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Abstract. Two enhancements to a recently developed plastic-damage-contact model for concrete are
presented. The model itself, which uses planes of degradation that can undergo damage and separation but
that can regain contact according to a contact law, is described. The first enhancement is a new damage
evolution function which provides a completely smooth transition from the undamaged to the damaged
state and from pre-peak to post-peak regions. The second is an improved contact function that governs the
potential degree of contact with increasing opening on a crack plane. The use of a damage evolution
function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm
developed for the model implementation, and amendments to this algorithm to accommodate the new
function are described. A series of unpublished experimental tests on notched specimens undertaken in
Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and
cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using
the modified Craft model implemented in the finite element program LUSAS. Comparisons between
experimental and numerical data show reasonable agreement except that the numerical simulations do not
fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded
that the torsion tests described provide useful benchmark examples for the validation of three-dimensional
numerical models for concrete.
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1. Introduction

The numerical simulation of concrete fracture, at both micro and macro levels, is a subject that
has received much attention in recent years. Work in this area has progressed on many fronts. There
have been significant developments in the field of constitutive modelling, which includes the
development of models based on plasticity theory (Este and Willam 1994, Grassl, et al. 2002),
damage theory (Krajcinovic 1996, Luccioni and Oller 2003), plastic-damage theory (Lubliner, ef al.
1989, Meshke, et al. 1998) and the micro-plane theory (Bazant, et al. 2000, Ozbolt and Reinhardt
2002). Much work has been undertaken recently on numerical techniques for capturing strong
discontinuities using finite element meshes, and this has included the development of elements with
embedded localisation bands (Oliver, et al. 2003, Mosler and Meschke 2003) as well as the so-called
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partition of unity approach in which nodes of finite element meshes are enriched to allow the simulation
of cracks across meshes (Wells and Sluys 2001, Moes and Belytschko 2002, de Borst 2003).

A review of examples used in the above references suggests that there is a genuine shortage of
data suitable for validating three-dimensional models for concrete fracture. In the present paper this
issue is addressed and a number of analyses are presented that are based on a series of torsion tests
undertaken at Cardiff University in the U.K. by Barr and Brokenshire (1996), Brokenshire (1995).
Whilst the test geometry has been described in Barr and Brokenshire (1996), full details of the tests
have not been reported in the literature and therefore a relatively full description is provided in this
contribution.

The finite element (F.E.) analyses presented here were carried out using the program LUSAS
(2003) in which the Craft plastic-damage-contact concrete model, recently developed by the first
author, has been implemented (Jefferson 2003a,b). This model uses embedded planes of degradation
that can undergo damage and separation but that can regain contact according to a contact law. The
damage-contact and plasticity components have been integrated into a single model using a
thermodynamically consistent framework. The present paper provides an overview of Craft and
discusses two enhancements to the model. The first of these is a pre-peak/post-peak damage
evolution function which provides a smooth transition from the undamaged to damaged state and
from the pre-peak to post-peak regions. It also allows separate scaling of the pre and post-peak
sections, which is important because in the pre-peak stage, the function is governed by a material
strain parameter, whereas in the post-pecak stage the main strain parameter depends upon a
characteristic length which, in a finite element context, varies with element size. The use of this
approach requires a significant modification to the implicit stress recovery consistent tangent matrix
algorithm. The second enhancement is a new contact potential function, which governs the
proportion of damaged material within a representative volume that can regain contact with only
shear displacement. This new function is smooth with respect to the opening displacement
parameter. Overall it has been found that the use of damage and contact functions, that give smooth
transitions between damaged and contact states, improves the convergence properties of the model
and allowed the torsion tests considered in this contribution to be simulated.

The aims of the paper are therefore to

(i) present developments to the Craft model,

(ii) present experimental data, not previously published, suitable for validating three dimensional

finite elements for concrete cracking and

(iii) present comparisons between these data and numerical results to validate the Craft model.

2. Craft model theory

One of the key aims in developing the Craft model was that it should be able to simulate
directional cracking, crack closure and shear contact (or aggregate interlock) behaviour in an
integrated manner, which also accounted for the type of damage and triaxial frictional response that
characterises the behaviour of concrete in compression. A further aim was that the model should be
based upon a thermodynamically consistent framework. It was concluded that in order to achieve
this, the model would need to have directional damage planes that at some point in a loading
process become fixed in direction. However, a problem in deriving a model that predicts directional
damage is how to simulate complete loss of strength in one direction whilst maintaining strength in
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other directions. These difficulties are well known but they are summarised here since describing
them helps to provide the rationale behind the model. If a strain based damage surface is used with
a kinematic constraint, then damage will continue to be predicted even if a macro crack has
completely opened. Conversely the problem with a stress based damage surface is that the surface
shrinks to zero size in stress space with complete damage, resulting in undefined gradients;
furthermore, it is not easy to decide upon what local strains the transformed stresses should be
linked to. It is possible to base a model on a total principal strain crack criterion but a simple
example shows the difficulty of this approach. In uniaxial compression such an approach predicts
cracks in directions normal to loading and whilst this is reasonable because cross-cracking does
occur, there is a difficulty in that it is associated with zero stress in that direction, and it is not easy
to maintain such a zero stress condition in a strain based formulation. Some long-standing models
provide solutions to some of these problems, for example Ortiz (1985), however they do not address
the problem of how to correctly simulate the shear behaviour of formed macro cracks or fully three-
dimensional behaviour.

