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Abstract. The problem of a concrete cross section under flexural and axial loading is indeterminate due
to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the
optimum, which is that of minimum reinforcement that satisfies certain design constraints (section
ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum
reinforcement calculation under any combination of flexural and axial loading. The procedure has been
implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength
concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose
between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to
guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons
between the results obtained by ACI 318, EC 2 and the conventional method.
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1. Introduction

The design of reinforced concrete members for combined flexure and axial load is a common case

in structural engineering. In this type of design, the reinforcement of a cross section is obtained in

order to resist some certain flexural moment and axial force. The section is usually rectangular. It is

known that the solution to this kind of problems is indeterminate, since there are three unknown

variables (the top and bottom reinforcements, and the neutral axis depth) and only two equilibrium

equations. In conventional calculation procedures (Nilson et al. 2010, Calavera 2008, among

others), a further condition is required in order to solve the problem, so it is advisable to manage

these procedures by programming them in computer codes.

Due to the infinite number of solutions, an optimization problem to obtain the optimum reinforcement in

the section can be proposed as an ideal method of solving the equations system (Raue and Hahn

2005, Tomás and Martí 2010, Gil-Martín et al. 2011). Optimization procedures involve, in most

cases, complex calculations that require adequate computer methods. However, an easy-to-

implement optimization problem is proposed in this article, entailing a negligible computational cost

(tenths of a second) in any currently available personal computer.
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The proposed method allows:

(1) considering high-strength concrete, i.e., specified compressive strength of concrete fck > 50

MPa in Eurocode 2 (EC 2) (Technical Committee CEN/TC250 2004) and 41.37 MPa < fc' <

82.74 MPa in ACI 318 (ACI Committee 318 2008),

(2) considering the minimum area of reinforcement,

(3) constraining the neutral axis depth in order to guarantee certain curvatures to comply with

ductility criterion, and

(4) choosing between the standards ACI 318 or EC 2.

Four numerical examples are presented. In three of them, the results obtained by ACI 318 are

compared with those obtained by EC 2 and by the conventional method, whilst in the fourth

example, high-strength concrete is used.

This study aims not so much as to obtain the reinforcement, which has already been solved

(Hernández-Montes et al. 2005, Gil-Martín et al. 2011), but to have an automated design procedure

for calculating the optimum reinforcement by means of the implementation of a simple optimization

method. Thus, the interest of the proposed procedure focuses on automating the calculation of

reinforcement, in which the structural engineer may include certain design conditions, such as the

minimum reinforcement, the high-strength concrete and/or a certain ductility criterion.

2. General principles and requirements

2.1 Design assumptions

In this study, the following fundamental assumptions have been considered:

− Homogeneous and isotropic material.

− Perfect bond between the compression reinforcement and concrete.

− Navier-Bernoulli hypothesis (plane cross section remains planar and normal to the rod axis after

deformation).

− Negligible tensile strength of concrete.

− Failure of section caused by excessive plastic deformation.

2.2 Conditions of equilibrium and compatibility of strains

To obtain the equilibrium equations, a section with any shape, but which is symmetric about the

bending plane is considered under any combination of flexural and axial loads (Fig. 1). The equilibrium

equations, in the limit state, can be written as

(1)

The compatibility of strains between the most significant fibers of the section are expressed by the

following equations
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 (2)

Although the theoretical formulation double counts contributions of reinforcement and concrete in

compression, this is a minor distinction and involves hardly any real consequences. Nevertheless,

the practice may vary in this regard to avoid double counting by reducing the stress in compression

reinforcement by an equal amount to the concrete stress at locations where the reinforcing steel is.

2.3 Limit strains

Regarding the limit strains of materials, ACI 318 considers a strain of 3‰ in the extreme

compression fiber, and a net tensile strain of 5‰ in tension reinforcement (a value that provides

ductile behavior for most designs). EC 2 considers a strain of 10‰ for reinforcement, 2‰ for

concrete in sections under pure compression and 3.5‰ for concrete in sections under bending with

fck less than or equal to 50 MPa.

In the case of high-strength concrete (fck > 50 MPa), the strain εc0 for concrete under pure compression

and εcu for concrete under bending is expressed in Eqs. (3) and (4), respectively

(3)

(4)

Further details regarding the stress-strain model to predict the behaviour of high-strength concrete

are available in Mendis et al. (2000).

3. Overview of methods for calculating the reinforcement in concrete sections

Any method for calculating the reinforcement in a concrete section is based on the equilibrium

conditions of moments and axial forces. Although different compressive stress distributions may be

defined (Ho et al. 2011, Kwak and Kim 2010, Di Ludovico et al. 2010, Kim 2007, Yalcin and

Saatcioglu 2000, among others), they are commonly idealized by a parabolic or rectangular stress

block. The former shows a better behavior of concrete, but is more complex to use. The latter is

more useful. The differences between the two are in practice often limited. Only two cases exist

where pronounced differences arise, but with no practical implementation: (1) in the case of simple
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Fig. 1 Sketch defining terms for conditions of equilibrium and compatibility of strains in a generic section of
reinforced concrete
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bending, for certain extreme values of the moment, resulting in an excessive reinforcement; and (2)

in some combined flexure and axial load cases, resulting in a reinforcement below the minimum

area of reinforcement. For more information about these two cases, see Alarcón (2010). Some

methods used to obtain the reinforcement in rectangular sections are presented below.

3.1 Standard method

This method may be found in classical literature of concrete structures, such as Nilson et al.

(2010) and Calavera (2008), among others, or in classical papers of moment-curvature relationship

of reinforced concrete sections, such as Carreira and Chu (1986) and Espion and Halleux (1988).

The standard method states a rectangular concrete compressive stress block, with a compressive stress

0.85  until a straight line located parallel to the neutral axis at a distance a = β1c from the fiber of

maximum compressive strain. The values that can be taken by β1 have been developed in section 4.2.

