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Abstract. Slabs in buildings and bridge decks, which are restrained against lateral displacements at the
edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line
theory. The increase in strength has been attributed to membrane action, which is due to the in-plane
forces developed at the supports. The benefits of compressive membrane action are usually not taken into
account in currently available design methods developed based on plastic flow theories assuming concrete
to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is
possible to design slabs in building and bridge structures economically with less than normal reinforce-
ment. Recent research on building and bridge structures reflects the importance of membrane action in
design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs
through optimisation of a simple concrete model. Through a series of parametric studies using the simple
concrete model in the finite element simulation of eight fully clamped concrete slabs with significant
membrane action, a set of fixed numerical model parameter values is identified and computational conditions
established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the
identified values to simulate membrane action (for prediction purposes) is further verified by the direct
simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to
predicted strengths and a standard deviation of 0.117. A ‘deflection factor’ is also established for the
slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at
the supports), can be used for accurate displacement determination. The proposed optimised concrete
model and finite element procedure can be used as a tool to simulate membrane action in slabs in
building and bridge structures having variable support and loading conditions including fire. Other
practical applications of the developed finite element procedure and design process are also discussed.
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1. Introduction

The ultimate strength of a reinforced concrete slab is affected by its end conditions. Conventional
yield line theory developed by Johansen (1962) can be used to provide an upper bound to the
failure load if the effects of in-plane forces are neglected. However, if a slab is horizontally
restrained, compressive membrane forces develop within the slab and yield line theory
underestimates the failure load. The effect of compressive membrane action has been recognized
since the first half of the 20th century. However, it was not until 1955 when Ockleston (1955)
published the results from load tests on a reinforced concrete building in South Africa that
researchers became fully aware of its possible benefits. Ockleston (1955) conducted tests on interior
floor slabs in the building and found the ultimate load was significantly greater than both the design
load and yield line predictions. He attributed this enhancement to compressive membrane action.

Many researchers have looked into compressive membrane action since 1955. Some of the more
notable work was done by Park in the 1960s, while Braestrup (1980) summarises much of the work
done in this area. Experimental studies by Powell (1956), Wood (1961), Park (1964), Kirkpatrick, et
al. (1984) and Rankin, et al. (1991) have shown that slabs in buildings and bridge decks, which are
restrained against lateral displacements at the edges, have ultimate strengths far in excess of those
predicted by analytical methods based on yield line theory. The increase in strength has been
attributed to membrane action which is due to the in-plane forces developed at the supports. The
two types of membrane actions that could be identified from a typical load-deflection curve are the
compressive membrane action at small deflections and tensile membrane at large deflections. 

Over the years, the theories developed by researchers have largely been based on plastic flow
theories and have required gross assumptions to be made (e.g., assuming the concrete to be a rigid-
plastic material). The equations derived by these methods are generally unsuitable for design
engineers to use and as a result, the benefits of compressive membrane action are usually not taken
into account in design or assessment methods (Alan Hon, et al. 2001). While the existence of
compressive membrane action is commonly acknowledged, its use in practical situations is hindered
by a lack of knowledge of the stiffness of the horizontal restraints and how this effects the
development of membrane forces. This surround stiffness is critical to the development of
compressive membrane action. Recently, Eyre (1997) has developed a method to directly assess the
strength of reinforced concrete slabs under membrane action. The method requires knowledge of the
surround stiffness that the slab is exposed to and determines a “safe load” that is always less than
the ultimate load.

In recent times comprehensive research has been conducted over wide range of building and
bridge structures to understand and to incorporate beneficial effect of membrane action in the
structural design (Peel-Cross, et al. 1998, Taylor, et al. 1998a, 1998b, Rankin, et al. 1999, Taylor
2000, Salim and Sebastian 2003, Huang, et al. 2003a, 2003b, Salami 1994). Experimental and
design-oriented investigations are concentrated on the understanding of membrane action in bridge
structures to develop a design method for the ultimate load capacity of bridge deck slabs with a
range of boundary conditions (Taylor, et al. 1998a, 1998b, Rankin, et al. 1999, Taylor 2000). Bridge
decks have an inherent strength due to the in-plane membrane forces set up as a result of restraint
provided by beams, diaphragms, etc. By utilising the advantages of high strength concrete in
laterally restrained beams and by extending the existing knowledge of compressive membrane
action, it should be possible to produce bridge decks with less than normal reinforcement. A primary
conclusion from this research is that bridge deck slabs have strengths far in excess of those predicted
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by conventional design methods, which are based upon flexural theory. This strength enhancement
is attributable to compressive membrane action.

More recently, the finite element method has been used to model the membrane action in
reinforced concrete slabs (Alan Hon, et al. 2001, Huang, et al. 2003a, 2003b, Salami 1994). Huang,
et al. (2003a, 2003b) used the non-linear layered finite element procedure to model the membrane
action of concrete slabs in composite buildings under fire conditions. This research was
concentrated on solid reinforced concrete slabs with simply supported edges at ambient temperature
under uniform loading. This was followed by a simulation of a full-scale fire test on a solid
reinforced concrete slab floor at the Cardington Laboratory in UK. It is evident that the proposed
model can predict structural behavior of reinforced concrete slabs and their influence on composite
steel-framed buildings in fire with good accuracy. In all cases the development of membrane actions
is demonstrated, and the structural behavior differs compared with the geometrically linear case.
These studies provide evidence that at very high temperatures the floor slab becomes the main load-
bearing element, and the floor loads above the fire compartment are carried largely by tensile
membrane forces developed mainly in the steel anticracking mesh or reinforcing bars.

The finite element method is capable of analysing membrane action in slabs due to its ability to
incorporate both geometric and material nonlinearities in its formulation. The non-linear material
models developed for the finite element analysis of concrete structures have hitherto been used,
mainly for the simulation of previous experiments or the analysis of existing structures. For many
users the parameter values involved in these models vary for each experiment being simulated. Very
seldom have these models been used to carry out reliable predictions of structural behaviour
especially to model membrane action in slabs in buildings and bridges, (with a set of fixed model
parameter values identified for that class of problem). This objective forms the basis of the present
paper, focusing on the class of fully clamped slabs where membrane action is prominent. 

