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Abstract. This work intends to contribute for the improvement of the procedure suggested by Brazilian
Technical Code that takes into account the cracked concrete stiffness in the estimative of the displacement
of reinforced concrete beams submitted to service loads. A damage constitutive model accounting for
induced anisotropy, plastic deformations and bimodular elastic response is used in order to simulate the
concrete behaviour, while an elastoplastic behaviour is admitted for the reinforcement. The constitutive
models were implemented in a program for bars structures analysis with layered finite elements. Initially,
the damage model is briefly presented as well as the parametric identification of the materials that have
been used in the reinforced concrete beams. After that, beams with different geometries and reinforcement
area are analyzed and a statistical method (ANOVA) is employed in order to identify the main variables
in the problem. Soon after, the same procedure is used with another resistance of concrete, where the
compression strength is changed. The numerical responses are compared with the ones obtained by
Brazilian Technical Code and experimental tests in order to validate the use of the damage model. Finally,
some remarks are discussed based on responses presented in this work.

Keywords: damage mechanics; reinforced concrete; technical code; non-linear analysis.

1. Introduction

In the usual estimative of displacements in structures using Solid Mechanics, it can be appealed,
for instance, to Principle of Virtual Work. However, in the case of reinforced concrete structures,
that estimative is complex because this kind of material is composed by concrete and steel with
different elasticity moduli leading to a different bending behaviour. Besides, some parts of the
structure will probably present different behaviours even when the structure is submitted to small
value loads, i.e., areas where the tensioned concrete present cracks while other ones don’t present
any damage. The existence of cracks induces to the inertia decreasing processes, where theoretically
just the reinforcement resists to the traction stresses. In this moment, the bending moment at the
cross section of the structure is called cracking moment, Mr.

With the increase of the knowledge of the materials behaviour and the numerical techniques,
besides the development of computers more and more efficient, it has been possible the consideration of
mechanisms of RC structures behaviour through mathematical models more realistic. These developments
can be noted in the Brazilian Technical Code (NBR 6118:2003 2007), where a procedure to
estimate the displacements in bar elements considering the non-linear behaviour of the concrete is
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suggested, where the cracking is the main phenomenon that induces the decrease of the material
stiffness.

The approach attempt between mathematical model and reality of the structural behaviour has the
advantage of obtain numerical responses more accurate. However, the amount of parameters is
excessive and its parametric identification is more complex with the need of experimental test more
sophisticated. Note yet, the computational and theoretical formulation costs are forbidding for the
use of the model in practical situations of structural engineering. On the other hand, the search for
mathematical models that try to balance the simplicity with robustness of results is desirable. In this
context, this present work intends to show the potentialities of a constitutive model for the concrete
when it is used in practical situations. This damage model is based on the Continuum Damage
Mechanics (CDM) following the formalism proposed in Pituba (2006a). In some works are reported
the use of the damage model in complex loading situations (Proença and Pituba 2003, Pituba 2006b,
2008, 2009, 2010, Pituba and Fernandes 2011). Now, it intends to use a more simplified version of
the model, however efficient, in the analysis of RC structures submitted to usual loading.

The CDM is a tool for simulating the material deterioration in equivalent continuous media due
exclusively to microcracking process (Zhu et al. 2009, Kucerova et al. 2009, Ibrahimbegovic et al.

2008, Brancherie and Ibrahimbegovic 2009). A certain material can be assumed as a continuous medium
being the internal changes caused by the microcracks taken into account by scalar or tensor damage
variables which decrease the initial stiffness of the equivalent medium.

The damage model describes the stiffness loss process through the reduction of the elasticity
modulus of the material in a given point of the structure. On the other hand, the model suggested by
NBR 6118:2003 (2007) reduces the inertia moment in a studied section and, besides this new inertia
moment is representative for throughout beam as if the beam was cracking in a homogeneous way.
These questions together the reliability of the numerical responses presented by the damage model
and low cost of the numerical analyses, when compared to the experimental ones, motivated the
discussion that follows.

Finally, the work contributes to a discussion about the consideration of the non-linear behaviour of
the concrete in the estimative of displacements in RC beams suggested in the NBR Procedure. For
that, the NBR Procedure and damage model are used in analyses of RC beams submitted to
gravitational and accidental loads. Besides, the span, cross section, reinforcement arrangement and
concrete strength of the beams are changed. The aim is to verify the differences among the numerical
responses by the damage model, analytical responses by NBR Procedure and experimental ones. For
a better discussion, a statistical method (Variance Analysis – ANOVA) is employed in order to
verify the main variables involved in the problem taking into account the numerical and analytical
results obtained in this work. Obviously, it is necessary to investigate more cases in future works in
order to propose an alternative procedure to estimate displacements in RC beams. This is the goal
of this research.

2. Damage model

This model was proposed by Pituba (2006a) in order to simulate the concrete behaviour. The
material is assumed as an initially isotropic material that starts to present transverse isotropy and
bimodular responses induced by the damage. To take into account the bimodularity conveniently,
two damage tensors governing the rigidity in tension or compression regimes are introduced.
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Moreover, the model tries to respect the principle of energy equivalence between damaged real
medium and equivalent continuous medium established in the Continuum Damage Mechanics,
Lemaitre and Chaboche (1990). Here in after, the damage model is briefly described. So, for the
tension dominant states, the following damage tensor is adopted

DT = f1(D1, D4, D5)  + 2 f2(D4, D5) (1)

where f1(D1, D4, D5) = D1 – 2f2(D4, D5) and f2(D4, D5) = 1 – (1 − D4) (1 − D5).
The variable D1 represents the damage in the orthogonal direction to the transverse isotropy local

plane of the material, while D4 is representative of the damage generated by the sliding movement
between the crack faces. The third damage variable, D5, is only activated if a previous compression
state accompanied by damage has occurred.

In the Eq. (1), the tensor I is the second-order identity tensor and the tensor A, by definition
Pituba (2006a) and Curnier et al. (1995), is formed by the dyadic product of the unit vector
perpendicular to the transverse isotropy plane for itself.