Two cases are traditionally studied by the standard method. Firstly, only the tension reinforcement

necessary, i.e., = 0, setting the balanced amount of steel ρb (ratio of As to bd) obtained considering a

tensile strain εt = εy and a strain of 0.003 in the concrete compression fiber. ACI 318 recommends

taking a reinforcement limit of 0.75ρb. Unless unusual amounts of ductility are required, the 0.75ρb

limitation will provide ductile behavior for most designs.

The second case is for double reinforcement (top and bottom). This happens when ρ (ratio of As

to bd) is greater than ρb. In the case of cross sections under flexural and axial loading, the standard

method recommends solving the problem using a computer, because of the complexity when

operating with the conditions of equilibrium and compatibility of strains.

3.2 Reinforcement sizing diagrams

The reinforcement sizing diagrams (RSD) method (Hernández-Montes et al. 2005) is developed to

calculate the reinforcement of rectangular concrete sections subjected to combined flexure and axial

load. The reinforcement required to provide adequate strength is determined as a function of the

neutral axis depth. Acceptable combinations of top and bottom reinforcement are plotted as a

function of the neutral axis depth on a reinforcement sizing diagram.

f
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From the conditions of equilibrium, using the rectangular concrete compressive stress block, it is

possible to obtain the reinforcement sizing equations shown in Table 1.

The most representative parameters in these equations are β1 (rectangular stress block coefficient), Cc

(resultant compressive force in the concrete), σs and σ's (stress in both tension and compression

reinforcement, respectively), and d (distance from extreme compression fiber to centroid of tension

reinforcement).

4. Reinforcement optimization of concrete rectangular cross sections

4.1 Optimum design problem

In the design of concrete sections, a question arises about whether the values obtained for the

reinforcement are the most appropriate or not. This question is not only from the point of view of

resistance, since these values are obtained from the equilibrium equations, but from the perspective

of optimum reinforcement, which affects not only cost, but also the environmental aspects related to

the reduction of resources consumed for the production of steel for reinforcement.

In the design of members under combined flexure and axial load it is common to use conventional

methods to obtain the reinforcement with symmetrical distribution. This may be appropriate in some

cases of flexural moments with different signs and similar values. However, in other cases this

distribution may result in uneconomical constructive simplification and be environmentally inadequate,

with it being more interesting not to use the symmetrical distribution, but to search for another

distribution with optimum reinforcement. This is the case, for example, of retaining walls with a

vertical load at the top (the soil pressure is causing single sign flexure in the wall), or circular piers

for retaining walls, in which longitudinal reinforcement can be reduced by more than 50% compared

with traditional designs (Gil-Martín et al. 2010). Admittedly, the probability of positioning error

increases in this case of asymmetrical reinforcement, but it can be prevented with more careful

control of this phase of the construction.

In this section of the paper, the problem of calculating the optimum reinforcement in a rectangular

section subjected to combined flexural moment and axial force is studied. The resolution of this

problem is based on research by Hernández-Montes et al. (2005) and Gil-Martín et al. (2011),

where the RSD and the Theorem of Optimal Section Reinforcement are presented. A simple

optimization method is implemented that allows considering high-strength concrete, with a minimum

area of reinforcement according to ACI 318 or EC 2, and a ductility constraint on the neutral axis

depth to guarantee certain curvature.

It should be highlighted that when solving the problem of optimum reinforcement what is mainly

achieved is automating, with a negligible computational time, the reinforcement calculation of a

cross section subjected to flexural and axial loading. Moreover, when observing the graphical

results, particularly the depth of neutral axis, the physical sense of the problem can be visualized,

since the stress-strain state of the section is known instantly.

4.2 Objective function

The objective function of the optimization problem is the total area of steel reinforcement Ast,

which depends on the geometry of the section, the strength of materials, the depth of neutral axis
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and the flexural moment and axial force

(5)

This function is obtained from the equilibrium equations in the cross section; these equations have

been developed in section 2.2, using the rectangular concrete compressive stress block (Fig. 2). The

reinforcement of the cross section depends on the depth of the neutral axis. Therefore, there is a

design space that contains feasible reinforcement solutions among which there is one that provides

the optimum reinforcement configuration. The so-called optimum depth of neutral axis corresponds

with that optimum configuration.

Eqs. (6), (7), (8) and (9) define the compressive block in concrete according to ACI 318

(6)

(7)

where

 (8)

(9)

with  in MPa. The change of nomenclature from EC 2 to ACI 318 is y = a and x = c.

Eqs. (10), (11), (12) and (13) define the compressive block in concrete according to EC 2

(10)

(11)

where

(12)

(13)
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Fig. 2 Equivalent rectangular compressive stress block in EC 2
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The following equations for reinforcement and constraints are expressed according to ACI 318.

Nevertheless, EC 2 has also been considered in the program code attached in the Appendix of this

paper.

4.2.1 Area of tension reinforcement

Eqs. (14), (15) and (16) are used to obtain the tension steel A
s
 depending on the neutral axis depth

c or on the equivalent rectangular stress block depth a

if (14)

if (15)

if (16)

4.2.2 Area of compression reinforcement

Eqs. (17), (18) and (19) are used to obtain the tension steel  depending on the neutral axis

depth c or on the equivalent rectangular stress block depth a

if (17)

if (18)

if (19)

4.2.3 Total area of reinforcement

Eqs. (20), (21) and (22) are used to calculate the total area of steel, the objective function is to

minimize (addition of both tension and compression reinforcement).
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 if (21)

if (22)

4.3 Constraints

The constraints for the design variables As
,  and c are stated in the following sections.