Implicit in non-linear material models are parameters, some of the values of which are identified
directly from simple laboratory tests, while the rest are determined based on the model’s ability to
simulate previous tests. A simple concrete material model, incorporated in a finite element program,
has been the subject of extensive parametric and sensitivity studies, to identify, for fully clamped
slabs, a set of fixed parameter values and computational conditions, which would guarantee reliable
simulation of membrane action when the model is used in the analysis of arbitrary fully clamped
concrete slabs. 

Tests carried out by Powell (1956) and Park (1964) on eight fully clamped slabs are used as basis
for the basic simulation process and parametric studies, to identify the set of conditions and model
parameter values. The reliability of the identified fixed values and computational conditions for
prediction purposes is further verified by the direct simulation of 42 other fully clamped slabs,
tested by various researchers. The strength predictions for all the slabs are fairly accurate, with an
average ratio of 0.9698 established for the ratio of experimental to predicted load values. In the
basic simulation process, a factor df (the deflection factor), relating the ratio of experimental to
predicted deflection is established, which when used in the subsequent direct simulation process, is
found to be reasonably accurate, (for slabs with identical degree of fixity), thus showing that such a
factor could be used to predict the corresponding peak displacement of arbitrary fully clamped
concrete slabs.

The avenues for practical applications of reliable finite element predictions incorporating
membrane action in concrete slabs through optmisation of concrete model parameters and numerical
conditions are very vast. Literally hundreds of finite element model slabs could be analysed, varying
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material and geometric values, and upon this database charts could be developed, which would
serve for quick strength and corresponding displacement determination of arbitrary slabs in building
and bridge structures.

2. Finite element modelling 

The 3D degenerated, layered shell element, having five degrees of freedom at each node is used
for spatial discretisation (Owen, et al. 1983), and parametric studies were carried out with reduced,
selective and full integration schemes. Reinforcing steel is represented with a layer of equivalent
thickness, with non-linear uniaxial strength and rigidity properties. Geometric nonlinearity is taken
into account using the Total Lagrangian approach. 

2.1. Concrete model 

A plasticity formulation based concrete material model, capable of responding to both perfectly
plastic and strain hardening behaviour is adopted for this study. It incorporates concepts such as the
yield criterion, flow and hardening rules, and crushing condition (Owen and Figueiras 1984). A dual
criterion for yielding and crushing in terms of stresses and strains is considered, which is
complemented with a tension cut-off representation. The yield criterion is assumed to be a modified
Drucker Prager surface with a curved meridian, having its parameters determined from Kupfer’s
(1969) test results, and is expressed in terms of stress components as: 

 (1)

where σo is the equivalent effective stress, which for a perfectly plastic model is taken as the
ultimate uniaxial compressive strength of concrete f 'c, and for a strain hardening model σo is 0.3f 'c.
During loading an elastic response is assumed up to σo after which elastic-plastic, or where
applicable, a perfectly plastic, behaviour commences until a ‘crushing surface’, defined in strain
space, is reached. This is defined in terms of strain components as:

 (2)

where εcu is a specified ultimate compressive strain, which, when reached signifies the loss of all
the strength and rigidity of the concrete material. Fig. 1(a) illustrates the one dimensional
representation of both the perfectly plastic and the strain-hardening model. The two dimensional
representation of the yield surface in the principal stress space is shown in Fig. 1(b). Unloading
follows the initial elastic modulus Eo and an elastic response occurs for subsequent loading until the
corresponding loading surface is reached. Further loading causes an elasto-plastic response with
increasing plastic deformation and a corresponding expansion of the loading surface according to
the flow and hardening rules. 

2.2. Modelling of tensile behaviour of concrete

The response of concrete under tensile stresses is assumed to be linear elastic until the fracture

f σ( ) 2 1.355 σx
2 σy

2 σxσy–+( ) 3 τxy
2 τxz

2 τyz
2+ +( )+[ ] 0.355σo σx σy+( )+{ } 0.5 σo= =

1.355 εx
2 εy

2 εxεy–+( ) 0.75 γxy
2 γxz

2 γyz
2+ +( )+[ ] 0.355εcu εx εy+( ) εcu

2=+



Computational optimisation of a concrete model to simulate membrane action in RC slabs 329

surface is reached and is governed by a maximum tensile stress criterion (tension cut-off). Cracks
are assumed to form in planes perpendicular to the direction of maximum principal tensile stress as
soon as this reaches the specified concrete tensile strength f 't. A smeared representation for cracked
concrete is assumed, where cracks are distributed across a region of the finite element. As the
overall structural behaviour is of primary concern in this study and the size of elements used for
analysis are relatively large, the problem of strain localisation that such assumption may cause in a
fine mesh situation does not arise. To take account of the effect of tension stiffening due to the
presence of reinforcement, a gradual release of the concrete stress component normal to the cracked
plane and shown in Fig. 2, is adopted. Unloading and reloading of cracked concrete is assumed to
be linear, with a fictitious elasticity modulus Ei defined as: 

Fig. 1 Representation of the concrete constitutive model
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 (3)

where α and εm, are tension stiffening parameters and εi is the maximum value of tensile strain at
the point considered. The normal stress σ1 is obtained by the expressions:

(4)

where ε1 is the current tensile strain in material direction 1. The value of f 't is taken as the modulus
of rupture, fr of the concrete and can be related to the uniaxial compression strength (in MPa) by :

. An appropriate value of cracked shear modulus based on the approach of
Cedolin, et al. (1977), which is a function of the current tensile strain, is employed to account for
aggregate interlock and dowel action in the smeared crack model. This allows for shear transfer
across the rough surface of the cracked concrete. 

2.3. Modelling of steel behaviour

The reinforcement bars are modelled as layers of equivalent thickness (Owen and Figueiras 1983)
and follows an elastoplastic material behaviour, with the Von Mises yield criterion defining the yield
surface (Owen and Hinton 1980). 