The same observations given for damage tensor to the dominant tension states are valid for
dominant compression states. Therefore the damage tensor is given by

DC = (D2, D4, D5) + f2(D3) +2f3(D4, D5) (2)

where (D2, D4, D5) = D2 – 2f3(D4, D5), f2(D3) = D3 and f3(D4, D5) =1 – (1–D4) (1–D5).

Note that in the compression damage tensor expression two additional scalar variables are
introduced: D2 and D3. The variable D2 (damage perpendicular to the transverse isotropy local plane
of the material) reduces the Young's modulus in that direction. On the other hand, the variable D2

together with D3 (that represents the damage in the transverse isotropy plane) degrades the Poisson's
ratio on the perpendicular planes to the one of transverse isotropy.

Finally, the resultant constitutive tensors ET and EC may be described as follow

(3)

(4) 

where ; . The remaining parameters will only exist for no-null damage, evidencing
in that way the anisotropy and bimodularity induced by damage. Those parameters are given by

(5)
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is adopted for the hypersurface in the strain space: a hyperplane g(ε) defined by the unit normal N
(||N|| = 1) and characterized by its dependence of the strain and damage states. Thus, the criterion
presented by Curnier et al. (1995) is here extended so that the actual damage state can influence the
hyperplane definition. Therefore, the following relation is proposed

g(ε, DT, DC) = N(DT, DC) . εe
 = γ1(D1, D2)  + γ2(D1, D2) (6)

where γ1(D1, D2) = {1+H(D2)[H(D1)-1]}η(D1)+{1+H(D1)[H(D2)−1]}η(D2) and γ2(D1, D2) = D1+D2.

The Heaviside functions employed above are given by

H(Di) = 1 for Di > 0; H(Di) = 0 for Di = 0 (i = 1, 2) (7)

The η(D1) e η(D2) functions are defined, respectively, for the tension and compression cases,
assuming for the first one that there was no previous damage in compression affecting the present
tension damage variable D1. Analogously, for the second one it is assumed that has not had
previous damage in tension affecting variable D2.

(8)

As it has already been pointed out, in the model formulation the damage induces anisotropy in the
concrete. Therefore, it is convenient to separate the damage criterion into two criteria: the first one
is used only to indicate damage incipience when the material is no longer isotropic and the second
one is used for loading and unloading when the material is already considered as transverse
isotropic. The second criterion identifies if there is or not evolution of the damage variables. That
division is justified by the difference between the complementary elastic strain energies of an
isotropic and a transverse isotropic material. For more details see Pituba and Fernandes (2011).

In the loading case, i.e., when  or , one needs to update the values of the scalar
damage variables that appear in the DT and DC tensors, considering their evolution laws. In this
work, the evolution laws of the damage variables are written in terms of conjugate forces, i.e.,
associated variables (Lemaitre and Chaboche 1990). In a general way, the expression that defines
the associated variables may be represented by

YT,C = F(σ, E0, DT,C) (9)

Taking into account an implicit representation, the damage evolution laws may be given by

(10)

where bT,C are groups of parameters incorporated in the evolution laws of DT or DC. Observe that in
case of monotonic loading, the Eq. (10) can be integrated directly. However, the set of relations
formed by YT,C and DT,C leads to an implicit system whose solution can be obtained by an iterative
procedure. In the numerical applications presented in this work, the monotonic loading is
considered. The evolution laws for the scalar damage variables have been proposed according to the
experimental results. Moreover, these laws present similar characteristics to the ones described in
the works of Mazars (1986) and La Borderie (1991). Thus, the general form proposed is

(11)
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where Ai, Bi and Y0i are parameters that must be identified. The parameters Y0i are understood as
initial limits for the damage activation. The parametric identification of the model is accomplished
through uniaxial tension tests in order to obtain A1, B1 and Y01 = Y0T, through uniaxial compression
tests for the identification of the parameters A2, B2 and Y02, and finally through biaxial compression
tests to obtain A3, B3 and Y03 = Y02 = Y0C. On the other hand, the identification of the parameters for
the evolution laws corresponding to the damage variables D4 and D5 needs a direct shear test.
However, for the one-dimensional version of the model used in this work, it is necessary the
parametric identification related to uniaxial stress tests.

When the damage process is activated, the formulation starts to involve the tensor A that depends
on the knowledge of the normal to the transverse isotropy plane. Therefore, it is necessary to
establish some rules to identify its location for an actual strain state.

Initially, a general criterion is established for the existence of the transverse isotropy plane. It is
proposed that the transverse isotropy due to damage only arises if positive strain rates exist at least
in one of the principal directions. Moreover, some rules to identify its location must be defined.
First of all, considering a strain state in which one of the strain rates is no-null or has sign contrary
to the others, the following rule is applied:

“In the principal strain space, if two of the three strain rates are extension, shortening or null, the
plane defined by them will be the transverse isotropy local plane of the material.”

For this work is interesting observe that the uniaxial tension is an example of the case above
where the transverse isotropy plane is perpendicular to the tension stress direction. The same
observation is valid for uniaxial compression case. 

3. NBR 6118:2003 Procedure

The models of displacement evaluation in RC structures consider the behaviour of a structural
element submitted to the bending moment in the Stage I (section without crack, when is considered
the contribution of the concrete in the tensioned area) and Stage II (cracked section, when is not
considered the contribution of the tensioned concrete for the cross section equilibrium).

The NBR Procedure presents a criterion for the estimative of the excessive displacement in RC
deformed elements based on a contribution of the inertias in the Stages I (I1) and II (I2) what results
an equivalent inertia, Ieq. That equivalent inertia is calculated by Eq. (12) obtained through the
proposed model by Branson (1968). Such procedure is valid for the active moment in the critical
section, Ma, larger than the cracking moment Mr.

(12)

In Eq. (12), Ic is the inertia of the undamaged section without the contribution of the reinforcement bars
in the cross section of the beam. The cracking moment Mr is given by Eq. (13). Note that in Eq.
(13), the Brazilian Technical Code does not take into account the favourable effect of the reinforcement
bars. Therefore, there is a decrease of the Mr value.