4.3.1 Reinforcement constraints

As mentioned in section 4.2, the objective function is obtained from the RSD method (Hernández-

Montes et al. 2005). In this method, the sign of stresses and forces in the materials is positive for

compression and negative for tension. Since both the resultant force and its associate stress

distribution have the same sign, the values of A
s
 and , which correspond to the relationship

between them, must be positive.

Moreover, the option of considering minimum reinforcement according to ACI 318 or EC 2 may

be activated before starting the calculation of the optimum reinforcement. According to ACI 318,

the amount of steel in the tension reinforcement shall not be less than the amount

(23)

However, this does not consider any minimum reinforcement for the compression zone.

According to EC 2, the minimum tension reinforcement is

(24)

In the case of combined flexure and axial load, the minimum compression reinforcement  is

(25)

In the case of low eccentricity, the minimum total reinforcement A
st is

(26)
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Finally, in the case of flexural moment and tensile axial force, the total reinforcement must satisfy

(27)

4.3.2 Constraints on the depth of neutral axis 

As mentioned in section 4.2, the objective function is evaluated for values of the depth of the

neutral axis that are constrained within the range

(28)

where ρi is a bottom factor of proportion (ρi ≤ 0) and ρs is an upper factor of proportion (ρs > 0).

In the case of combined flexure and tensile axial load (in which tensile axial load dominates the

behavior of the cross section), the reinforcement (Eqs. (14), (17) and (20)) is constant for values of

x (or c) between  and (ρi h) for which the strain in the tension reinforcement corresponds to a

stress equal to the yield strength. In this case, it is only necessary to evaluate the objective function

within the range ρi h ≤ x ≤ 0, with a value of ρi according to EC 2 as

(29)

It is necessary to use a maximum allowable strain in the steel to obtain ρi. The value 0.01

provided by EC 2 can be used in order to obtain a realistic value for ρi and evaluate the objective

function within the mentioned interval.

The case of combined flexure and compressive axial load (in which compressive axial load

dominates the behavior of the cross section) presents a similar situation. The reinforcement (Eqs.

(14), (17) and (20)) is practically constant for values of x (or c) in a range from ρsh to + . For the

value ρsh the reinforcement reaches the maximum compressive stress of 400 MPa according to EC

2 or 420 MPa according to ACI 318. In this case, it is enough to evaluate the objective function in

the range h < x ≤ ρsh. The parameter ρs is not obtained analytically, but numerically, as described in

section 4.4.

The extreme cases with only tensile or compressive axial load have been evaluated analytically,

since the strain in the reinforcement is known, and consequently so is the stress, therefore the

neutral axis depth is no longer an unknown.

Finally, if greater ductility in the section is required, the neutral axis depth should be constrained

to a certain maximum value ρsh. For this purpose, ACI 318 recommends using a strain in the

tension reinforcement of at least 0.0075, which means that the neutral axis depth must be less than

the corresponding one to the strain of 0.005. This limitation may be used as ductility constraint by

using a factor ρi obtained from a neutral axis depth c, corresponding to a strain in the reinforcement

of 0.0075. For more detailed considerations about ductility criteria, see Cohn and Riva (1991), Bai

and Au (2009), Ho (2011) and Au et al. (2011).

4.4 Optimization methodology

Among the existing optimization methods, deterministic methods may be used in this kind of

problems in order to find the global minimum by an exhaustive search over the design space. Due

to the nature of the problem (with few design variables), it is appropriate to use the covering
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methods (Arora 2004).

The basic idea of covering methods is the search for the global minimum “covering” the design

space by evaluating the objective function at every point. This is, of course, an infinite calculation

and is therefore impossible to implement and use. In the particular design problem of this research

it is possible to apply a brute force approach as a simple way of evaluating the objective function

in a finite number of points, with reasonable precision and with a low computational cost.

Until recently, these procedures would have been impossible to implement, since they employ

complex optimization algorithms to solve the problem. However, this is possible today due to the

development in the computing processors incorporated into any modern personal computer.

Thus, the methodology is quite simple, but effective. It consists of setting an interval of the

neutral axis depth from an initial value of x (ρih) to a final value (ρsh) according to section 4.3.2,

and of using a value of this depth (xi) that is increasing in a small increment (p) from the iteration i-

1 to the i

(30)

Firstly, a sweep generation of the objective function is carried out. The objective function and the

parameters As,  and Ast are calculated for each neutral axis depth xi, which increases a value p of

10−2 m. Amongst all feasible designs (designs with a negative area of steel are deleted), the

minimum total area of steel reinforcement is chosen, which corresponds to a value of the optimum

neutral axis depth xopt.

Secondly, a zoom around the best design is calculated by repeating the previous step during three

more loops, using the increment p/10, p/100 and p/1000 of the neutral axis depth xi in each loop,

respectively. In this way, the best design is calculated for an increment p = 10−6 m, which causes an

error near to zero.

For cases with low eccentricity (neutral axis outside the section), the final value ρsh is the point

from which the reinforcement remains constant. This value can become very large because the

behavior of the section tends towards the state of pure compression (Mu = 0), and therefore the

neutral axis tends to + .

This problem has been solved by making the increment p rise gradually while searching for the

value of ρs for which the total reinforcement is minimum. This minimum is obtained when the

difference in the reinforcement is less than or equal to a certain tolerance between consecutive

iterations. Almost any tolerance may be chosen and be useful, with a low computational cost. In

this case 10−6 mm2 has been chosen as tolerance. Obviously this tolerance has no practical sense,

but is purely mathematical, to find the global minimum.

The optimization process has been performed using a programming routine provided in the

Appendix. The code MATLAB (Matlab 2008) has been used.

5. Examples

Four numerical examples are presented to show the automation of the optimum reinforcement

calculation under several combinations of flexural and axial loading. In the first three examples,

conventional-strength concrete is used, and the results using ACI 318 and EC 2 are compared with

those obtained by conventional methods. In the fourth example, high-strength concrete is used.
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5.1 Section under flexure

A rectangular section of 400 × 500 mm under a factored flexural moment of 400 kN-m is studied.