3. Preliminary computational studies

Eight reinforced concrete slabs tested by Powell (1956) and Park (1964) are used as basis for the
preliminary finite element simulation and subsequent parametric studies. All the slabs are fixed
against displacements and rotations along their edges and a uniformly distributed load is applied on
the surface. The successful simulation of the behaviour of these slabs in the parametric studies,
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Fig. 2 Tension stiffening in cracked concrete
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would lead to the identification of a set of optimised parameter values and computational
conditions, which would guarantee reliable predictions in subsequent analyses.

3.1. Slab details

Powell’s (1956) four slabs (914.4 × 522.5 × 32.7 mm) are isotropically reinforced at the top and
bottom layers. The reinforcement extends to the full length of the slab and the percentage of steel is
calculated on the basis of the mean effective depth (d ). Table 1 gives a summary of the test slabs
where Lx and Ly are lengths of the short and long sides of the slab, respectively and h represents the
total depth. 

Park’s (1964) four series A slabs (1524 × 1016 × 50.8 mm) are reinforced anisotropically, with the
bottom steel extending over the whole length, while the top steel extends into the slab from the
edges, over a distance calculated by yield line theory. The full details of Park’s slabs are also
summarised in Table 1. The percentage of steel is calculated on the basis of actual effective depth. 

3.2. Finite element idealisation 

The slabs were idealised with 3D degenerated, 8-noded shell elements, having five degrees of
freedom at each node. A symmetric quarter of each slab was discretised into eight finite elements.
The detailed finite element descretisation with reinforcement pattern for the slabs are as shown in
Figs. 3(a-c). The concrete depth is discretised into 10 layers of equal thickness. The details of the
idealisation of the concrete and steel layers are as shown in Fig. 3(c). 

3.3. Displacement control (DC) and load control (LC) strategies

The simulations were carried out based on both displacement control (DC) and load control (LC)
strategies. In DC, prescribed displacements reflecting the deflected shape of the slabs under
uniformly distributed loading conditions, are applied incrementally to simulate the complete load-

Table 1 Detailed description of fully clamped slabs

Slab No. Ly /Lx Lx/h
 % of Steel Reinforcement

 Short span Long span
  Top Bottom Top  Bottom N/mm2 N/mm2

Powell’s Slabs (1956)
S50 1.75 16 0.45 0.45 0.45 0.45 211 37.2
S54 0.71 0.71 0.71 0.71 211 41.0
S59 0.97 0.97 0.97 0.97 255.2 39.3
S63 1.53 1.53 1.53 1.53 255.2 41.0

Park’s Slabs (1964)
A1 1.50 20 0.38 0.19 0.41 0.20 327.6 33.0
A2 0.84 0.42 0.43 0.21 327.6 29.5
A3 1.44 0.72 0.45 0.22 327.6 34.4
A4 2.42 1.21 0.47 0.23 327.6 27.7

: Concrete cylinder strength;�  fy: Yield strength of steel 

fy f ′c

″ ″
″ ″
″ ″

″ ″
″ ″
″ ″

f ′c
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Fig. 3(a) Typical slab finite element mesh

Fig. 3(b) Typical Finite element reinforcement pattern for the slabs

Fig. 3(c) Discretisation of steel and concrete layers
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deflection responses. In LC, uniformly distributed loads were directly applied on the slabs
incrementally and a peak load, associated with a sudden large deflection, can be identified from the
finite element solutions. The typical finite element load-deflection responses from DC and LC are
superimposed to that from a typical experiment in Fig. 4. A relationship is established between the
finite element peak deflection (dfe) and experimental peak deflection (dexp), via a deflection factor
(df) such that; dexp = dfe × df .

3.4. Parametric studies for optimisation of model parameters

A series of comprehensive parametric studies have been carried out to establish the sensitivity of
various model parameters and computational conditions involved in the finite element modelling.
These are the convergence criteria, integration rules, non-linear solution techniques, ultimate
compressive strain of concrete (εcu), tension stiffening parameters α and εm, modulus of elasticity of
concrete (Ec) and the elasto-plastic modulus of steel ( ).

3.4.1. Effect of convergence criteria
Convergence criteria either based on force norm or displacement norm seems to have no influence

on the load deflection response in the pre-peak stages as can be seen from Fig. 5(a). However in the
post-peak stages, there are some differences in the rising and falling branches of the curve but the
over all trend seems to be the same. The CPU time required in the run using force norm as convergence
criteria is almost 10 times higher than that required in the runs using displacement norm.

3.4.2. Effect of integration rules and non-linear solution process
Parametric studies were conducted with initial stiffness (IS), tangential stiffness (TS), Newton-

Raphson (NR) and modified Newton-Raphson (MNR) nonlinear solution processes. The load-
deflection response is found to be dependent on the selection of integration rules and non-linear
solution process. It is evident from Figs. 5(b-d) that the selective integration (SI) seems to simulate
better load-deflection response than normal (NI) and reduced (RI) integration’s. The NI resulted in
the worst post peak response. Considering the peak load, the RI is unable to produce a single peak
despite the fact that it produces a series of close peaks after the first peak. The RI also produces
higher first peak loads and corresponding peak deflections. Considering overall response, SI seems

E ′s

Fig. 4 Load-deflection response of fully clamped slabs with membrane action
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to provide a better response than those of the others although it needs more CPU time than RI. 
Comparing Figs. 5(b-d), the SI with initial stiffness (IS) seems to result in the better load-

deflection response. Table 2 is compiled to provide a summary of the effect of integration rules and
non-linear solution processes on the simulation of load-deflection response. The IS method produces
a slightly higher peak load with similar deflection compared to others with much less CPU time. It
was therefore decided to carry out the simulation with the combination of SI and IS.

Fig. 5(a) Effect of convergence criteria

Fig. 5(b) Effect of integration rules and solution processes
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3.4.3. Effect of ultimate compressive strain of concrete (εcu)
The εcu is found to be the most important concrete material parameter which controls the load and

deflection in the numerical simulation of the slabs using the non-linear finite element program
employing layered shell elements. The peak load and corresponding deflection were found to be
sensitive to the change in the value of εcu. The peak load and corresponding peak deflections
increased with the increase of εcu is illustrated in Fig. 5�e� An increase of εcu from 0.0035 to 0.0055
increased the load by 1.36 times and the corresponding deflection by 1.48 times.