(13)

The value of a is 1.2 for T or double T cross sections and 1.5 for rectangular cross sections. The
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tension strength of the concrete (ft) is given by Eq. (14) and yt is the distance of the gravity centre
of the section to the more tensioned fiber of the cross section.

(14)

where fc is the characteristic compression strength of the concrete. 
The moment in the critical section, Ma, is obtained through a load combination named quasi-

permanent. This load combination is given by Eq. (15) and reduces the intensity of the accidental
loading through a statistical coefficient ψ2j whose value can be 0.3, 0.4 or 0.6, depending for what
the structure is used.

(15)

In Eq. (15), Fg represents the permanent load values like as gravitational loads and Fq represents
the accidental load values.

4. ANOVA method

The variance analysis is a statistical test very knew among the analysts, and it intends to verify if
there is a significant difference among the averages and if the factors influence some dependent
variable.

The proposed factors can be of qualitative or quantitative origin, but the dependent variable
should be continuous. The main application of ANOVA is the comparison of averages obtained
from different groups. There are two problem kinds that ANOVA is used as a tool to resolve them:
fixed or random factors. The fixed factors are present in the majority of the cases.

The ANOVA is thoroughly used in several areas, for instance: in the industry, for the production
line optimizing; in medicine sciences, for identify which factors are important in the treatment of
certain pathology. In civil engineering, the use of ANOVA is still restricted, however, there are
some works that has been used this technique, for instance, Ramadoss and Nagamani (2012),
Delalibera and Giongo (2008) and Lima Júnior and Giongo (2004). 

The ANOVA developed in this work uses fixed factors (Montgomery 1996). It has been chosen
four variables for the analyses: the cross section of the beams; the effective span length; the
compression strength of concrete and the rate of longitudinal reinforcement bars. For the chosen
variables it has been obtained fifty four cases of combinations.

4.1 ANOVA formulation

Consider A, B and C the fixed main factors of the variance analysis and a, b and c the variations
of those factors and n the number of replicas. In general way, there are a b c...n possible
combinations. If all the experiment factors were fixed, it can formulate the problem, obtaining
results that indicate which of the analyzed factors are important as well as their combinations.

To verify the relevance of a certain fixed main factor or combinations among the main factors, it
is made the relationship between the squares average of each main factor or combination of the
main factors for the squares average of the errors. The division between the squares average of each
main factor or combination of the main factors for the errors average is called F0.
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The number of freedom degrees of each main factor is equal to the number of variations of each
less factor the unit. The number of freedom degrees of the combined main factors is the product
among the main factors that were combined. For instance, Table 1 shows a variance analysis with
three factors.

The total sum of squares is given by

(16)

The sum of the squares of each main factor is defined by A(yi.), B(y.j) and C(y..k.) factors.
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Table 1 ANOVA: general formulation

Factors Squares sum Freedom degrees Squares average F0

A SSA a –1 MSA = SSA / (a –1)

B SSB b – 1 MSB = SSb / (b –1)

C SSC c –1 MSC = SSc / (c –1)

A × B SSAB (a – 1)(b – 1) MSAB = SSAB / [(a – 1)(b – 1)]

A × C SSAC (a – 1)(c – 1) MSAC = SSAC / [(a – 1)(c – 1)]

B × C SSBC (b – 1)(c – 1) MSBC = SSBC / [(b – 1)(c – 1)]

A × B × C SSABC

(a – 1)(b – 1)(c –
1) MSABC = SSABC / [(a – 1)(b – 1)(c – 1)]

Erro SSE abc(n – 1) MSE = SSE / [abc(n – 1)]

Total SST abcn – 1
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The squares sum of the combinations A × B, A × C and B × C is expressed by Eqs. (20) to (22).
The Eq. (23) defines the squares sum of the combination of all the factors.

(20)

(21)

(22)

(23)

Finally, the squares sum of the error is defined by

(24)

The test F is applied in order to verify the relevance of a certain fixed main variable or combined.
There are tables in Montgomery (1996) that contain values for Fcritical. The calculated value of F0 is
compared with the value of Fcritical. If the value F0 is larger than the fixed value of Fcritical, this
means that the factor studied is relevant, otherwise, it implicates that the factor s not important. The
values of Fcritical are function of the number of freedom degrees of each variable and of the number
of total freedom degrees.

5. Numerical test

5.1 Finite element models

The one-dimensional version of the damage model was implemented in a program for bars
structures analysis with finite layered elements. In the layered elements it is assumed as hypotheses
that the distortions strains are negligible. The assumed to govern the concrete layers behaviour are
the ones reported above and for the longitudinal reinforcement bars, elastoplastic behaviour is
admitted. In the transversal section, a certain layer can contain steel and concrete. By assuming a
perfect adherence between the materials, it is defined, for each layer, an elastic modulus and an
inelastic strain equivalent, by using homogenization rule.

Now, the finite element models of the beams used in order to verify the influence of some
parameters in the estimative of displacements are described. Those models have been used in the
numerical analyses as well as in the analytical analyses by NBR Procedure.