The strength of materials are = 30 MPa for concrete and fy = 500 MPa for steel. The distance 

from centroid of upper reinforcement to upper fiber is 50 mm.

The variation of reinforcement depending on the neutral axis depth x, or on the section curvature

ϕ, using ACI 318 is shown in Figs. 3(a) and (b), respectively. In this regard, the graphical

representation of top, bottom and total reinforcement versus the curvature can be very interesting for

earthquake design. The optimum reinforcement is achieved at the point where compression

reinforcement reaches the zero value.

f
c
′ d′

Fig. 3 Reinforcement over the space design using ACI 318. Cross section of 400 × 500 mm under flexure:
(a) Depending on the neutral axis depth x and (b) Depending on the section curvature ϕ
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The optimum results obtained using ACI 318, EC 2 and the conventional procedure, are shown in

Table 2. The main difference between the standards is a 6.4% increase in the total reinforcement

using EC 2 as compared to ACI 318. The conventional method provides the same optimum results

to those obtained using ACI 318, which always occurs when flexure acts alone.

5.2 Section under flexural and axial loading (high eccentricity)

A rectangular section of 300 × 400 mm is studied under a combined factored flexural moment of

400 kN-m and factored axial force of 1800 kN. The strength of materials are = 30 MPa for

concrete and fy = 500 MPa for steel. The distance  from centroid of upper reinforcement to upper

fiber is 50 mm.

The variation of reinforcement depending on the neutral axis depth x, or on the section curvature

ϕ, using ACI 318 is shown in Figs. 4(a) and (b), respectively. In the case of EC 2, the optimum

reinforcement is achieved for x equal to the theoretical limit depth (depth for which the tension

reinforcement has a strain equal to the yield limit of steel). In the case of ACI 318, x is equal to a

depth lower than that for balanced reinforcement. This depth is located in the “transition region”, as

ACI 318 has named it.

In the resolution of the combined flexure and axial load case by the conventional procedure, it is

necessary to use a computer or the interaction diagrams to obtain the value of reinforcement,

including the compatibility of strains in both cases. The numerical optimization method proposed in

this paper is perfectly adapted to the methodology of the conventional procedure. Since both

methods are the same, the column of results for the conventional method has been removed in the

tables of the following examples, and only the results of the optimization method are shown.

The results obtained by the proposed optimization method using both ACI 318 and EC 2 are

shown in Table 3. The use of ACI 318 provides results 30% higher than those obtained by EC 2.

5.3 Section under flexural and axial loading (low eccentricity)

A rectangular section of 400 × 400 mm is studied under a combined factored flexural moment of

80 kN-m and factored axial force of 4000 kN. The strength of materials are = 30 MPa for

concrete and fy = 500 MPa for steel. The distance  from centroid of bottom reinforcement to

upper fiber is 50 mm.

The relationship between the reinforcement and the neutral axis depth, or the section curvature,

using ACI 318, is shown in Figs. 5(a) and (b), respectively. The optimum reinforcement is achieved
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Table 2 Optimum results. Cross section of 400×500 mm under flexure

Optimization method
(ACI 318)

Optimization method
(EC 2)

Conventional 
method

A
s (mm2) 2814.20 2389.11 2814.20

A’s (mm2) 0.15 0.05 0.15

Ast (mm2) 2814.35 2389.16 2814.35

x (mm) 130 162 130

ϕ (10−3 m−1) 23.11 21.57 23.11
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Fig. 4 Reinforcement over the space design using ACI 318. Cross section of 300 × 400 mm under flexural and
axial loading (high eccentricity): (a) Depending on the neutral axis depth x and (b) Depending on the
section curvature ϕ

Table 3 Optimum results. Cross section of 300 × 400 mm under flexural and axial loading (high eccentricity)

Optimization method
(ACI 318)

Optimization method
(EC 2)

A
s (mm2) 1386.27 1285.55

 (mm2) 4241.95 3042.01

Ast (mm2) 5628.22 4327.56

x (mm) 150 216

ϕ (10−3 m−1) 020.00 016.21

A
s
′
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for a neutral fiber depth where the reinforcement is nearly constant. That depth has not been shown

in Fig. 5(a) because of its high value. To illustrate this, a stretch is shown in which the reinforcement is

tending to a value practically constant and very close to the optimum.

The minimum reinforcement has not been shown in Fig. 5 in order not to distort the results, and

thus enable comparisons with the results obtained using ACI 318 and using EC 2 (Table 4). The

reinforcement obtained with ACI 318 is 45.50% higher than that obtained with EC 2.

Fig. 5 Reinforcement over the space design using ACI 318. Cross section of 400 × 400 mm under flexural and
axial loading (low eccentricity): (a) Depending on the neutral axis depth x and (b) Depending on the
section curvature ϕ
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Table 4 Optimum results. Cross section of 400 × 400 mm under flexural and axial loading (low eccentricity)

Optimization method
(ACI 318)

Optimization method
(EC 2)

A
s (mm2) 00583.06 333

 (mm2) 02331.69 1667

A
st (mm2) 02914.75 2000

x (mm) 16000 17,658,019,840

ϕ (10−3 m−1) 0000.18 1.13×10−7

A
s
′

Fig. 6 Reinforcement over the space design using ACI 318. Cross section of 300 × 400 mm under flexural
and axial loading. High-strength concrete, = 60 MPa: (a) Depending on the neutral axis depth x and
(b) Depending on the section curvature ϕ
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5.4 Section of high-strength concrete

The proposed optimization procedure is generalized to high-strength concrete. Then, the example

in section 5.2 is used in this case with the only difference being in the strength of concrete (  = 60

MPa). The relationship between the reinforcement and the neutral fiber depth x, or the section

curvature ϕ, is shown in Figs. 6(a) and (b), respectively, and the values of the optimum reinforcement

and its corresponding depth of neutral axis are indicated.