3.4.4. Effect of tension stiffening parameter εm

The effect of εm on the load-deflection response with various combinations of εcu is presented in

Table 2 Results of parametric studies

Influence of solution process and integration schemes 

Solution process
SI RI NI

P.load P.def. CPU P.load P.def. CPU P.load P.def. CPU
MNR 0.353 5.31 4861 0.37  6.57 3361 0.307 3.79 ----*
NR 0.354 5.30 ----* 0.375 6.32 ----* 0.307 3.54 3848
TS 0.354 5.31 7698 0.371 6.32 4104 0.306 3.54 8026
IS 0.360    5.30   653 0.404 6.57 319 0.326 4.04 677

Influence of εm

 εm εcu = 0.006
P.load P.def.
N/mm2 mm

εcu = 0.0035
P.load P. def.
N/mm2 mm

0.002 0.36      5.30 0.267 3.04
0.003 0.362 5.31 0.268 3.03
0.004 0.363 5.31 0.269 3.03

*Run terminates before the given number of load incremetns

Fig. 5(c) Effect of integration rules and solution processes
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Fig. 5�f� and illustrated in Table 2. The overall load-deflection response seems to be not affected
with the change of εm. For a constant value of εcu, εm has no effect on the first peak load and
correspond-ing peak deflection. 

3.4.5. Effect of modulus of elasticity of concrete (Ec)
An increase in Ec, increased the peak load with a slight decrease in peak deflection and has no

effect on the general load-deflection response (Fig. 5(g)).

Fig. 5(d) Effect of integration rules and solution processes

Fig. 5(e) Effect of εcu
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3.4.6. Effect of tension stiffening parameter α
The effect of α is plotted in Fig. 5(h). The general load-deflection response remains similar and

the peak load and corresponding peak deflection are found to be not sensitive to the change in the
value of α. A value of 0.5 for α will be adequate for simulation.

3.4.7. Effect of elasto-plastic Young’s modulus of steel ( )
The post peak response is found to be affected with the change of  (Fig. 5(i)). The peak load

tends to increase with increase of  but peak deflection seems to be not affected. 
The single parameter to which the slab simulation is most sensitive, and which can be adjusted to

E ′s
E ′s

E ′s

Fig. 5(g) Effect of Ec on load-deflection response

Fig. 5(f) Effect of εm
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achieve accurate simulation while the other parameters are fixed, is the ultimate concrete crushing
strain εcu. Study has shown that the value of εcu required for reliable simulation is dependent on the
slab support conditions, which also delineates the class of problem. The other computational
conditions established from the preliminary study, and which are adopted for the simulation are as
follows: selective integration scheme (SI), initial stiffness method (IS), and convergence criterion
based on displacement norm (DN). Actual test values were chosen for material properties such as
the Young’s moduli for the steel and concrete, (Es & Ec), and the yield strengths of concrete and

Fig. 5(h) Effect of α on the load-deflection response

Fig. 5(i) Effect of  on the simulationE ′s
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steel, ( & fy). The fixed values chosen for the other parameters are, for the tension stiffening
parameters, (α : 0.5, εm: 0.002), and the elastoplastic modulus for steel,  is Es/15, where Es is the
steel Young’s modulus. The Poisson ratios for concrete and steel are chosen as 0.18 and 0.25
respectively. 

4. Basic simulation 

The typical finite element load-displacement responses of Powell’s and Park’s slabs, based on the
displacement control (DC) strategy for various values of εcu, are superimposed on test results and
shown in Figs. 6(a - d), and also summarised in Table 3. The corresponding results based on the
load control (LC) strategy are shown in Figs. 7(a - d) and summarised in Table 3. 

From Table 3, it is seen that Powell’s fully clamped slabs with isotropic reinforcement can be

f ′c
E ′s

Table 3 Comparison between DC and LC simulations with Powell’s (1956) experiment

Slab 
No. 

Experiment
Load* Defl.

 (mm)

F.E. (DC)
Load* Defl.

 (mm)

Ratio# 
 Expt/FE

Load Defl.

F.E. (LC) 
Load* Defl.

 (mm)

 Ratio#

 Expt/FE
Load Defl.

S50 0.33 10.76 0.33 4.55 1.00 2.36 0.32 3.36 1.03 3.20

S54 0.36 10.38 0.345 �4.28 1.04 2.42 0.37 3.40 0.973 �3.05
S59 0.35 13.63 0.354 �4.04 0.99 3.37 0.39 3.55 0.90 3.84
S63 0.464 �10.80 0.42 4.55 1.10 2.37 0.51 3.36 0.91 3.21

εcu= 0.0045
df =2.37

1.026 �2.37
 Mean values

εcu= 0.0025
df =3.32

0.953 �3.32
Mean values

*Load (in N/mm2) # Ratio of experimental to finite element values

Fig. 6(a) Simulation of Powell’s slab S50 under DC
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simulated by adopting an εcu value of 0.0045 in a DC strategy and 0.0025 for the case of LC. The
ratio of experimental to predicted load averages at 1.026 for DC and 0.94 for LC, showing a fairly
good level of agreement. Park’s fully clamped slabs with anisotropic reinforcement, simulated with
εcu values of 0.0035 and 0.004 in the case of DC, and an εcu value of 0.0025 in the case of LC, are
summarised in Tables 4(a) & 4(b) respectively. The ratio of experimental to predicted load averages
at 0.87 (for εcu=0.004) and 0.953 (for εcu=0.0035) for the DC strategy, and 1.02 for LC strategy,
showing reasonably good agreement. 

For simulations carried out on the basis of load control (LC) strategy, a single value of εcu (i.e.,
0.0025) can be used for both Powell and Park’s slabs, but for the case of DC simulation, a higher
value of εcu is required in the simulation of Powell’s slabs, in order to obtain acceptable results.

Fig. 6(b) Simulation of Powell’s slab S54 under DC

Fig. 6(c) Simulation of Park’s slab A1 under DC
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However, in all simulation cases the deflection factor, (df, referred to under ‘Ratio’ in Tables 3 and 4),
which relates the experimental to predicted displacement, is noted to have consistent values, which
can conveniently be represented by a mean value, for each εcu value used. The summary of the
basic simulation is presented in Table 5. 