In this work, some parameters involved in the problem were changed, such as: effective span
length, height of the cross section, reinforcement distribution and compression strength of the
concrete. The finite element models are named according to the properties contained in the Table 2
and their geometries are described in the Fig. 1.
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In order to check the vertical displacement obtained by numerical analyses presented in this work,
it has been calculated analytically the vertical displacements of the RC beams submitted to the
action of bending moment, using the criteria suggested by NBR Procedure, where it has been
considered as permanent loads the weight of the beams and as accidental variable loads, the force

Fig. 1 Geometry properties of the finite element models

Table 2 Properties of the finite element models

Beam fc 
(MPa)

Span 
(m)

As 
(cm2) Beam fc 

(MPa)
Span 
(m)

As 
(cm2) Beam fc 

(MPa)
Span 
(m)

As 
(cm2)

V31-12×30 30.8 2.4 2.36 V32-12×40 30.8 2.4 2.36 V33-12×50 30.8 2.4 2.36
V51-12×30 30.8 2.4 3.93 V52-12×40 30.8 2.4 3.93 V53-12×50 30.8 2.4 3.93
V71-12×30 30.8 2.4 5.5 V72-12×40 30.8 2.4 5.5 V73-12×50 30.8 2.4 5.5
V34-12×30 30.8 3 2.36 V35-12×40 30.8 3 2.36 V36-12×50 30.8 3 2.36
V54-12×30 30.8 3 3.93 V55-12×40 30.8 3 3.93 V56-12×50 30.8 3 3.93
V74-12×30 30.8 3 5.5 V75-12×40 30.8 3 5.5 V76-12×50 30.8 3 5.5
V37-12×30 30.8 4 2.36 V38-12×40 30.8 4 2.36 V39-12×50 30.8 4 2.36
V57-12×30 30.8 4 3.93 V58-12×40 30.8 4 3.93 V59-12×50 30.8 4 3.93
V77-12×30 30.8 4 5.5 V78-12×40 30.8 4 5.5 V79-12×50 30.8 4 5.5
V311-12×30 30 2.4 2.36 V322-12×40 30 2.4 2.36 V333-12×50 30 2.4 2.36
V511-12×30 30 2.4 3.93 V522-12×40 30 2.4 3.93 V533-12×50 30 2.4 3.93
V711-12×30 30 2.4 5.5 V722-12×40 30 2.4 5.5 V733-12×50 30 2.4 5.5
V344-12×30 30 3 2.36 V355-12×40 30 3 2.36 V366-12×50 30 3 2.36
V544-12×30 30 3 3.93 V555-12×40 30 3 3.93 V566-12×50 30 3 3.93
V744-12×30 30 3 5.5 V755-12×40 30 3 5.5 V766-12×50 30 3 5.5
V377-12×30 30 4 2.36 V388-12×40 30 4 2.36 V399-12×50 30 4 2.36
V577-12×30 30 4 3.93 V588-12×40 30 4 3.93 V599-12×50 30 4 3.93
V777-12×30 30 4 5.5 V788-12×40 30 4 5.5 V799-12×50 30 4 5.5
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values of the Fr and 3Fr, applied to the l/3 distances and 2l/3 from the support of the left of the
beam (see Fig. 1). The force Fr has been obtained by Eq. (25) and its value depends on the
cracking moment value (Eq. 13).

(25) 

5.2 Parametric identification of the damage model

A perfect elasto-plastic model has been used in the mechanical behavior simulation of the
reinforcement. The damage model proposed by Pituba (2006a) has been used in the mechanical
behavior simulation of the concrete. For the parametric identification of the damage model, a
process based on error minimization has been used. For details, see Pituba and Fernandes
(2011).

The stress-strain curves of the concretes used in this work are presented in Figs. 2 and 3. Note
that the experimental tests on the concrete with fc = 30.8 MPa was performed by Álvares (1993)
and for the concrete with fc = 30 MPa was performed by Vecchio and Emara (1992). The parameter
values obtained by parametric identification for each concrete are illustrated in Table 3.

According with experimental data reported in Álvares (1993), the first concrete has tension
strength of 2.25 MPa and elasticity module of 29,200 MPa. According with Vecchio and Emara
(1992), the second concrete has 30,400 MPa for the elasticity modulus. The strength in tension
was estimated taking into account the numerical response presented by Mazars' model Pituba
(2009). The steel used in reinforcement has Es = 196,000 MPa, yielding stress of 500 MPa.

Fr Mr

g l
2⋅

8
---------–⎝ ⎠

⎛ ⎞ 3
l
---⋅=

Fig. 2 Parametric identification for the concrete fc = 30.8 MPa

Fig. 3 Parametric identification for the concrete fc = 30.0 MPa
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5.3 Numerical results

In order to show the accuracy of the numerical responses obtained by the damage model in the
RC structures analyses, it is presented here some of those responses. 

The V31, V51 and V71 finite element models (Fig. 1) was analyzed using the damage model and
their numerical responses were compared with experimental ones reported in Álvares (1993). In the
analyses were used the geometry symmetries and, therefore, half beam was just analyzed and
dicretized into 20 finite elements. The cross sections were divided in 15 layers, being one layer of
steel and concrete in the beam with 3#10,0 mm, two in the beam with 5#10,0 mm and three in the
beam with 7#10,0 mm. The numerical and experimental responses are displayed in Figs. 4, 3 and 5.

On the other hand, the second numerical application is about RC frame (Vecchio and Emara
1992) whose geometry and reinforcement distribution are illustrated in Fig. 7. In the experimental
test, it was initially applied an axial load of 700 kN for each column, which was maintained

Table 3 Parameters of the damage model for the concretes used in this work

Concrete fc = 30.8 MPa Concrete fc = 30.0 MPa

Tension parameters Compression parameters Tension parameters Compression parameters

Y01 = 0.72×10−4 MPa Y02 = 0.5×10−3 MPa Y01 = 0.72×10−4 MPa Y02 = 1.7×10−3 MPa
A1 = 50 A2 = -0.9 A1 = 50 A2 = -0.8
B1 = 6700 MPa−1 B2 = 0.4 MPa−1 B1 = 6700 MPa−1 B2 = 1.1 MPa−1

Fig. 5 Load-displacement of the Beam – 5#10.0 mmFig. 4 Load-displacement of the Beam – 3#10.0 mm

Fig. 6 Load-displacement of the Beam – 7#10.0 mm
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constant during all the lateral load application. This force was applied in increments up to the frame
ultimate load.

In the numerical analysis, displacements increments were enforced in the application point of the
horizontal force. The frame was discretized into 30 finite elements, 10 of which were used in the
discretization of each column and 5 in each beam. The transversal sections were divided into 10
layers. The numerical and experimental responses are displayed in Fig. 8, where the graphs represent the
applied horizontal force x horizontal displacement relationship computed at the superior floor of the
frame.