The above problem of strain based damage models continuing to predict further damage when a
directional crack has fully formed has been addressed in recent work on strong discontinuities. For
example Oliver, ef al. (2002) present details of a method for simulating the transition from
distributed damage to a strong discontinuity using a scalar damage model as a basis. The present
model has not been implemented with a strong discontinuity approach, but it is compatible with
such an approach, although some work would be required to achieve such an implementation.

The difficulty of how to define a local stress-strain law and integrate it with a generalised model
for concrete in a thermodynamically valid manner is almost certainly one of the reasons that
developments of the once favoured plastic cracking models (Owen, et al. 1983, de Borst and Nauta
1985) has largely ceased.

Most existing large finite element codes have material model interfaces that make the inclusion of
a new material model relatively straight-forward. It is thus still an attractive prospect to have a
model that is able to reasonably predict the main characteristics of concrete behaviour at the
material level only. However, it acknowledged that such an approach will always be limited because
the constraints provided by standard elements will not ever correctly predict strong discontinuities
fully (Mosler and Meschke 2003).

Some of the difficulties relating to concrete material modelling, discussed above, were addressed
in the development of the Craft model. In this model embedded damage-contact planes were
integrated with a plasticity component by using a thermodynamically consistent plastic-damage
framework. The essential elements of the model are

e A local stress strain relationship, which here is a damage-contact model

e A function from which local strains can be computed such that the local and global constitutive
relationships are both satisfied. This is termed the total-local function.

e A ftriaxial plasticity component for simulating frictional behaviour and strength increase with
triaxial confinement

e A thermodynamically consistent global stress-strain relationship

The model has been developed with an implicit stress recovery consistent tangent matrix
algorithm, which is described in full in Jefferson (2003b). Here only the main governing
relationships relevant to the present applications will be provided.
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2.1. Local stress-strain relationship

The local stress comprises two components, the undamaged component and the damaged contact
component, with the former being associated with the proportion of material that is undamaged (1-w)
and the latter the proportion that is damaged w with wbeing a damage variable that lies in the
range 0 to 1. The local stress is then as follows

undamaged damaged contact
| ] o

s, = [(1-w)Dse] +[H(e)aDg] = |

component component

s;, €, D; are the local stress, local effective strain and local elastic constitutive matrix respectively
for damage plane i. s; and ¢; denote normal components and s,, s3 and e,, e;, shear components of
the local stress and strain vectors respectively. H; is a function that varies from 1 to 0 with the
increasing crack opening parameter e,, and this simulates the observed phenomena that the wider a
crack is open, the less the shear that can be transferred across it. @, the damage variable, depends
upon a local strain parameter ;. g; is the strain relative to a contact surface, which is illustrated in
Fig. 1. It is related by a transformation to the local strains e;, as follows;

g = ®,e 2

In the interlock region ®¢ = ®¢ and takes the form given in Eq. (3)
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where @, (e) = mge, —A/eg + e§ and in which m, is the slope of the Interlock contact surface, as
shown in Fig. 1. In two dimensions this takes the form

2
1 m, —m,
b, = —— ° F @
1 +m,| —m, 1
g g
Local shear strain [11622 +e;2) Interlock region where Interlock
' damaged stress component Contact

depends on g, the nearest surface

Surface defining distance to the Interlock

closed region

! m, Open region where damage
component stress = 0

Closed region where g = e

1
i
E Local normal strain (e;)

e, (opening strain parameter used in He function)

—»

Fig. 1 Contact surface

T
1
1
1
1
1
1
1
'



Three dimensional finite element simulations of fracture tests using the craft concrete model 265

s; = D,[(1 —w) + Hw®d,je, = D, M,e, )
It is noted that in Jefferson (2003a) (1-w) was denoted by &, and H,wby Ay

The effective local strains (e;) are those that apply to a fracture process zone of an effective crack
plane. They are taken as equal to the relative displacements across the zone divided by the effective
zone width w.. The advantage of using e; as the basis for the local model is that these local strains
(or relative displacements) can be measured directly from tests. However, it is the inelastic
component of these strains (e, that is required in the global stress-strain relationship, but it is e, not
e, that is derived from the total-local function described below and therefore e, is eliminated from
the global stress-strain relationship by the use of Eq. (6). The inelastic local strain vector is given by

e = (1I-M,)e (6)

The local damage function ¢@e,{) is asymptotic to an equivalent strain friction surface and is
orthogonal to the normal strain axis at its intercept with that axis, i.c., at ¢; = {, e,=e5=0.