The results obtained with the proposed optimization procedure using both codes are shown in

Table 5. The reinforcement obtained with ACI 318 is 45% higher than that obtained with EC 2.

6. Conclusions

Traditionally, computers have been used in the design process of concrete sections in order to

obtain the reinforcement by conventional methods. These methods are usually subjected to a

casuistry related to the values of the loads at the section and to the relationship between them. The

application of optimization techniques to the design process widens the field of computer use, and

allows the designer to obtain optimum designs for the design conditions that have been determined.

In this paper, an automated design procedure is proposed for calculating reinforced concrete sections

under flexural and axial loading, being, moreover, the calculated reinforcement the optimum. The

procedure, based on the equilibrium conditions of moments and forces at the section, includes the

processing of high-strength concrete and several design constraints, such as minimum reinforcement

and the possibility of limiting the depth of the neutral axis. The algorithm has been implemented in

a simple code that is attached in the Appendix. The results are achieved in a negligible calculation

time (tenths of a second) by using any personal computer currently available.
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Notation

a = depth of equivalent rectangular stress block (in ACI 318)

Ac = area of concrete section

As = area of tension reinforcement

= area of compression reinforcement

As,min = minimum area of tension reinforcement

As,min' = minimum area of compression reinforcement

Ast = total area of reinforcement

b = width of rectangular cross section

by = width of cross section at generic depth y

c = depth of neutral axis from extreme compression fiber (in ACI 318)

Cc = compressive force carried by concrete (in RSD method by Hernández-Montes et al. 2005)

d = distance from extreme compression fiber to centroid of tension reinforcement (in EC 2)

d' = distance from extreme compression fiber to centroid of compression reinforcement

dt = distance from extreme compression fiber to centroid of tension reinforcement (in ACI 318)

e1 = eccentricity of axial load from the centroid of tension reinforcement

Es = modulus of elasticity of reinforcement 

= specified compressive strength of concrete

fcd = design compressive strength of concrete (in EC 2)

fck = characteristic compressive strength of concrete (in EC 2)

fctm = average tensile strength of concrete (in EC 2)

fy = specified yield strength of reinforcement

fyd = characteristic yield strength of reinforcement (in EC 2)

h = height of cross section

Md = design moment at section (in EC 2)

Mn = nominal moment at section (in ACI 318)

Mu = factored moment at section (in ACI 318)

Nd = design axial force normal to cross section (in EC 2)

Pn = nominal axial load normal to cross section (in ACI 318)

Pu = factored axial force normal to cross section (in ACI 318)

x = depth of neutral axis (in EC 2)

y = depth of equivalent rectangular stress block (in EC 2). Generic depth of a fiber

β1 = factor relating depth of equivalent rectangular compressive stress block to neutral axis

depth (10.2.7.3 of ACI 318)

εc = strain at extreme concrete compression fiber

εc0 = limit strain at extreme concrete compression fiber, section under pure compression (in EC 2)

εcu = limit strain at extreme concrete compression fiber, section under bending (in EC 2)

εs = strain in tension reinforcement

= strain in compression reinforcement

εt = net tensile strain in tension reinforcement at nominal strength, excluding strains due to

effective prestress, creep, shrinkage and temperature

εy = reinforcement yield strain

ϕ = section curvature

η = effective strength factor (in EC 2)
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λ = effective depth factor of the compressive stress block (in EC 2)

ρ = ratio of A
s
 to bd

ρb = ratio of As to bd producing balanced strain conditions

ρi = bottom factor of proportion of the neutral axis depth (ρi ≤ 0)

ρs = upper factor of proportion of the neutral axis depth (ρs 

> 0)

σc = stress at extreme concrete compression fiber

σs = stress in tension reinforcement

= stress in compression reinforcement

σy = stress at generic concrete compression fiber at depth y

Appendix

clc; clear all; format loose; warning off all

disp('*************************************************')

disp(' AUTOMATED DESIGN OF OPTIMUM LONGITUDINAL')

disp(' REINFORCEMENT FOR FLEXURAL AND AXIAL LOADING')

disp('*************************************************')

disp(' ANTONIO TOMAS & ANTONIO ALARCON')

disp(' UNIVERSIDAD POLITECNICA DE CARTAGENA (UPCT), SPAIN')

disp('*************************************************'); disp(' ')

 

% STEP 1: INPUT DATA

disp(' GEOMETRY OF SECTION '); disp('---------------------'); disp(' ')

b=input('Width b (m) = '); h=input('Height h (m) = '); dp=input('d` (m) = ');

disp(' '); d=h-dp; disp(' STRENGTH '); disp('----------'); disp(' ')

fc=input('Specified compressive strength of concrete fc (MPa) = ');

fy=input('Specified yield strength of reinforcement fy (MPa) = '); pr=1;

while pr==1; p=0.01; % Increment of neutral axis depth in the first iteration

nmaxbucle=4; % Number of loops

clear Asp Aspp Atp Aspj Asppj Atpj Aspm Asppm Aspmj Asppmj Aspf Aspfj xp xj Cc Cs Ts Ndr Mdr

NORMA=menu('Choose a standard','ACI 318','EC 2');

if NORMA==1; TranRe=menu('Type of lateral reinforcement','Spiral','Other'); end

disp(' '); disp(' Loads at section '); disp('----------------------'); disp(' ')

Nd=input('Factored axial force N (kN) = '); Md=input('Factored flexural moment M (kN-m) = '); disp(' ')