These analyses are illustrated below and the load-displacement responses obtained by the damage
confirm the good recovery of the global experimental responses of the RC structures.

Here and after are presented the numerical and analytical analyses in order to show the difference
between the damage model responses and NBR Procedure ones.

The tables below describe the results obtained for displacements in the middle span of each finite
element model when it is employed the NBR Procedure, as well as those ones obtained in the
numerical analyses. The displacement values have been considered for P = Fr and P = 3Fr in order
to investigate the NBR Procedure related to the damage evolution of the beams. 

Fig. 7 Geometry and reinforcement details

Fig. 8 Load-displacement curve of the RC frame
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The difference of the displacement values has been estimated taking into account as reference the
values obtained by NBR Procedure.

It is noted that the NBR Procedure is very conservatism when compared with the numerical
responses, see Tables 4 to 7. In general way, it is observed the decrease of the difference among
analytical and numerical displacement values when the applied load P increases. The model adopted
by NBR is based on Branson (1968) and it estimates the beam stiffness related to whole beam
leading to high displacement values. Note that the damage model reduces the material stiffness in
agreement with the considered direction, i.e., the damage process occurs in a selectable way giving
a panorama more realist of the damage in the beam. Thus, the damage model presents smaller
displacements than ones obtained with the analytical model of NBR Procedure.

In the Table 8 the cracking moment values obtained by analytical and numerical analyses are

Table 4 Cracking force values and displacement values for P = Fr and fc = 30.8 MPa

Beam
P = Fr – fc = 30.8 MPa

Fr NBR
 (kN)

Fr Num.
(kN)

Displ. NBR 
(cm)

Displ. Num. 
(cm)

Difference
(%)

V31-12×30 9.14 6.28 0.07 0.04 75.00
V51-12×30 9.14 6.44 0.07 0.04 75.00
V71-12×30 9.14 6.51 0.07 0.04 75.00
V34-12×30 6.95 4.89 0.11 0.06 83.33
V54-12×30 6.95 4.91 0.11 0.06 83.33
V74-12×30 6.95 4.97 0.11 0.06 83.33
V37-12×30 4.62 3.39 0.19 0.10 90.00
V57-12×30 4.62 3.43 0.19 0.10 90.00
V77-12×30 4.62 3.69 0.19 0.10 90.00
V32-12×40 16.61 10.39 0.05 0.03 66.67
V52-12×40 16.61 10.66 0.05 0.03 66.67
V72-12×40 16.61 10.82 0.05 0.03 66.67
V35-12×40 12.8 7.85 0.08 0.04 100.00
V55-12×40 12.8 8.05 0.08 0.04 100.00
V75-12×40 12.8 8.17 0.08 0.04 100.00
V38-12×40 8.81 6.23 0.14 0.08 75.00
V58-12×40 8.81 6.09 0.14 0.08 75.00
V78-12×40 8.81 6.18 0.14 0.08 75.00
V33-12×50 26.29 20.35 0.04 0.03 33.33
V53-12×50 26.29 20.89 0.04 0.03 33.33
V73-12×50 26.29 21.26 0.04 0.03 33.33
V36-12×50 20.42 15.39 0.06 0.05 20.00
V56-12×50 20.42 15.79 0.06 0.05 20.00
V76-12×50 20.42 16.07 0.06 0.05 20.00
V39-12×50 14.33 8.77 0.11 0.06 83.33
V59-12×50 14.33 8.99 0.11 0.06 83.33
V79-12×50 14.33 10.13 0.11 0.07 57.14
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described. It is observed that NBR Procedure supplies an only one value of Mr that it is independent
of the reinforcement distribution in the beam. This fact does not happen in the numerical analyses
whose Mr values change according with reinforcement distribution. However, for practical applications the
values of Mr can be adopted the same in a beam with same cross section and different reinforcement
arrangements. However, the beam behaviour history taking into account the beginning of the
cracking process to its collapse, obviously it will be influenced by the reinforcement distribution
and other factors.

In Fig. 9 is illustrated a cracking moment (Mr) versus inertia (Ieq) relationship. Note that to the
NBR Procedure, the cracking moment is not affected by compression strength of the concrete (fc)
and reinforcement distribution when it is dealing with low values for Ieq. However, in the numerical
analyses there are more disperse results evidencing that the reinforcement distribution is a parameter
that it contributes to different values of the Mr. Besides, the influence of the compression strength of

Table 5 Displacement values for P = 3Fr and fc = 30.8 MPa

Beam
P = 3 Fr – fc = 30.8 MPa

Displ. NBR (cm) Displ. Num. (cm) Difference (%)

V31-12×30 0.57 0.35 62.86
V51-12×30 0.44 0.26 69.23
V71-12×30 0.40 0.23 73.91
V34-12×30 0.85 0.53 60.38
V54-12×30 0.66 0.38 73.68
V74-12×30 0.60 0.33 81.82
V37-12×30 1.36 0.84 61.90
V57-12×30 1.07 0.61 75.41
V77-12×30 0.98 0.58 68.97
V32-12×40 0.5 0.31 61.29
V52-12×40 0.37 0.21 76.19
V72-12×40 0.32 0.18 77.78
V35-12×40 0.75 0.43 74.42
V55-12×40 0.56 0.31 80.65
V75-12×40 0.49 0.26 88.46
V38-12×40 1.24 0.83 49.40
V58-12×40 0.94 0.55 70.91
V78-12×40 0.81 0.45 80.00
V33-12×50 0.45 0.38 18.42
V53-12×50 0.33 0.26 26.92
V73-12×50 0.28 0.22 27.27
V36-12×50 0.69 0.55 25.45
V56-12×50 0.51 0.38 34.21
V76-12×50 0.43 0.31 38.71
V39-12×50 1.16 0.68 70.59
V59-12×50 0.85 0.47 80.85
V79-12×50 0.72 0.44 63.64
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the concrete increases when the inertia has high values. However, the values of cracking moment in
numerical analyses are lower than analytical ones. Nevertheless the beam stiffness in all loading
process is more appropriated simulated by the damage model in sense that the model takes into
account the concrete contribution to resist tension stress (tension stiffening).