2
e, O)= 3|1+ E%% Ik 2%52 Jord=pyeir drger+ es) = (M

The material constants r; and L, are the relative shear strain intercept and the asymptotic shear

friction factor respectively. These are the strain equivalents of the relative shear stress intercept
ro= c/f; and the asymptotic friction factor [, noting that c is the shear stress intercept.

2.2. QOverall stress strain relationship

The global stress-strain relationship is given by

0 \ 0
o =D,He—¢,)- ZNJ-T(I—M_Yf)eE (8)
0 /= 0

in which D, is the elastic tensor, 0 the stress tensor, € the strain tensor and €, the plastic strain
tensor, and 7, = number of damage planes.

N, is the stress transformation matrix such that
s, = N,o 9

where

2 2
Pa” Ta, Ta, 2rala 2rara 2rgra
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Ta s Ta,» Tq, are the x,,z components of the unit vector r,; normal to the POD surface and s, and t,
are the in-plane vectors.

It is noted that in Eq. (8) the inelastic component of strain resulting from each plane of
degradation is equal to the product of the strain transformation matrix and the local inelastic strain
vector i.e., N, ‘es;

Applying transformation (9) and using Eqs. (5) and (6) the stress recoverable-strain relationship
may be obtained to be;

—1

O O
o= §+DCZN,T(M;1-1)C,,NH D.(e-¢,) (10)
o = O

in which C; =D, and I denotes the identity matrix (tensor).
2.3. Total-local function

One of the key components of the model is the Total-local vector function, and it is use of this
function that allows the local and global constitutive relationships, as well as the stress
transformation (9), to be simultaneously satisfied for multiple damage planes. The model therefore
has full coupling between damage surfaces. The function, shown below, gives the error between the
transformed global stresses computed from Eq. (10) and the local stresses computed from Eq. (5).
This is equated to zero and solved for the unknown local strains e,

e.

f, = N,o-s, = N|D,(e—¢,) - 2N}(I—ij)ej —D,M,e, = 0 (1)
' J=
When two planes are present Eq. (11) may be written as;

{NlDeN'f'(I—MmDLMﬂ NID"N;(I_M'Q)}FI}:[Nl}Dc(s—sp) (12)

NoDN{(I-M,)  NoDN;(I-M,,) + DM, Jtead LN

When more than one damage plane is present, a nonlinear solution procedure is required for Eq.
(11), but it has been found that very few iterations of a Newton procedure are required to achieve
convergence of Eq. (11) when multiple surfaces are active.

2.4. Plasticity component

The plasticity component uses a triaxial yield function developed from the yield function used by
Lubliner, ef al. (1989) but it is rounded in the pi-plane using the well-known Willam and Warnke
(1975) function. A similar function form is used for the plastic potential but a dilatancy parameter
() is included that controls the slope of the straight meridians. If this parameter is set to unity the
potential takes the same form as the yield function and the plastic flow is associated, whereas if it is
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set to zero, the model predicts zero dilatancy. The surface changes shape according to a friction
hardening/softening function that is dependent upon a plastic work parameter. The tensile apex of
the yield surface is not an issue because the damage component of the model ensures the apex is
never reached. Full details of the plasticity component of the model are given in Jefferson (2003a),
but since this contribution focuses on developments to the damage component, the details of the
plasticity functions will not be provided here.

3. Smooth pre and post peak damage evolution function

In the original Craft model a well-known single term exponential softening curve, of the form
suggested by Gopalaratnam and Shah (1985), was employed for the damage evolution function.
This evolution function relates the damage strain parameter {; to the main damage parameter .
Barr and Lee (2003) have recently reviewed a number of softening curves for concrete in tension
and have themselves proposed a softening function with two exponential terms. van Mier (1997)
has also reviewed these softening functions and highlights the function suggested by Hordijk (1991)
which was based upon a wide range of experimental data. However, none of the functions given in
the above references satisfies all of the criteria required of the new damage evolution function. The
motivation behind changing the function was to improve the numerical performance of the model,
and for this purpose a completely continuous curve, which had a smooth transition from undamaged
to damaged states and from the pre-peak to the post-peak region, was required. The primary reason
for this is that, in the context of a non-linear finite element incremental iterative solution procedure,
if there is an abrupt change between states, then numerical integration points can oscillate between
these states within the iterations of a single load increment, and in such cases progress towards a
converged state may be impeded. The criteria set for finding a suitable damage evolution function
were that the function should

(i) have a completely smooth transition between undamaged and damaged states and between
pre-peak and post-peak stages,

(ii) be separately scaleable for the pre and post-peak sections,

(iii) be able to be specified in terms of the strain at peak stress and the peak stress

(iv) be asymptotic to the strain parameter axis and not to have a final cut-off point.