% STEP 2: ADDITIONAL INPUT DATA

decam=menu('Minimum reinforcement?','YES','NO'); tcpu1=cputime;

if NORMA==1 % ACI 318

fcp=fc; fyp=fy; dt=d; Mu=Md; Pu=Nd; Es=2e5; if fyp>400; epsy=0.002; fyp=400; else epsy=fyp/Es; end

 eps_u=0.003; eps_t=0.005; eps_smax=0.01; beta1=0.85-0.008*(fcp-30);

 if beta1>0.85; beta1=0.85; else if beta1<0.65; beta1=0.65; end; end

else % EC 2

σ
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 fck=fc; fyk=fy; gamma_s=1.15; gamma_c=1.5; fcd=fck/gamma_c; fyd=fyk/gamma_s; fycd=fyd;

 if fycd>400; fycd=400; end; Es=2e5; Ec=8500*(fck+8)^(1/3); np=Es/Ec; epsy=fyd/Es;

 if fck<=50; eps_cu2=0.0035; eps_c2=0.002; xlim=d/(1+1.429e-3*fyd); fctm=0.3*(fck)^(2/3); else

 eps_cu2=(2.6+35*((90-fck)/100)^4)/1000; eps_c2=(2+0.085*(fck-50)^0.53)/1000;

 xlim=eps_cu2*d/(fyd/Es+eps_cu2); fcm=fck+8; fctm=2.12*log(1+(fcm/10)); end

 % Effective depth factor of the compressive stress block

 if fck<=50; lambda=0.8; else lambda=0.8-(fck-50)/400; end

 % Effective strength factor

 if fck<=50; eta=1; else eta=1-(fck-50)/200; end; end

% STEP 3: SWEEP GENERATION OF THE OBJETIVE FUNCTION

% Cases of tension or compression (analytical solution)

if Md==0; Aspm=0; Asppm=0; if Nd<0; if NORMA==1; phi=0.90; Asp=((Pu/phi)*(h/2-dp)*1000)/

(-fyp*(d-dp)); Aspp=(-(Pu/phi)*(d-h/2)*1000)/(fyp*(d-dp)); else Asp=(Nd*(h/2-dp)*1000)/(-fyd*(d-dp));

Aspp=(-Nd*(d-h/2)*1000)/(fyd*(d-dp)); end; if decam==1; if NORMA==1; Aspm=(fcp)^0.5/(4*fyp);

if Aspm<1.4*b*d/fyp; Aspm=1.4*b*d/fyp; end; Asppm=Aspm; else Aspm=0.5*b*h*1e6*fctm/fyd; Asppm

=Aspm; end;

end; else; if NORMA==1; if TranRe==1; phi=0.75; else phi=0.65; end; if epsy<=eps_u;

Asp=(-((Pu/phi)*1000-0.85*fcp*b*h*1e6)*(h/2-dp))/(-fyp*(d-dp));

Aspp=(((Pu/phi)*1000-0.85*fcp*h*b*1e6)*(d-h/2))/(fyp*(d-dp)); else

Asp=(-((Pu/phi)*1000-0.85*fcp*h*b*1e6)*(h/2-dp))/(-eps_u*Es*(d-dp));

Aspp=(((Pu/phi)*1000-0.85*fcp*h*b*1e6)*(d-h/2))/(eps_u*Es*(d-dp)); end; else; if epsy<=eps_c2;

Asp=(-(Nd*1000-eta*fcd*h*b*1e6)*(h/2-dp))/(-fyd*(d-dp));

Aspp=((Nd*1000-eta*fcd*h*b*1e6)*(d-h/2))/(fyd*(d-dp)); else

Asp=(-(Nd*1000-eta*fcd*h*b*1e6)*(h/2-dp))/(-eps_c2*Es*(d-dp));

Aspp=((Nd*1000-eta*fcd*h*b*1e6)*(d-h/2))/(eps_c2*Es*(d-dp)); end; if decam==1; if

NORMA==1; Aspm=0;

Asppm=0; else; Aspm=0.05*Nd*1000/fyd; Asppm=0.05*Nd*1000/fyd; if Aspm<0.001*b*h*1e6;

Aspm=0.001*b*h*1e6; end; if Asppm<0.001*b*h*1e6; Asppm=0.001*b*h*1e6; end; end; end; end; end

if Aspm>Asp; Asopt=Aspm; else Asopt=Asp; end; if Asppm>Aspp; Aspopt=Asppm; else Aspopt=Aspp;

end

Atopt=Asopt+Aspopt; tcpu2=cputime;

% Interval of x

else if Nd<0; rhoi=-1.2*((epsy)*d-0.01*dp)/((0.01-epsy)*h); rhos=0; else rhoi=0; rhos=2.5; end

% Other cases

Atopti=0; difarm=1; while difarm>1e-6% Reinforcement difference (criterion to stop the iteration)

x=rhoi*h; xsup=rhos*h; bucle=1; while bucle<=nmaxbucle; n=0; while x<=xsup; n=n+1;

if NORMA==1; sigmaC=0.85*fcp; c=x; a=beta1*c; y=a; if a>h; y=h; end; else y=lambda*x;

if lambda*x>h; y=h; end; sigmaC=eta*fcd; end; if x<=0; Ccp=0; else Ccp=sigmaC*y*b*1e6; end

if NORMA==1

% Tension

if x<0; phip=0.9; ds=-0.01; dsp=ds*(dp-x)/(d-x); sigmas=ds*Es; sigmas_p=dsp*Es; if abs(sigmas)>fyp;

sigmas=-fyp;
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end; if abs(sigmas_p)>fyp; sigmas_p=-fyp; end; curv=0.01/(d-x); else if x<((eps_u)/(eps_u+eps_t))*d