The LC strategy simulation is much easier to implement than the DC simulation strategy, as the
DC simulation requires a preliminary determination of prescribed displacements, simulating the
deflected shape of the slabs under distributed load. The direct predictions contained in the next
section of this paper adopt the LC strategy, with a εcu value of 0.0025 for fully clamped slabs.

5. Direct simulation of previous tests

To test the reliability of the computational conditions and fixed concrete model parameter values

Fig. 6(d) Simulation of Park’s slab A2 under DC

Fig. 7(a) Simulation of Powell’s slab S50 under LC
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established from basic finite element simulation and parametric studies, the direct simulation of 42
other fully clamped slabs, tested by Powell (1956), Park (1964), Hung & Nawy (1971), Niblock
(1986), Moy and Mayfield (1972), Keenan (1969), Skates (1986) and Wood (1961), are carried out. 

5.1. Support conditions 

The 42 slabs can be categorised into two classes. These are: Class I - Fully clamped slabs with lateral
restraints, and Class II - Fully clamped with partial lateral restraint. The tests of Powell (1956), Park
(1964), Keenan (1969), Niblock (1986) and Moy and Mayfield (1972), and Wood (1961) all fall into
Class I. The rigid restraints at the supports were achieved by clamping the slabs from top using steel

Fig. 7(b) Simulation of Powell’s slab S54 under LC

Fig. 7(c) Simulation of Park’s slab A1 under LC
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Fig. 7(d) Simulation of Park’s slab A2 under LC

Table 4(a) Comparison of DC simulation with Park’s (1964) experiment 

Slab 
No. 

Experiment
Load* Defl. 
             (mm)

FE simulation (DC)
    Load*   Def.    Ratio#

              (mm)     Load Defl.

FE simulation (DC)
    Load*     Def.     Ratio#

                (mm) Load  Defl.

A1 0.22 25.0 0.26 9.80 0.85 2.55 0.221 9.76 0.995 2.56
A2 0.22 23.5 0.26 9.20 0.85 2.55 0.232 9.25 0.948 2.54
A3 0.26 22.86 0.29 10.0 0.90 2.30 0.253 10.0 1.03 2.29
A4 0.26 18.63 0.30 8.0 0.87 2.34 0.275 7.85 0.945 2.37

               Mean       0.87 2.43 0.98 2.44
εcu = 0.004, df = 2.43 εcu = 0.0035, df = 2.44

*Load (in N/mm2) # Ratio of experimental to finite element values

Table 4(b) Comparison of LC simulation with Park’s (1964) experiment

Slab
No.

 FE simulation (LC)

Load* Defl.
(mm)

Ratio#

Load Defl.

A1 0.205 7.37 1.07 3.39
A2 0.21 7.22 1.04 3.25
A3 0.25 7.35 1.04 3.11
A4 0.285 6.05 0.91 3.08

Mean 1.02                              3.21
εcu = 0.0025, df = 3.21 

*Load (in N/mm2 )  # Ratio of experimental to finite element values
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sections and also providing restraint against horizontal movements at the edges. This could be by means
of a heavily reinforced concrete structure surrounding the test slab (Wood 1961), thus preventing
horizontal movement. A typical Class I support condition is shown schematically in Fig. 8(a).

The test slabs of Hung and Nawy (1971) fall into Class II, where the restraint at the supports was only
provided by the clamping action of the top steel channel to the main support frame, and no restraint
against horizontal movement was provided at the edges of the slab. Such cases of partial restraint in slabs
leads to a relatively lower failure loads and higher central deflections, when compared to those tests (in
Class I), where rigid restraint was present. A typical Class II support condition is shown in Fig. 8(b).

5.2. Slab details and finite element mesh 

The details of the slabs in the two classes are presented in Tables 6 (a & b). The slabs represent a
wide range of aspect ratios, breadth to depth ratios, percentage of reinforcement, concrete
compressive strengths and steel yield strengths. The reinforcement pattern in these slabs is identical
to those of Powell’s slabs, used in the basic simulation, with equal isotropic reinforcement at the top
and bottom. The load control strategy, with an εcu value of 0.0025 as identified from the basic
simulation process, is adopted for the direct prediction in this section.

For the rectangular slabs, a quarter section is idealised with 8 elements as shown in Fig. 3a and
for square slabs, a quarter section is idealised with 9 elements as shown in Fig. 9. The discretisation
through the depth of the steel and concrete into layers is also similar to that adopted for the basic
simulation, as shown in Fig. 3(c).

Table 5 Summary of basic simulation

Test
Displacement Control (DC) strategy Load Control (LC) strategy

εcu Load ratio df εcu Load ratio df

Powell (1956) 0.0045 1.026 2.37 0.0025 0.953 3.32
Park (1964) 0.004 0.87 2.43 0.0025 1.02 3.21

0.0035 0.98 2.44

Fig. 8(a) Typical Class I support conditions Powell (1956) & Park (1964)

Fig. 8(b) Typical Class II support conditions Hung & Nawy (1971)



Computational optimisation of a concrete model to simulate membrane action in RC slabs 345

Table 6(a) Details of Class I slabs 

Slab No. Ly/Lx Lx/h d
mm

% of Steel fy
N/mm2 N/mm2

Powell’s (1956) slabs (914.4x522.5x32.7mm)
S46 1.75 16 25.2 0.25 211 40.1
S47 0.25 211 44.8
S55 0.71 211 36.8
S58 0.97 255.2 40.0
S63 1.53 255.2 36.3
S48 -- 0.0 - 41.0
S53 -- 0.0 - 37.6
S56 -- 0.0 - 38.2
S57 -- 0.0 - 39.6
S60 -- 0.0 - 39.7
S64 -- 0.0 - 39.7

Slabs tested by Wood (1961) (1727.2x1727.2x57.2mm)
FS12 1.00 30.2 46.4 0.26 233 32.6
FS13 0.26 233 26.5
FS14 -- 0.00 -- 28.6

Slabs tested by Keenan (1969): 1828.8x1828.8x76.2 mm
3S1 1.00 24 58.2 0.82 326.9 24.5
3S2 -- 0.00 -- 28.6
3S3 58.2 0.82 326.9 28.4
3S4 0.82 326.9 22.8