Criterion (ii) is important because, up to a certain level of damage which is here taken as that
associated with the peak, the damage will remain distributed and thus may be regarded a function of
a fixed material strain parameter alone. However, as the loading progresses beyond the peak, strains
tend to localise and the apparent local strain becomes dependent upon a characteristic dimension,
which can vary between elements. If, as is the case here, the model is implemented using the
Bazant-Oh (1983) crack-band approach, this is the characteristic element dimension (w,).

The function, which is illustrated in Fig. 2 in terms of the fracture stress f; and the strain
parameter {, has -as control parameters- the stress at first damage 7, the associated strain &;, the
uniaxial strength f,, the strain at peak stress &, and the strain at the effective end of the curve &. The
basic function, in which the damage plane subscript has been omitted for clarity, is as follows;

fi = fu Hunc({) = (1 -w({))EC (13)
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The form used to derive the constants is the direct relationship between 7; and {, as follows
f;’ — ‘f;le—cln (a _ be—Ullﬂn _ce—Ullﬂm ) (]5)
. . —&
in which n = S &
&~ &

¢y and p are both assumed to be fixed at 5, although they could be introduced as material
parameters. The constants a, b, ¢ and m are determined from the following four conditions;

fi=fiat n=0 (16a)
o, _ _

9e = Fatn=0 (16b)
fi=f at n=n, (16¢)
o,

d_{; =0 at n=n, (16d)

in which E is Young’s modulus and 1 is nj at {=(;
Eq. (17), below, may be obtained from Egs. (16a) and then Eq. (18) by using Eqgs. (17) and (16b)
a=1+b+c 17

g = bm+cmp (18)
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80 - 8”.
1€

in which ¢ = +1

Using Egs. (17) and (18) to eliminate a and b, Egs. (19) and (20) may be derived using conditions
(16¢) and (16d) respectively;

L_] _%(1 _ka)
¢ = 4 (19)

1 —x,""+ pxk" —p

1+ =1 +m)x")
¢ = m - (20)

mp

p—1—=(1+m)px,"+(1 + mp)x,

Equating (19) to (20) and rearranging gives the following equation, in which m is the only unknown

DL_ _l _m 1 m pm
s R o1 p (1 s (1 ™)

B+ L= mp"H =5 =p pr] = 0 @1
m
in which

x,=¢ " andaq, = L
fi

Eq. (21) is highly non-linear and not readily amenable to an analytical solution. Since the aim of
this section is the development of an equation suitable for finite element applications, it would be
possible to implement a numerical solution of Eq. (21) based on, for example, a combination of
bisection and Newton algorithms (Press, et al. 1992). However, it proved possible to find an
approximate solution for Eq. (21) that proved more attractive for numerical implementation. The
value of m varies with x; and ¢, but both of these are functions of a strain parameter ratio 7,
defined below, and thus it is possible to derive a relationship between m and r.

Eo— &

re = (22)
ti

It was found that the actual function for m is closely fitted by a function of the form
m = z,+z,r, +Z3rgd (23)

in which d is fixed as 1.005 and the constants z; are evaluated to minimise the error between the
approximate and actual root functions for .

The z coefficients that minimise the error between the actual and approximate values of m for a range
of range of ({; /&) ratios are given in Table 1, for an a, value of 0.75. It is noted that that & = f/E.
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Table 1 Coefficients for m root function
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(¢ /8) z) 5] z3
1.2 0.209165281613623 -80.9498899028202 80.2928557910858
1.3 0.223098944982796 -67.0625617052971 66.4302094339053
1.4 -0.012843219153829 -57.1695517518859 56.5717813830593
1.5 -7.2167464803493 -39.622646207189 39.3906325087707
1.6 -4.44312469371335 -38.8109320569211 38.4516691355379
1.7 -1.66691145999311 -39.7346144314323 39.2268743525994
0.005
Mexact-Mapprox
meXaCt 0
0.005
0 200 400 600 800 1000 1200
Ie

Fig. 3 Normalised error in m

The maximum normalised error in m for a range of r, from 20 to 1000 is 0.5%, and with this
level of error, m has a negligible effect on the final equation. The normalised error in m, for the
case of ({; /&)=1.3, is shown in Fig. 2. The ‘exact’ values of m were computed using the non-
linear equation solution facility within the program Mathcad.

The use of the new function in a finite element code involves evaluating & from the element
characteristic length, fracture energy parameter Gr and a standard softening curve Eq. (24), as
illustrated in Eq. (25). Then m is obtained from Eq. (23), ¢ from Eq. (19), b from Eq. (18) and «
from Eq. (17). Once a first estimate of the actual softening curve (15) is available, & may be re-
evaluated based on the actual softening curve and m, ¢, b, a also re-evaluated. One iteration of this
process is adequate.