% Tension-controlled sections

phip=0.9; dsp=((x-dp)/x)*eps_u; ds=((x-d)/(x-dp))*dsp; sigmas=ds*Es; sigmas_p=dsp*Es; if sigmas>0;

if abs(sigmas)>fyp; sigmas=fyp; end; else; if abs(sigmas)>fyp; sigmas=-fyp; end; end; if sigmas_p>0;

if abs(sigmas_p)>fyp; sigmas_p=fyp; end; else; if abs(sigmas_p)>fyp; sigmas_p=-fyp; end; end;

curv=eps_u/x;

else if x<(eps_u/(epsy+eps_u))*d

% Transition region

if TranRe==1; phip=0.75+0.15*((1/(x/d))-(5/3)); else phip=0.65+0.25*((1/(x/d))-(5/3)); end; dsp=((x-dp)/

x)*eps_u;

ds=((x-d)/(x-dp))*dsp; sigmas=ds*Es; sigmas_p=dsp*Es; if sigmas>0; if abs(sigmas)>fyp; sigmas=fyp;

end; else;

if abs(sigmas)>fyp; sigmas=-fyp; end; end; if abs(sigmas_p)>fyp; sigmas_p=fyp; end; curv=eps_u/x; else

% Compression-controlled sections

if TranRe==1; phi=0.75; else phi=0.65; end; dsp=((x-dp)/x)*eps_u; ds=((x-d)/(x-dp))*dsp; sigmas=ds*Es;

sigmas_p=dsp*Es; if abs(sigmas_p)>fyp; sigmas_p=fyp; end; if sigmas>0; if abs(sigmas)>fyp;

sigmas=fyp; end; else

if abs(sigmas)>fyp; sigmas=-fyp; end; end; curv=eps_u/x; end; end; end; phi(n)=phip; else

% Domain 1 (EC 2)

if x<=0; ds=-0.01; dsp=ds*(dp-x)/(d-x); sigmas=ds*Es; sigmas_p=dsp*Es; if abs(sigmas)>fyd; sigmas=

-fyd; end

if abs(sigmas_p)>fyd; sigmas_p=-fyd; end; curv=0.01/(d-x);

% Domain 2 (EC 2)

else if x<(eps_cu2/(eps_cu2+0.01))*d; dsp=0.010*(x-dp)/(d-x); sigmas_p=dsp*Es; if abs(sigmas_p)>fyd

if x<dp; sigmas_p=-fyd; else sigmas_p=fyd; end; end; sigmas=-fyd; curv=0.01/(d-x); else if x<xlim

% Domain 3 (EC 2)

ds=eps_cu2*(d-x)/x; dsp=ds*(x-dp)/(d-x); sigmas_p=dsp*Es; if sigmas_p>fyd; sigmas_p=fyd; end;

sigmas=-fyd; curv=eps_cu2/x; else if x<d

% Domain 4 (EC 2)

sigmas_p=fyd; ds=eps_cu2*(d-x)/x; sigmas=-ds*Es; if abs(sigmas)>fyd; sigmas=-fyd; end; curv=eps_cu2/x;

else if x<1.25*h

% Domain 4a (EC 2)

sigmas_p=fyd; ds=eps_cu2*(x-d)/x; sigmas=ds*Es; if abs(sigmas)>fyd; sigmas=fyd; end; curv=eps_cu2/

x; end; end; end; end; end

if x>=h

% Domain 5 (EC 2)

if epsy<=eps_c2; dsp=eps_c2*(x-dp)/(x-((eps_cu2-eps_c2)/eps_cu2)*h);

ds=eps_c2*(x-d)/(x-((eps_cu2-eps_c2)/eps_cu2)*h); sigmas_p=dsp*Es; sigmas=ds*Es; if sigmas>fyd;

sigmas=fyd; end; if sigmas_p>fyd; sigmas_p=fyd; end; xc=((eps_cu2-eps_c2)/eps_cu2)*h; curv=eps_c2/

(x-xc); else

dsp=eps_c2*(x-dp)/(x-((eps_cu2-eps_c2)/eps_cu2)*h); ds=eps_c2*(x-d)/(x-((eps_cu2-eps_c2)/eps_cu2)*h);

sigmas_p=dsp*Es; sigmas=ds*Es; if sigmas>eps_c2*Es; sigmas=eps_c2*Es; end; if sigmas_p>eps_c2*Es;

sigmas_p=eps_c2*Es; end; xc=((eps_cu2-eps_c2)/eps_cu2)*h; curv=eps_c2/(x-xc); end; end; end;

sigmas_pc(n)=sigmas_p; sigmasc(n)=sigmas; curvm(n)=1000*curv;

% REINFORCEMENT SOLUTIONS
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if NORMA==1 

Asp(n)=(((Mu/phi(n))-(Pu/phi(n))*(h/2-dp))*1000-Ccp*(dp-y/2))/(-sigmasc(n)*(d-dp)); % Bottom

Aspp(n)=(((Mu/phi(n))+(Pu/phi(n))*(d-h/2))*1000-Ccp*(d-y/2))/(sigmas_pc(n)*(d-dp)); else; % Top

Asp(n)=((Md-Nd*(h/2-dp))*1000-Ccp*(dp-y/2))/(-sigmasc(n)*(d-dp)); % Bottom

Aspp(n)=((Md+Nd*(d-h/2))*1000-Ccp*(d-y/2))/(sigmas_pc(n)*(d-dp)); end; % Top

Cc(n)=Ccp; Cs(n)=sigmas_pc(n)*Aspp(n); Ts(n)=sigmasc(n)*Asp(n); xp(n)=x; Atp(n)=Asp(n)+Aspp(n);

Ndr(n)=Cc(n)+Cs(n)+Ts(n); Mdr(n)=Cc(n)*(h/2-y/2)-Ts(n)*(d-h/2)+Cs(n)*(h/2-dp); 

% Minimum reinforcement

if decam==1; if NORMA==1; if x<0; Aspm(n)=(fcp)^0.5/(4*fyp); if Aspm(n)<1.4*b*d/fyp;