5.4 Statistical results

In the Tables 9, 10, 11 and 12 the ANOVA method results are presented for the concrete fc = 30.8
MPa. In particular, the Tables 9 and 10 show the analytical and numerical results for F = Fr, where
it can be observed that the cross section Ac is the most important factor in the estimative of
displacements. The effective span length l is the second relevant factor and the coupling between Ac

Table 6 Cracking force values and displacement values for P = Fr and fc = 30.0 MPa

Beam
P = Fr – fc = 30.0 MPa

Fr NBR
(kN)

Fr Num.
 (kN)

Displ. NBR 
(cm)

Displ. Num. 
(cm)

Difference
(%)

V311-12×30 8.97 6.52 0.07 0.04 75.00
V511-12×30 8.97 6.68 0.07 0.04 75.00
V711-12×30 8.97 6.74 0.07 0.04 75.00
V344-12×30 6.81 4.46 0.11 0.05 120.00
V544-12×30 6.81 5.09 0.11 0.06 83.33
V744-12×30 6.81 5.14 0.11 0.06 83.33
V377-12×30 4.52 3.52 0.19 0.10 90.00
V577-12×30 4.52 3.56 0.19 0.10 90.00
V777-12×30 4.52 3.59 0.19 0.10 90.00
V322-12×40 16.30 10.78 0.05 0.03 66.67
V522-12×40 16.30 11.05 0.05 0.03 66.67
V722-12×40 16.30 11.21 0.05 0.03 66.67
V355-12×40 12.55 8.14 0.08 0.04 100.00
V555-12×40 12.55 8.35 0.08 0.04 100.00
V755-12×40 12.55 8.47 0.08 0.04 100.00
V388-12×40 8.63 5.85 0.14 0.07 100.00
V588-12×40 8.63 6.31 0.14 0.08 75.00
V788-12×40 8.63 6.41 0.14 0.08 75.00
V333-12×50 25.8 21.10 0.04 0.03 33.33
V533-12×50 25.8 21.64 0.04 0.03 33.33
V733-12×50 25.8 22.01 0.04 0.03 33.33
V366-12×50 20.04 15.96 0.06 0.05 20.00
V566-12×50 20.04 16.36 0.06 0.05 20.00
V766-12×50 20.04 16.63 0.06 0.05 20.00
V399-12×50 14.04 9.11 0.11 0.06 83.33
V599-12×50 14.04 9.32 0.11 0.06 83.33
V799-12×50 14.04 9.47 0.11 0.06 83.33
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and l is the third one. In spite of the reinforcement area As be relevant, its importance is much
smaller than the three previous factors. On the other hand, the only difference between the analyses
is that the reinforcement area does not present relevant importance in the numerical analyses.

The Tables 11 and 12 show the analytical and numerical results for F = 3Fr, where it can be
observed that the cross section Ac remains the most important factor in the estimative of
displacements. Now, reinforcement area As starts to present an important contribution in the beam
behaviour as expected because in this stage the concrete is very damaged. The effective span length
l is now the third relevant factor.

Besides, it is important to observe that the coupling between As and l is the fourth relevant factor
in the analytical analyses while the coupling between Ac and l is the fourth one in the numerical
analyses. This observation shows that the damage model considers that the concrete is not so
damaged as considered by the NBR Procedure what it is confirmed in the item 5.3.

Table 7 Displacement values for P=3Fr and fc = 30.0 MPa

Beam
P = 3 Fr– fc = 30.0 MPa

Displ. NBR (cm) Displ. Num. (cm) Difference (%)

V311-12×30 0.56 0.37 51.35
V511-12×30 0.43 0.27 59.26
V711-12×30 0.39 0.24 62.50
V344-12×30 0.83 0.47 76.60
V544-12×30 0.65 0.40 62.50
V744-12×30 0.59 0.34 73.53
V377-12×30 1.34 0.89 50.56
V577-12×30 1.06 0.63 68.25
V777-12×30 0.96 0.54 77.78
V322-12×40 0.49 0.31 58.06
V522-12×40 0.37 0.22 68.18
V722-12×40 0.32 0.18 77.78
V355-12×40 0.74 0.45 64.44
V555-12×40 0.56 0.31 80.65
V755-12×40 0.48 0.26 84.62
V388-12×40 1.22 0.75 62.67
V588-12×40 0.92 0.56 64.29
V788-12×40 0.80 0.47 70.21
V333-12×50 0.45 0.39 15.38
V533-12×50 0.33 0.28 17.86
V733-12×50 0.28 0.22 27.27
V366-12×50 0.68 0.57 19.30
V566-12×50 0.50 0.40 25.00
V766-12×50 0.42 0.33 27.27
V399-12×50 1.14 0.73 56.16
V599-12×50 0.84 0.49 71.43
V799-12×50 0.71 0.40 77.50
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In the Tables 13, 14, 15 and 16 the ANOVA method results are presented for the concrete fc =
30.0 MPa. In particular, the Tables 13 and 14 show the analytical and numerical results for F = Fr

and the Tables 15 and 16 show the analytical and numerical results for F = 3Fr.
The same observations about the concrete fc = 30.8 MPa is valid for the concrete fc = 30.0 MPa.

However, in the concrete fc = 30.0 MPa, it is noted that the As factor presents a contribution more
relevant because of the decrease of the 

compression strength of the concrete.
Based on results from Tables 8, 9 and 13, it was done a second degree polynomial regression in

order to obtain an equation that represents the cracking moment value related to initial inertia of the
reinforced concrete section. The choice of the polynomial function is due to the importance of the
cross section inertia for the estimative of the cracking moment (see Table 9, F0 = 5.89⋅1015). The

Table 8 Cracking moment values for fc = 30.8 MPa and fc = 30.0 MPa

fc = 30.8 MPa fc = 30.0 MPa

Beam Mr Num.
(KN.m)

Mr NBR 
(KN.m) Beam Mr Num.