24

(25)
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4. Contact proportion function H;

As shown in Eq. (1), the local stress in the damaged component is a function of H; which reduces
with the increasing strain opening parameter e, (see Fig. 1). The purpose of H, is to simulate the
observed behaviour that the wider a crack the less is the shear stress that can be develop with
increasing shear strain. f, becomes effectively zero when the opening strain reaches a value at
which no further shear contact is possible. This is taken as a multiple (m;,) of the strain value at the
end of the softening curve i.e., mzy &.

The H; function given in Jefferson (2003a) was developed using the data of Walraven and
Reinhardt (1981). However, it has been found that when simulating shear-normal experiments which
used specimens made from concrete with relatively small coarse aggregate, such as in the tests of
Hassenzadeh (1991), the original function overestimated the build up of post crack shear and
normal stresses at small openings. Thus, a modified function has been adopted which includes a
parameter associated with the early stages of opening, termed m;,. The basic function shown in the
{ } brackets in Eq. (26) is multiplied by a constant H,, = 0.995, the reason for which was explained
in Jefferson (2003a) and a smooth but rapid embedment function Hy(g) also defined in the
preceding reference. The basic function comprises two phases, the first governed by the strain ratio
No, which controls the early reduction phase and the second, governed by n;, which controls the
later stages of reduction. The third term provides a correction to give a zero initial slope and makes
the curve continuous at e, which defines the start of contact reduction. Typically the material
parameters my,; and my,; are in the range 0.3 to 0.5 and 5 to 20 respectively. The basic H, function is
illustrated in Fig. 4.

H/‘sz if eg<€bg

€

01 U pn “n '% ~pond
H/‘ = HmHg(g)DlTDr/e + (1 _rf)e —ﬁ1€ ]:D (26)
O —/»0 a
in which

_ Py My _ e, fst _ €& Fo—<hd

Jo = (1=rp) T Hy(g) =0 —e E 0= e T O, m&ens = L1

H(e,)
00; 0.002 0.004 0.006 0.008 0.01 0.012 €,

Fig. 4 Contact proportion function
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where 1= 0.7, po =10, pp =5 and ¢, =3

5. Implications of new damage evolution function on stress mapping/tangent
matrix algorithm

The first damage plane at any numerical integration point occurs when the major principal stress
exceeds the initiation stress f;;. The same criterion can be used for the formation of a second damage
plane when the damage evolution function only has a post-peak section, as in Jefferson (2003a), and
therefore f,=f. However, this criterion presents a problem for the formation of the second and
subsequent planes when a permanent damage plane is already present, if the damage evolution
function has a pre-peak. This is because the major principal stress may be in (or close to) the first
plane direction, whilst a second plane may be required to form. Assuming that a lower limit is
applied to the directional proximity of adjacent planes, then the situation can arise when the normal
stress on a would-be second plane exceeds the formation limit but the major principal stress is too
close to the first plane direction for the plane to form. An alternative approach, when the major
principal stress exceeds f;, but the associated principal direction is too close to the first plane, is to
form a second plane when the damage function on the nearest permissible plane to the first is
exceeded. The same approach can be applied to subsequent planes. This however creates a further
problem in that the consistent algorithm described in Jefferson (2003b) requires damage planes to
form in principal directions, since the rate of change of the principal directions is taken into account
in the consistent tangent matrix.

If g; is the stress tensor upon which the crack direction is based, then the derivative of the stress
transformation matrix with respect to @, is required i.e., N,/ 00;. This is calculated using the chain
differentiation rule, such that if a new plane is associated with the major principal value g, of g,
and the normal and shear directions are given by the unit vectors r,, s, and t, then JN,/0d0; is
given by

ON, _ ON,Ory  ON,Osq , ON, 0ty

30, - or,00,  @s,d0, ar,d0, 27

When the alternative criterion, of the damage function being greater than zero on the nearest plane
to the existing and the major principal stress planes, is used the above no longer applies. A scheme
to deal with this case will be explained for a case of the formation of a second damage plane with
one existing plane having the normal r,. The criterion is applied that a new plane can not form
within an angle of a, from an existing plane. If the major principal direction of the stress state
under consideration (ry) is within a, of r, i.e., r.ro>cos(a,), then the damage function is checked
on a plane which has a normal which lies in the same plane as r, and r, but is at an angle of a), to
r.. The unit vector in the plane of r, and r,that is orthogonal to r, is denoted r, and may be
calculated as follows

r,Xr,

X 1 (28)

ry = |rc><ra| B

The normal to the required plane (r,) at an angle a, to r. is then given by
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r, = cos(a,)r, +sin(a,)r, 29

In this case Eq. (27) still applies but r, replaces r; and both s; and t; are constructed from the
new direction r,. The differential with respect to the principal stress is still relevant but is now
given by

Or, Or,

r .
— = Sln(ap)l‘odT%
a 1

30 (30)

When two or three planes form in one increment, the above problem does not arise because the
directions are orthogonal to each other since they are all based on principal directions.

