A method of deriving the bandwidth which provides a

trade-off between goodness-of-fit and degrees of freedom is effective to minimize the Akaike

Information Criterion (AIC). The AIC has been modified by Fotheringham et al. (2002) for GWR

as follows

(11)

where n is the sample size,  is the estimated standard deviation of the error term, and tr (S)

denotes the trace of the hat matrix S which maps  onto  (i.e., ).

In this application, the GWR model was fitted using R routines. In addition, the fixed bandwidth

value was determined using AIC with the ‘spgwr’ package in R (Bivand et al. 2008). Table 2
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Fig. 5 Relationships between fitted values and residuals Fig. 6 Variogram function of residuals

Table 1 Some inputs for GWR model

Training Testing

Spatial function Gaussian Gaussian

Fixed bandwidth (h) 4.793 distance units. 4.793 distance units

Number of locations to fit model (n) 55 12
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summarizes some inputs for the training and test data. In these tables, r2 relates to observations

against their estimates and OLS denotes the Ordinary Least Squares optimization. 

4. Results and discussion

For appraising the performances of the developed regression-based spatial models, the relationship

between the estimated CaO concentrations and the actual (measured) CaO concentrations was

considered. Because the kriging models produce exact estimations of training data, the results are

assessed by testing data. Fig. 7 illustrates the results of two models together with the actual

(measured) CaO concentrations. As can be followed from Fig. 7, RK model has relatively better

estimations compared to with GWR model. 

To show the performances more clearly, the relative errors of the estimations are presented in Fig.

8. Relative Error (RE) is well-known performance indicator that can be stated as follows

(12)

where y and  denote measured and estimated CaO values, respectively. Because the average

RE errors are smaller than 10%, it can be expressed that both methods can be accepted as

successful (Bardossy and Fodor 2004). In particular, RK outperforms than GWR model. In

addition to estimation capacities, smoothing degree of the estimations was handled. Because

data variability is important in spatial data analysis, reproducing the variability in the

estimation values are checked. The variability (standard deviation) and average RE values are

summarized in table. The results indicate that RK algorithm considers data variability and

smoothing more.
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Fig. 7 Measured and estimated test values
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5. Conclusions

Chemical composition of cement is crucial for manufacturing and the evaluation of the composition in a

quarry is also necessary for obtaining suitable raw materials. In this study, the relationships in a

cement raw material quarry were explored by spatial modelling. Two spatial data analysis methods

were employed and some estimation was conducted.

The regression-based algorithms used in this study have revealed some successful outcomes. In

addition, it was observed that in addition to estimation capacity, RK algorithm also takes into

account data variability and smoothing degree. As a consequence, the regression-based spatial data

algorithms could be applied to cement raw materials deposits to analyse some distributions and

relationships.
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Fig. 8 Relative errors

Table 2 Test performances of models

Measured GWR RK

Average standard deviation  2.554  2.858  2.584

Average relative error  -  7.891  6.911
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