Aspm(n)=1.4*b*d/fyp; end; Asppm(n)=Aspm(n); else if x<h; Aspm(n)=(fcp)^0.5/(4*fyp);

if Aspm(n)<1.4*b*d/fyp; Aspm(n)=1.4*b*d/fyp; end; Asppm(n)=0; else Aspm(n)=0; Asppm(n)=0;

end; end

else; if x<0; Aspm(n)=0.5*b*h*1e6*fctm/fyd; Asppm(n)=0.5*b*h*1e6*fctm/fyd; else if x<h

Aspm(n)=0.26*fctm*b*d*1e6/fyk; if Aspm(n)<0.0013*b*d*1e6; Aspm(n)=0.0013*b*d*1e6; end

Asppm(n)=0.05*Nd*1000/fyd; else Aspm(n)=0.05*Nd*1000/fyd; Asppm(n)=0.05*Nd*1000/fyd;

if Aspm(n)<0.001*b*h*1e6; Aspm(n)=0.001*b*h*1e6; end; if Asppm(n)<0.001*b*h*1e6;

Asppm(n)=0.001*b*h*1e6; end; end; end; end; else Aspm(n)=0; Asppm(n)=0; end; x=x+p; end

% STEP 4: DELETION OF UNFEASIBLE DESIGNS

N=0; K=0; while N<max(size(Asp)); N=N+1; if Asp(N)>=0; if Aspp(N)>=0; conf=1; K=K+1;

Aspj(K)=Asp(N);

Asppj(K)=Aspp(N); Atpj(K)=Aspj(K)+Asppj(K); xj(K)=xp(N); Aspmj(K)=Aspm(N); Asppmj(K)=

Asppm(N);

curvj(K)=curvm(N); end; end; end; if K==0; conf=0; if decam==1; if Nd<0; s=1; n=1; while n<=max

(size(xp)); Aspms(s)=Aspm(n); Asppms(s)=Asppm(n); n=n+1; s=s+1; end; Asopt=min(Aspms); Aspopt=

min(Asppms); Atopt=Asopt+Aspopt; else; if Md/Nd>=h/6; s=1; n=1; while xp(n)<=h; Aspms(s)=

Aspm(n); Asppms(s)=Asppm(n); n=n+1; s=s+1; end; Asopt=min(Aspms); Aspopt=min(Asppms); Atopt=

Asopt+Aspopt; else; n=max(size(xp)); s=1; while xp(n)>h; Aspms(s)=Aspm(n); Asppms(s)=Asppm(n);

n=n-1; s=s+1; end; Asopt=min(Aspms); Aspopt=min(Asppms); Atopt=Asopt+Aspopt; end; end; else;

Asopt=0; Aspopt=0; Atopt=0; end; end; if conf==1; k=0; while k<max(size(Atpj)); k=k+1; if Aspj(k)

<Aspmj(k); if Aspj(k)<Asppmj(k); Atpj(k)=Aspmj(k)+Asppmj(k); end; end; if Aspj(k)>=Aspmj(k);

if Asppj(k)<Asppmj(k); Atpj(k)=Aspj(k)+Asppmj(k); end; end; if Asppj(k)>=Asppmj(k); if Aspj(k)

<Aspmj(k); Atpj(k)=Aspmj(k)+Asppj(k); end; end; end

 

% STEP 5: CHOICE OF THE BEST DESIGN AND ZOOMING AROUND THE BEST DESIGN

Atotalmin=min(Atpj); j=0; while j<max(size(Atpj)); j=j+1; if Atpj(j)==Atotalmin; Atopt=Atotalmin;

if Aspj(j)<Aspmj(j); Asopt=Aspmj(j); else Asopt=Aspj(j); end; if Asppj(j)<Asppmj(j); Aspopt=

Asppmj(j); else

Aspopt=Asppj(j); end; xopt=xj(j); curvopt=curvj(j); end; end

% Increment of x in the second loop and following

bucle=bucle+1; x=xopt-p; xsup=xopt+p; p=p/10; end

if conf==0; break; else; if xopt<=h; difarm=0; else difarm=abs(Atopt-Atopti); Atopti=Atopt;

rhoi=rhos/2; rhos=rhos*2;
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p=(rhos-rhoi)*h/100; tcpu2=cputime; tpcput=tcpu2-tcpu1; if tpcput>20;

disp(['Excessive time (20 s) = ',num2str(tpcput),' s']);

disp(['Reinforcement difference in the two last iterations=',num2str(difarm),' mm2']); disp(' '); difarm=0;

end; end

end; end; if conf==0; break; end; end; tcpu2=cputime;

 

% STEP 6: RESULTS

if conf==1; disp(['Optimum area of tension reinforcement A = ',num2str(Asopt),' mm2']);

disp(['Optimum area of compression reinforcement A` = ',num2str(Aspopt),' mm2']);

disp(['Optimum total area of reinforcement Ast = ',num2str(Atopt),' mm2']);

disp(['Optimum depth of neutral axis xopt = ',num2str(xopt),' m']);

disp(['Optimum curvature Phiopt = ',num2str(curvopt),' x 10-3 m-1']); disp(' '); else

disp(['Optimum area of tension reinforcement A = ',num2str(Asopt),' mm2']);

disp(['Optimum area of compression reinforcement A` = ',num2str(Aspopt),' mm2']);

disp(['Optimum total area of reinforcement Ast = ',num2str(Atopt),' mm2']); end; end; if Md==0

disp(['Optimum area of tension reinforcement A = ',num2str(Asopt),' mm2']);

disp(['Optimum area of compression reinforcement A` = ',num2str(Aspopt),' mm2']);

disp(['Optimum total area of reinforcement Ast = ',num2str(Atopt),' mm2']);

disp('Optimum curvature Phiopt = 0'); end

tpcput=tcpu2-tcpu1; disp(['CPU time = ',num2str(tpcput),' s']); disp(' ')

pr=menu('Choose other standard or modify the loads at section','YES','NO'); end