6. Experimental examples

All of the example analyses presented here are taken from the PhD Thesis of Brokenshire (1995)
(Barr and Brokenshire, 1996), however, the full details of the tests have not been published
elsewhere, hence relevant experimental details will be presented in the following, prior to
descriptions of the analyses.

6.1. Description of forsion fracture tests due to Brokenshire

The primary aim of the work of Barr and Brokenshire (1996) was the development of a torsion
fracture test suitable for concrete cores taken from existing structures. In order to provide
comparisons with the standard RILEM test method (RILEM TC50 1985), which uses notched beam
specimens, a series of different tests were conducted on each batch of concrete, which included
notched RILEM type beams, notched prismatic specimens under torsion and notched cylindrical
specimens also under torsion. In addition, a series of un-notched cylindrical beams were tested in

LVDT ﬂ 100
support bar F —
— |
}:.‘b::::::::::T”::::::::::::::::::::::::;‘: 100

- i H ” Iso
PTFE balls—% iiﬂﬁ\Clip gauge ;/?7; Cross-section

203 i
i L=450 All dims. in mm

g
< >
'

Fig. 5 Testing arrangement for notched beam tests
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torsion to establish the elastic properties and torsional shear strength. Two types of aggregate were
used in the work, namely locally supplied crushed limestone and gravel with rounded particles, both
with maximum size of 10mm. Three mixes were used with nominal strengths of 40, 70 and 100
MPa (denoted C40, C70 and C100 respectively) and in addition, a mortar mix with a nominal
strength of 70MPa was also used. Here, only specimens made with the C40 mix with 10mm
crushed limestone aggregate will be considered. This mix used ordinary Portland cement and locally
supplied sea-dredged sand. The mix proportions were as follows; cement to sand to coarse
aggregate proportions of 1:2:2.5 and water cement ratio of 0.55 (all by weight). All specimens were
stored in water until 24 hours before testing, at which point they were removed and, if relevant,
notches cut.

The notched beam tests used specimens of a different length from that suggested in the RILEM
paper (RILEM TC50 1985), but otherwise these tests complied with the method. The specimens
used were 100 mm X 100 mm in cross-section by 500 mm in length. The span (L) of the beams was
450mm. The notched beam testing arrangement is shown in Fig. 5, in which the loading rate is
controlled via feedback from a clip gauge at the notch mouth. The displacement was measured at a
location 0.05L from the centreline on the underside of the beam, with the displacement transducer
mounted on a frame supported from the beam at two points directly above the supports. Tests were
performed with two notch depths of 0.3D and 0.5D, although only the 0.5D cases will be
considered here, where D is the beam depth. The reason for including these tests is that they
provide an acceptable benchmark for the evaluation of the fracture parameters. It was found that the
fracture energies evaluated from some of the notched torsion tests varied from those of the beam
test, and so the fracture energies used in the analyses are based on notched beam values. It has in
fact been known for some time that measured fracture energies do vary with the size and geometry
of specimens as well as with the notch depth (Guinea, er al. 1992), and a proposal has recently been
made for the evaluation of a size and geometry independent G- value, i.e., a true fracture energy
parameter (Abdalla and Karihaloo, 2003).

Turning attention to the notched torsion tests; the rationale behind introducing a notch at an angle
of 45° to the axis of the specimen was to encourage a mode I crack to form in a direction normal to

Applied
load

Notch width = Smm
All dimensions in mm

Fig. 6 Testing arrangement for notched prismatic torsion test
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Notch to half depth at
45° to cylinder axis

Applied load

Fig. 7 Testing arrangement for notched cylindrical torsion test

the major principal stress of an un-notched elastic cylindrical specimen. Although the stress
distribution in the notched specimens departs substantially from that of an un-notched specimen, the
tests did show that cracks opened from the edge of the notches, although as may be seen from the
photograph of the failed specimen, the failure surface in the prismatic sections was curved and did
not coincide exactly with that of the notch. It did however prove possible to evaluate the fracture
energy parameter G by considering the total work done in forming the crack. Also, by using
feedback from a clip gauge, mounted on knife-edges at the notch mouth, the full pre and post-peak
response of the specimens were captured. Measurements taken included the load, the displacement
at the point the load was applied to the arm of the loading collar, the notch mouth opening
displacement, called hereafter the Crack Mouth Opening Displacement (CMOD), and a tangential
displacement measured from a frame attached to the concrete specimens. In a later test series, which
was intended to further explore failure modes, both opening and sliding displacements were
measured at the notch mouth. Specimens with notch depths of 0.3D and 0.5D were tested but here
only specimens with 0.5D cases will be considered for finite element analysis.