(KN.m)
Mr NBR 
(KN.m)

V31-12×30 5.03 7.96 V311-12×30 5.21 7.82
V51-12×30 5.15 7.96 V511-12×30 5.34 7.82
V71-12×30 5.21 7.96 V711-12×30 5.40 7.82
V34-12×30 4.89 7.96 V344-12×30 4.46 7.82
V54-12×30 4.91 7.96 V544-12×30 5.09 7.82
V74-12×30 4.97 7.96 V744-12×30 5.14 7.82
V37-12×30 4.51 7.96 V377-12×30 4.68 7.82
V57-12×30 4.57 7.96 V577-12×30 4.73 7.82
V77-12×30 4.9 7.96 V777-12×30 4.78 7.82
V32-12×40 8.31 14.15 V322-12×40 8.62 13.90
V52-12×40 8.52 14.15 V522-12×40 8.84 13.90
V72-12×40 8.66 14.15 V722-12×40 8.97 13.90
V35-12×40 7.85 14.15 V355-12×40 8.14 13.90
V55-12×40 8.05 14.15 V555-12×40 8.35 13.90
V75-12×40 8.17 14.15 V755-12×40 8.47 13.90
V38-12×40 8.28 14.15 V388-12×40 7.78 13.90
V58-12×40 8.1 14.15 V588-12×40 8.40 13.90
V78-12×40 8.22 14.15 V788-12×40 8.52 13.90
V33-12×50 16.28 22.11 V333-12×50 16.88 21.72
V53-12×50 16.71 22.11 V533-12×50 17.31 21.72
V73-12×50 17.01 22.11 V733-12×50 17.61 21.72
V36-12×50 15.39 22.11 V366-12×50 15.96 21.72
V56-12×50 15.79 22.11 V566-12×50 16.36 21.72
V76-12×50 16.07 22.11 V766-12×50 16.63 21.72
V39-12×50 11.67 22.11 V399-12×50 12.12 21.72
V59-12×50 11.95 22.11 V599-12×50 12.40 21.72
V79-12×50 13.47 22.11 V799-12×50 12.49 21.72
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effective span length as well as the cross section of the reinforcement bars was considered in the
estimative of the beam displacements and they were considered in an indirect way in the estimative
of the cracking moment.

Table 9 ANOVA method results for analytical analyses with concrete fc = 30.8 MPa and F = Fr

Factors Squares
sum

Freedom
degrees

Squares
 average F0

Fcrítical, 0,05

N = 26

Ac 0.041 2 0.02 05.89⋅1015 3.37
l 0.013 2 0.0065 1.883⋅1015 3.37
As 0 2 0 12 3.37
Ac × l 0.0019 4 0.00049 1.393⋅1014 2.74
Ac × As 0 4 0 -6 2.74
l × As 0 4 0 -10 2.74
Erro 0 8 0 - -
Total 0.056 26 - - -

Table 10 ANOVA method results for numerical analyses with concrete fc = 30.8 MPa and F = Fr.

Factors Squares 
sum

Freedom 
degrees

Squares 
average F0

Fcrítical, 0,05

N = 26

Ac 0.011 2 0.0053 1.429⋅103 3.37
l 0.0019 2 0.00096 259 3.37
As 0.0000075 2 0.0000037 1 3.37
Ac × l 0.0000904 4 0.000226 61 2.74
Ac × As 0.0000148 4 0.0000037 1 2.74
l × As 0.0000148 4 0.0000037 1 2.74
Erro 0.0000294 8 0.0000037 - -
Total 0.013 26 - - -

Fig. 9 Investigation about cracking moment



Numerical and statistical analysis about displacements in reinforced concrete beams 325

Therefore, the equations below can be used in the estimative of the cracking moment for the
concretes analyzed in this work.

(26) 

(27) 

Mr 0.000181 246760 Ic⋅ 7.571 109⋅+( )

1

2
---

13.81–⋅=

Mr 0.00188 2383 Ic 7.294 107⋅+⋅( )

1

2
---

14.03–⋅=

Table 11 ANOVA method results for analytical analyses with concrete fc=30.8 MPa and F=3Fr

Factors Squares 
sum

Freedom 
degrees

Squares
average F0

Fcrítical, 0,05

N = 26

Ac 1.716 2 0.858 1.144⋅104 3.37
l 0.129 2 0.065 836.259 3.37
As 0.382 2 0.191 2.55⋅103 3.37
Ac × l 0.00936 4 0.0024 31.185 2.74
Ac × As 0.049 4 0.012 2.296 2.74
l × As 0.00069 4 0.00017 162.074 2.74
Erro 0.0006 8 0.000075 - -

Total 2.288 26 - - -

Table 12 ANOVA method results for analytical analyses with concrete fc = 30.8 MPa and F = 3Fr

Factors Squares
sum

Freedom
degrees

Squares 
average F0

Fcrítical, 0,05

N = 26

Ac 0.524 2 0.262 255.64 3.37
l 0.021 2 0.011 10.276 3.37
As 0.224 2 0.112 109.301 3.37
Ac × l 0.029 4 0.00727 7.089 2.74
Ac × As 0.024 4 0.00592 0.325 2.74
l × As 0.00133 4 0.00033 5.772 2.74
Erro 0.0082 8 0.001025 - -
Total 0.831 26 - - -

Table 13 ANOVA method results for analytical analyses with concrete fc=30.0 MPa and F=Fr

Factors Squares
sum

Freedom
degrees

Squares
average F0

Fcrítical, 0,05 
N = 26

Ac 0.041 2 0.02 -5.89⋅1015 3.37
l 0.013 2 0.0065 -1.883⋅1015 3.37
As 0 2 0 -12 3.37
Ac × l 0.0019 4 0.00049 -1.393⋅1014 2.74
Ac × As 0 4 0 -6 2.74
l × As 0 4 0 -10 2.74
Erro 0 8 0 - -
Total 0.056 26 - - -
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where, the Eq. (26) is related to concrete with fc = 30 MPa and the Eq. (27) is related to concrete
with fc = 30.8 MPa. The values are expressed by kN.m for the Mr and cm4 for IC.