4.75S1 1.00 15.2 93.3 0.89 342.1 21.9
Slabs tested by Moy and Mayfield (1972) (1530 x1530 x5 0mm)

FEA1 1.00 30.6 38.0 0.49 386.0 31.7
FEA4 1.50 0.49 386.0 31.7
FEA7 2.00 0.49 386.0 31.7

Slabs tested by Skates (1986) (950 x 950 x 50mm)
S3 1.00 19.0 38.0 0.337 500.0 56.2

Slabs tested by Niblock (1986) (950 x 950 x 50.0mm)
S1 1.00 19.0 -- 0.00 -- 42.3
S2 1.00 19.0 38.0  0.258 510.0 37.0
S4 1.00 19.0 38.0  0.516 510.0 30.4

Slabs tested by Park (1956) (1524x1016x50.8mm)
D1 1.50 20 0.0 34.6
D2 26.67 0.0 34.2
D3 40.80 0.0 35.5
D4 39.53 0.0 30.6
D5 40.32 0.0 24.5

f ′c
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″ ″
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6. Results and comparative study

6.1. Comparison of peak loads

Table 7 compares the peak loads obtained from the experiments with those obtained from direct
finite element predictions. Apart from two cases where the experimental values were not reliable,

Table 6(b) Details of Class II slabs

Slab No. Ly/Lx Lx/h d
mm

% of Steel fy

N/mm2
 N/mm2

Slabs tested by Hung & Nawy (1971) (1651x1194x63.5mm)
C1-1 1.00 26 50.8 0.58 471.0 38.6
C1-2 0.36 475.2 38.6
C1-3 0.28 471.0 33.1
C1-4 0.25 474.5 38.6
C1-5 0.36 475.2 34.4
C1-6 0.38 471.0 34.4
C1-7 0.58 286.9 39.0
C4-1 1.38 18.8 50.8 0.58 286.9 33.0
C4-2 0.28 471.0 39.8
C4-3 0.58 471.0 39.8
C4-4 0.36 475.2 34.6
C4-5 0.38 471.0 34.6

f ′c

″ ″ ″
″ ″ ″
″ ″ ″
″ ″ ″
″ ″ ″
″ ″ ″

″ ″ ″
″ ″ ″
″ ″ ″
″ ″ ″

Fig. 9 Idealisation of square slabs
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the mean ratios of experimental to finite element predicted peak load values, for all the tests
considered (from various researchers), ranged from 0.872 to 1.175, with an overall average ratio of
0.9698 and a standard deviation of 0.117. This shows a reasonably good agreement.

6.2. Comparison of central deflections

Table 8 compares the values of the central deflections obtained from the experiments with those
obtained from direct finite element predictions. Only 22 of the slabs are involved in this comparison
as the deflection values for the rest were not recorded in the available literature. The ratios of the
experimental to predicted deflections are calculated for the slabs in Classes I and II, and the mean
ratio is computed for each class separately. 

The deflection ratios for Class II slabs are found to be higher (averaging 5.24) for the case of the
12 partially restrained slabs of Hung and Nawy (1971), than those of the 10 rigidly restrained slabs
in Class I, from different authors, (averaging 3.495). This confirms the dependency of deflection factors
on the degree of restraint. The displacement factor (df : 3.495) derived from the direct simulation of 10
rigidly restrained slabs is found to be in fairly good agreement to the displacement factor (df : 3.32),
derived from the basic simulation of similar rigidly restrained slabs of Powell (1956). The
difference in the deflection factors is probably due to the fact that no two experimental test set-ups
can be identically the same, and the ideal fixity (100%), assumed in finite element analysis can only
be partially achieved in real life.

The reliability of the finite element system, employed for the direct prediction is also illustrated,
even in the ratios returned for the partially restrained slabs in Class II (Table 8). The consistency of
the ratios (ranging from 4.40 to 6.2, and averaging at 5.24), suggests that if the restraints were to be
in the same class as that of Class I, comparable results would be obtained.

6.3. Summary of basic and direct simulation

A summary of the load and deflection ratios obtained from the basic and direct simulation is
shown in Table 9. The excellent agreement between the two sets of values confirms the reliability
of the finite element system developed, and its credibility for any future predictions carried out for
any arbitrary fully clamped reinforced concrete slabs. 

7. Membrane action 

The membrane action due to in-plane forces, inherent in the class of slabs under consideration but
which the yield line analysis cannot account for, is illustrated in Table 10. The table re-states the
experimental and finite element predicted loads, as well as equivalent predictions based on the yield line
method. The yield line analysis was based on the use of a moment per unit width (m), calculated from
the equation first proposed by Whitney (1937) and used in Leet & Bernal (1996), conforming to
1995 ACI code. This is expressed as:

(5)

where ρ is the reinforcement ratio, fy is the steel yield strength and  is the concrete uniaxial

m ρfyd
2 1 0.59ρfy f ′c⁄–( )=

f ′c



348 Khandaker M. A. Hossain and Olubayo O. Olufemi

Table 7 Comparison of experimental and predicted loads

Slab No. Expt. load; N/mm2 F.E. load;N/mm2 Ratio of expt. to F.E. 
Powell (1956)                Average

S46 0.31 0.29 1.06
S47 0.27 0.29 0.93
S55 0.379 0.36 1.05
S63 0.464 0.52 0.89
S48 0.254 0.25 1.016          0.99
S53 0.289 0.25 1.15
S56 0.259 0.25 1.03
S57 0.21 0.24 0.875
S60 0.224 0.24 0.933
S64 0.241 0.25 0.964

Hung & Nawy (1971)
C1-1 0.16 0.16 1.00
C1-2 0.13 0.15 0.87
C1-3 0.1214 0.15 0.81
C1-4 0.1214 0.15 0.81
C1-5 0.133 0.15 0.89
C1-6 0.1397 0.15 0.931          0.872
C1-7 0.1611 0.16 1.006
C4-1 0.214 0.26 0.813
C4-2 0.19 0.24 0.792
C4-3 0.222 0.27 0.82
C4-4 0.21 0.25 0.84
C4-5 0.201 0.23 0.88