In all torsion tests the load was applied through a steel ball mounted on a shaft at the end of the
loading ram, which was seated in a hemi-spherical recess in one arm of the loading collar. The three
supports were all steel rods, with those acting upwards having rounded ends seated in the arm of
the end collar, whilst the restraining support was a threaded bar with a nut which retained the arm
of the loading collar. The testing arrangements for both the prismatic and cylindrical torsion tests
may be seen in the photographs in Plates 1 and 2 and are also illustrated in Figs. 6 and 7. In the
prismatic torsion tests, the end collars were bolted onto the specimen with hardboard packing strips
being placed between the specimens and collars. For the cylindrical specimens, grooves parallel
with the cylinder axis were cut with a hand grinder at the ends and then the collars, which had
serrated inner surfaces, were glued to the specimens and later (once the glued had set) secured by
bolting. All notches were nominally 5 mm in width and cut with a frame mounted masonry saw.

In the test programme, each test (i.e., specimen with same geometry, notch and mix) was
conducted four times in each test series. Also, for each batch of concrete, four cubes and four
cylinder splitting tests were tested. The results provided mean and Coefficient of Variation (CoV)
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Table 2 Concrete properties from experimental programme

o N'mm* £, N/mm? 2 G, (N/m)

Test Series / Batch ! E KN/mm? (CoV %) (Cov %) (CoV %)

Series 11 Prismatic torsion & 34.9 40.3 2.83 73.5
notched beams 2.1 ) 2.4 “4.2) 5.8
Series 11 i 38.6 343 83.9
Cylindrical torsion & notched beams 2.2 2.1 (13.5) ©.1H
Series 111 ) 40.2 3.08 )
prismatic torsion (3.9 (10)

Series 111 ) 43.9 3.08

Cylindrical torsion (0.6) (7.9)

1. E not measured separately for each batch. 2. G, from beam tests
Jou = cube strength, £,,; = cylinder splitting strength

Plate 2 Notched cylindrical torsion test (After Brokenshire 1995)

values for each parameter. The test sets considered here were carried out separately in three
different series. The first being a test development series (1), in which the restrained length was
varied in addition to the other parameters discussed, the second (II), a so-called G, test series,
aimed at evaluating the differences between the G, values from the torsion and notched beam tests
and a final series (IlI) in which the sliding displacement was measured to test the degree to which
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the tests were Mode I. Representative response graphs are available for each series although these
are not available for all of the tests conducted. Here the results from test series II and III will be
used, these being considered the most reliable. For test series II, representative displacement and
CMOD opening displacement responses are available and for test series I1I, the CMOD opening and
sliding displacements are available, thus two experimental lines appear only on the load-CMOD
opening graphs. For test series II, notched prismatic beam specimens were also made from each
batch of concrete. Thus, fracture energy (Gp) results from the notched beams are available
separately for the mixes used for the prismatic and cylindrical torsion test specimens of test series
1. However, beam tests were not conducted for test series 111. The results from the control specimens
and three-point fracture beam tests for the tests considered for analysis are given in Table 2.

The efficaciousness, or otherwise, of the tests, with respect to the original aim of the experimental
programme, is not the concern of the present contribution; however, it is noted that there was
reasonable agreement between the Gy values from the notched torsion prismatic tests and the
benchmark three point bend tests, but the Gy values evaluated from the notched cylindrical
specimens were somewhat lower than those from the other two tests for the same mixes. Also, the
measurements and shape of the failure surface showed that cracks in the prismatic specimens did
not form in a single mode 1 fashion, at least with respect to the original notch plane. However, for
the present purpose of validating a three dimensional numerical concrete model, these carefully
conducted experiments are considered to provide excellent benchmark examples.

The results from the tests in terms of load CMOD and load displacement responses are shown
along with the results from the analyses in the following section.

7. Finite element analyses

The tests discussed in the previous section have been considered in finite element analyses. All
the tests considered in this section had the same design mix although, as may be seen in Table 2,

2D Mesh for notched beam analysis 3D Mesh for notched beam analysis

Mesh for Prismatic torsion analysis Mesh for Cylindrical torsion analysis

Fig. 8 Finite element meshes
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the results of the different batches varied a little. The approach taken in the following series of
analyses is to use a single set of material properties for all cases. The values used are shown in Table
3. It is assumed that the uniaxial compression strength £. = 0.8f;, and the tensile strength is f; = 0.8/,,.

Table 3 Properties used for analyses

E kKN/mm? n 7. N/'mm? £, N/mm? £ Gr N/mm my My My
35 0.2 32 2.3 0.0023 0.08 0.5 0.5 5

The analyses undertaken include a two-dimensional and a three-dimensional analysis of the
notched beam specimen, a three-dimensional analysis of the notched prismatic torsion specimen and
a three-dimensional analysis of the notched cylindrical torsion specimen.