In Figs. 10 and 11 are illustrated the relationships for Ic vs. Mr for the beams analyzed using the
Brazilian Technical Code. 

Table 14 ANOVA method results for numerical analyses with concrete fc=30.0 MPa and F=Fr

Factors Squares
sum

Freedom 
degrees

Squares 
average F0

Fcrítical, 0,05 
N = 26

Ac 0.0095 2 0.00483 521.12 3.37
l 0.002 2 0.00096 103.6 3.37
As 0.000029 2 0.000014 1.6 3.37
Ac × l 0.00113 4 0.0028 30.4 2.74
Ac × As 0.0000148 4 0.0000037 0.4 2.74
l × As 0.0000148 4 0.0000037 0.4 2.74
Erro 0.000074 8 0.0000093 - -
Total 0.013 26 - - -

Table 15 ANOVA method results for analytical analyses with concrete fc = 30.0 MPa and F = 3Fr

Factors Squares
sum

Freedom
degrees

Squares
average F0

Fcrítical, 0,05 
N = 26

Ac 1.656 2 0.828 1.754⋅104 3.37
l 0.121 2 0.06 1.279⋅103 3.37
As 0.369 2 0.184 3.905⋅103 3.37
Ac × l 0.011 4 0.00263 55.647 2.74
Ac × As 0.047 4 0.012 2.941 2.74
l × As 0.00056 4 0.000139 249.77 2.74
Erro 0.00038 8 0.0000475 - -
Total 2.204 26 - - -

Table 16 ANOVA method results for analytical analyses with concrete fc = 30.0 MPa and F = 3Fr

Factors Squares 
sum

Freedom
degrees

Squares
average F0

Fcrítical, 0,05 
N = 26

Ac 0.508 2 0.254 506.76 3.37
l 0.0228 2 0.011 22.74 3.37
As 0.223 2 0.111 222.40 3.37
Ac × l 0.031 4 0.0077 15.34 2.74
Ac × As 0.028 4 0.0069 1.07 2.74
l × As 0.00215 4 0.00054 13.73 2.74
Erro 0.004 8 0.0005 - -
Total 0.818 26 - - -
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6. Conclusions

In this work a damage model for the concrete proposed by Pituba (2006a) has been used in the
estimative of displacements in RC beams in order to show its potentiality for employment in
practical cases of the structural engineering.

Some numerical tests have been made as well as analytical tests using the NBR Procedure and
some interesting conclusions can be related.

The cracking moment used by the Brazilian Technical Code does not consider the contribution of
the reinforcement bars in the cross section of the RC beams. It is supplied an only one value of Mr

Fig. 10 Inertia moment vs. cracking moment for concrete with fc = 30.0 MPa

Fig. 11 Inertia moment vs. cracking moment for concrete with fc = 30.8 MPa



328 José J. de C. Pituba, Rodrigo G. Delalibera and Fábio S. Rodrigues

that it is independent of the reinforcement distribution in the beam. This fact does not happen in the
numerical analyses whose Mr values change according with reinforcement distribution.

Besides, it is noted that the displacements obtained by analytical analyses are larger than the
displacements obtained by numerical ones. This fact is due to NBR Procedure estimate an average
stiffness for the whole beam based on model proposed by Branson (1968), whose formulation leads
to high displacement values. In the other hand, the damage model degrades the stiffness in a
selective way. Therefore, it is possible to take account the contribution of the concrete between
cracks in order to resist to tension stress in that zone (tension stiffness), Murthy et al. (2008) and
Na and Kwak (2011). However, the existence of a certain safety reservation in the estimative of
displacements is necessary.

It is interesting to mention the work developed by Greco and Pau (2011) that follows the same
procedure adopted in the present work in order to deal with detection of damage in arch structures
using measures of numerical and experimental displacements.

Finally, in general way, the ANOVA method has been evidenced that the cross section and
effective span length are the most important variables in the problem when the beam is submitted to
low value loads. However, when the loads increase, the cross section of the beam remains the most
important, but the reinforcement distribution is more important than the effective span length
because in this stage the concrete is very damaged.

In order to proposal a more realistic procedure to estimate displacements in RC beams, the results
of this work together other ones in future works will be used. For this goal be achieved, other
parameters of the problem will be changed, such as: beam support conditions and more different
values of compression strength of the concretes. It is possible to perform a parametric study with
concretes belong different compression strength classes C20, C25, C30, C35, C40, C45 and C50 in
order to formulate equations for the estimative of the cracking moment in beams based on the
numerical results.
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Notations

Mr Cracking moment
DT Fourth-order damage tensor in tension regimes
DC Fourth-order damage tensor in compression regimes
Di Scalar damage variables
I Second-order identity tensor
A Second-order tensor related to transverse isotropy symmetry
ET Constitutive tensor in tension regimes
EC Constitutive tensor in compression regimes
λ0, µ0 Lamè constants

Damage functions related to damage tensor in tension regimes
Damage functions related to damage tensor in compression regimes

µi Damage functions related to shear behaviour of the concrete
g(ε) Hyperplane in the strain space
N Unite vector perpendicular to hyperplane g(ε)
γi Damage functions related to hyperplane g(ε)
YT,C Associated variables in tension or compression regimes
Ai, Bi, Y0i Parameters of the damage model
Ieq Equivalent inertia moment in the critical cross section
Ma Active moment in the critical cross section
IC Inertia moment of the undamaged cross section considering only concrete area
a Cross section shape factor
ft Tension strength of the concrete
fc Compression strength of the concrete
Fq Accidental loading
Fg Permanent loading
Fr Applied loading when the cracking process is initiated
g Gravitational loading
l Span length
ES Elasticity module of reinforcement bar
AC Cross section area
AS Reinforcement area in the cross section

λij

+

λij

–