Park (1964) D1 0.17 0.175 0.97
D2 0.089 0.093 0.96
D3 0.032 0.030 1.067          0.97
D4 0.29 0.032 0.91
D5 0.0265 0.28 0.95

Niblock (1986) S1 0.45 0.32 1.40*
S2 0.40 0.34 1.17           1.175
S4 0.45 0.38 1.18

Moy & Mayfield (1972)
FEA1 0.091 0.10 0.91
FEA4 0.05 0.07 0.72*          0.875
FEA7 0.0502 0.06 0.84

Keenan (1969) 3S1 0.22 0.20 1.10
3S2 0.162 0.16 1.02
3S3 0.238 0.21 1.13            1.10
3S4 0.221 0.20 1.10

4.75S1 0.58 0.49 1.18
Skates (1986)
S3 0.35 0.31 1.13

Wood (1961) FS12 0.116 0.105 1.10
FS13 0.085 0.095 0.895           0.94
FS14 0.065 0.08 0.82

 Mean: 0.9698
Std. Dev.: 0.117

*experimental values are not reliable and are not considered in the calculation of mean
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Table 8 Comparison of experimental and predicted deflections

Slab No. Experimental central
deflection; mm

FE predicted 
deflection, mm

Ratio of expt. to
predicted defl.

Rigidly restrained slabs (Class I) df

Park (1964)
D1 21.0 5.76 3.64

Niblock (1986) S1 22.0 6.50 3.38
S2 14* 6.70 2.08*
S4 20.0 5.54 3.61

Moy & Mayfield (1972)
FEA1 38.0 11.30 3.36

Keenan (1969) 3S1 38.6 10.24 3.76
3S2 25.4* 13.25 1.92* 
3S3 34.54 11.2 3.08
3S4 34.29 9.0 3.81

4.75S1 23.37 7.02 3.32
Mean: 3.495

Partially restrained slabs (Class II) df

Hung & Nawy (1971)
C1-1 56.4 10.69 5.27
C1-2 50.8 9.19 5.52
C1-3 56.0 10.31 5.43
C1-4 52.0 10.30 5.08
C1-5 51.8 9.30 5.56
C1-6 54.0 9.21 5.86
C1-7 52.0 11.36 4.58 
C4-1 47.0 7.56 6.2
C4-2 41.0 7.66 5.35
C4-3 39.6 9.00 4.40
C4-4 43.0 8.95 4.80
C4-5 43.0 8.90 4.83

Mean : 5.24

*experimental values are not reliable and are not considered in the calculation of mean

Table 9 Summary of basic and direct simulations

Type Ratio of expt. to 
predicted loads

Ratio of expt. to pred. Defl. 
(Defl. factor, df )

Basic finite element simulation  0.94  3.32
Direct simulation of 42 slabs  0.9698  3.495*

*Ratios for Class I slabs only are considered
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compressive strength. This expression has been shown to be most accurate for under-reinforced
sections (i.e., for reinforcement ratios less than that required for balanced failure). From Table 10 it
is noted that the yield line theory under-predicts failure loads by a factor as much as between 7.67
and 8.2 in comparison with experimental tests and finite element predictions respectively.

8. Practical applications of membrane action simulation 

Achieving reliable predictions for a class of slabs subjected to membrane action in concrete
structures based on fixed parameter values, opens the avenue for numerous practical applications.
Hundreds of ‘computer model slabs’ of various geometric and strength properties could be analysed
with greater confidence to provide a database of peak load and corresponding displacements values.
This database could be used as the basis for the development of charts and equations, which can be
used for an easy and quick peak-load and displacement determination, for any proposed reinforced
concrete slab structure. This is done without the need for extensive finite element analysis at the
time the information is required, or the need for physical testing of a typical slab, which will be
time consuming, considering the fact that the structure has to be cured for at least 28 days before
testing. The database can also be used as a basis for the development of a knowledge based system.

To illustrate the possibility for practical applications highlighted above, a series of predictions was
carried out for typical fully clamped ‘computer model slabs’ where membrane action is significant,
with different geometric and strength properties as shown in Table 11. A total of 864 model slabs
were analysed and the information obtained from these were used in the development of charts.
These charts were developed for various characteristic strengths of concrete and steel, width to
depth ratios, aspect ratios and reinforcement ratios and and a typical one is shown in Fig. 10.

The data points in Fig. 10 have been joined by polynomials of the 3rd degree, thus each curve has
a unique equation, which in itself can be used as a tool for direct strength prediction, and can also
be useful in a computer aided design process. The concrete cylinder strength ( ), steel yield
strength ( fy ) and aspect ratio of slab are shown at the top of the chart. The prediction curves have
been developed for reinforcement ratios varying from 0.2 to 1.5%, which are indicated on the
charts. The design loads are expressed as a function of Breadth/depth ratios (varying from 15 to 40).
In Fig. 10, the estimation of loads for slabs having breadth to depth ratios of 17 and 20, and
reinforcement ratios (in %), of 0.5 and 1.25, are shown by lines with arrows. For predicting the failure
load for a slab with reinforcement ratio of 1.25%, a linear interpolation between 1.0 and 1.5% is adopted.

Detailed assessment of the charts has been done in which predictions based on the charts were
compared with both the direct finite element predictions and experiments. The mean value of the
ratio of chart predicted loads to direct finite element prediction, was found to be 0.984, confirming
that the charts are almost as accurate as direct finite element predictions. The ratio of the
experimental to chart predicted loads was also found to be 0.9698, which is consistent with that
obtained from the direct finite element simulation of 42 experimental slabs of different authors, as
shown in Table 7. 

Current researches (Alan Hon, et al. 2001, Das 2001, Eyre 1997, Peel-Cross, et al.  1998, Taylor,
et al. 1998a, 1998b, Rankin, et al. 1999, Taylor 2000, Salim and Sebastian 2003, Huang, et al.
2003a, 2003b) on building and bridge structures reflect the importance of membrane action in slabs
or decks with normal and high strength concrete and under various loading conditions including
fire. The simulation of membrane action in concrete slabs through optmisation of a concrete model

f ′c
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Table 10 Comparison of experimental with FE and yield line loads

Slab No. Experimental load; 
N/mm2

FE load;
N/mm2

Yield line 
method

Ratio of 
Expt/yield

Ratio of 
FE /Yield

Ratio of 
Expt/FE

Powell (1956)  
S46 0.31 0.29 0.0378 8.20 7.67 1.06
S47 0.27 0.29 0.0379 7.12 7.65 0.93
S50 0.33 0.32 0.0676 4.88 4.73 1.03
S54 0.36 0.37 0.106 3.40 3.49 0.973
S55 0.379 0.36 0.1056 3.59 3.41 1.05
S59 0.35 0.39 0.172 2.03 2.26 0.897
S62 0.426 0.49 0.266 1.60 1.84 0.87
S63 0.464 0.51 0.264 1.76 1.93 0.91
S58 0.342 0.38 0.172 1.99 2.21 0.90

  Hung& Nawy (1971)
C1-1 0.16 0.16 0.119 1.345 1.345 1.00
C1-2 0.13 0.15 0.076 1.71 1.97 0.87
C1-3 0.1214 0.15 0.0585 2.07 2.56 0.81
C1-4 0.1214 0.15 0.053 2.29 2.83 0.81
C1-5 0.133 0.15 0.0755 1.76 1.90 0.89
C1-6 0.1397 0.15 0.0788 1.77 1.90 0.931 
C1-7 0.1611 0.16 0.074 2.17 2.16 1.006
C4-1 0.214 0.26 0.1053 2.03 2.47 0.813
C4-2 0.19 0.24 0.0843 2.25 2.85 0.792
C4-3 0.222 0.27 0.1706 1.30 1.58 0.82
C4-4 0.21 0.25 0.1082 1.94 2.31 0.84
C4-5 0.201 0.23 0.1072 1.875 2.14 0.88

  Niblock (1986)
S2 0.40 0.34 0.099 4.04 3.43 1.17 
S4 0.45 0.38 0.192 2.34 1.98 1.18

  Moy & Mayfield (1972)
FEA1 0.091 0.10 0.054 1.69 1.85 0.91
FEA4 0.05 0.07 0.0383 1.30 1.83 0.72*
FEA7 0.0502 0.06 0.032 1.57 1.88 0.84

 Keenan (1969)
3S1 0.22 0.20 0.1219 1.805 1.64 1.10
3S2 0.162 0.16  -- 1.02
3S3 0.238 0.21 0.123 1.935 1.71 1.13 
3S4 0.221 0.20 0.1212 1.823 1.65 1.10

4.75S1 0.58 0.49 0.3492 1.661 1.40 1.18

 Skates (1986)
S3 0.35 0.31 0.127 2.76 2.44 1.13

Wood (1969)
FS12 0.116 0.105 0.0208 5.577 5.04 1.10
FS13 0.085 0.095 0.0207 4.11 4.59 0.895 

*experimental values are not reliable and are not considered in the calculation of mean
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presented in this paper is the first step towards comprehensive research on floor slabs in buildings
and bridge decks under various loading conditions including fire, and research is currently ongoing
in these directions.

9. Conclusions

The development of compressive membrane action in slabs in building and bridge structures due
to the presence of horizontal end restraints significantly increases their load carrying capacity. The
incorporation of strength enhancement due to membrane action can lead to the economical design
of such structures. This study illustrates the finite element simulation of membrane action in
reinforced concrete slabs through optmisation of a concrete model and numerical conditions. The
study involves a parametric optimisation process, used to identify a set of fixed model parameter
values and computational conditions, by the simulation of tests on 8 fully clamped slabs. The
confidence derived from this preliminary process led to the further ultimate load predictions of 42
previously tested slabs, with the fixed parameter values. This direct simulation process under load
control gave an average value of 0.9698 for the ratio of the experimental to finite element predicted
strengths. A deflection factor df was also established from the basic simulation, which subsequent
direct prediction of class I slabs (fully clamped with lateral restraints) confirms as credible. The
study clearly demonstrates that reliable finite element predictions can be carried out for the strengths

Table 11 Variable values used for computer-model slabs

Aspect ratio
Ly/Lx

Breadth to depth ratio 
Lx/h 

Concrete cylinder 
strength f 'c

N/mm2

Steel yield
strength, fy

N/mm2

Percentage of steel, 
ρ (%)

2.0, 1.5, 1.0 15, 20, 25, 30, 35, 40  25, 30, 40, 60 250, 460, 550 0.2, 0.5, 1.0, 1.5

Fig. 10 Typical chart showing the prediction of load
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and deflections of this class of slabs with reasonable accuracy. The weakness of the yield line
method of analysis, in not accounting adequately for membrane action has also been demonstrated,
especially for slabs where significant in plane forces are present at the edges.

Many practical applications can be found for the proposed reliable finite element procedure.
Developed charts and equations will allow a quick and fairly accurate strength determination.
Development of expert and knowledge based systems are also possible, as well as applications to
neural networks.

Another avenue for application of the proposed finite element procedure is in the design of
reinforced concrete structures. Existing design practice use codes which adopt either partial or
global factors of safety for the applied loads and materials, and which to varying degrees, (even for
the limit state design methods), limit the structural performance to within the elastic range. This
could be because in most cases, the method of analysis that preceeds the design does not account
adequately for the nonlinearities that are inherent in concrete structures, thus the design tends to be
overly conservative. Structural integrity is well known to be preserved even when the structure is in
the nonlinear range. Since accurate determination of the peak strength and displacement have been
demonstrated as achievable with finite element modelling, the designer is able to peg a point in the
nonlinear range of the loading curve, when the structure may be assumed to have failed. Fixing
such a point on the loading curve is synonymous to the imposition of a global factor of safety
whose choice would lead to optimum use of material while not compromising safety requirements.
This approach will lead to reduction in construction costs. Charts and equations discussed, when used
with an appropriate factor of safety, can be adapted for such reinforced concrete structural design.

The optimised concrete model and proposed finite element procedure can be used to simulate
membrane action in slabs in buildings and bridges with varying structural configurations subjected
to various loading conditions and research is currently ongoing in these directions.
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