The analyses were undertaken using the finite element program LUSAS (LUSAS, 2003) with the
amended Craft model (as described above) implemented via the material model interface. All
meshes were formed from bilinear (2D) or trilinear (3D) elements and are shown in Fig. 8. The
characteristic length is computed at each element Gauss point using the square root or cube root of
the element Jacobian for two and three dimensional elements respectively (the root value obtained is
multiplied by two since the local element coordinate system varies from -1 to +1).

The meshes for the torsion specimens include the loading arms but not the collars. To allow for
this the end elements are given a higher stiffness (5* Eq..). It is noted that in the actual torsion tests
the response at the points the load were applied to the loading arm exhibited snapback behaviour.
Such behaviour can be simulated numerically using an arc length method e.g., (Crisfield, 1981)
however, in the present analyses the results did not exhibit snap-back because the stiffness of the
end sections and arms were increased, and this allowed a prescribed displacement loading procedure
to be used. The present approach is considered reasonable since the distribution of stresses in the
specimens in the region adjacent to the collars should be very similar to that in the experiments. It
is noted that the loads in the analyses were applied in the same locations, relative to the specimens,
as those shown in Figs. 6 and 7 for the actual tests.

The convergence tolerance used for the residual force and displacement norms were both 0.001.
The solutions all employed an automatic step selection procedure in which the displacement or load

Experimental ra_:zge
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Fig. 9 Notched beam response
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Fig. 12 Deformed meshes at last analysis step. Displacement magnification factor =20
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Plate 5 Prismatic torsion specimen after failure (After Brokenshire 1995)
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Fig. 13 Major principal strain at last analysis step for torsion examples

increment is adjusted according to the number of iterations taken to achieve convergence in the
previous step. The standard number of target iterations was set to 4 and the maximum number of
iterations permitted before automatic step reduction was set between 6 and 8. The total number of
steps used for all solutions was in the range of 40 to 50.

The numerical and experimental responses for all three sets of analyses are shown in Figs. 9 to
11. It is noted that the displacement for the notched beam test is at the location of the LVDT shown
in Fig. 5.

Notched beam tests do not represent a particular challenge for numerical simulation since they do
not, in general, involve changes in crack directions since they tend to follow pure mode I opening
behaviour. The numerical results here do slightly overestimate the peak load, relative to the
representative curve shown, however, the results are very close to the upper bound of the
experimental peak load range, which is shown on the graph. The analysis is able to capture the full
tail of the response curves and proceeded with no problems.

The torsion cases proved more difficult to analyse and in these analyses the tail of the numerical
response curves do not closely match those of the experimental curves. However, the peak loads
and load-CMOD,,, were captured quite well until the start of the tail, with the numerical and
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experimental results being closer for the prismatic case than for the circular case. These analyses of
the notched torsion tests are considered a partial success. The authors had not previously been able
to capture the post-peak response to any significant degree with other material models using the
smeared crack approach and were unable to achieve the numerical predictions to the extent shown
here without the model developments referred to in Sections 3 to 5 of this paper. It is recognised
that the meshes are relatively coarse, and perhaps these are not fine enough to capture the end
stages of the fracture process in the torsion tests. The authors are therefore currently investigating
the use of non-local strain measures and considerably finer meshes in an attempt to better capture
the tail of the experimental response.

8. Conclusions

The paper has provided a description of the recently developed Craft plastic-damage-contact
model for concrete and has included two particular new developments, a smooth pre-peak/post peak
softening curve that provides a completely smooth transition from the undamaged to the damaged
state, and an improved contact reduction function. The implications of implementing the smooth
pre-peak/post-peak softening curve with a consistent stress recovery/tangent stiffness algorithm have
been discussed and necessary amendments to the existing algorithm have been described. The
model was used for all simulations presented in this paper and the model developments allowed the
simulation of the torsion fracture tests to a degree which was not found possible without these
amendments. It is therefore concluded that the developments provide useful enhancements to the
model.

The paper also has presented details of a series of fracture tests on notched specimens, which
included three-point bend, prismatic and cylindrical torsion tests. These tests were presented
primarily to provide three-dimensional benchmarks for validating the present numerical model. The
model was able to represent the notched beam test throughout the response range reasonably well,
whereas the numerical simulations were not able to capture all latter stages of the behaviour of the
torsion tests, although the peak load and early post-peak responses were captured reasonably. The
conclusions from the series of simulations were that the validations were partially successful.
Further work on this is being undertaken in which non-local strains with finer meshes are being
used to attempt to better capture the tail of the experimental response.

Finally it is concluded that the torsion tests described provide useful three-dimensional examples
for validating numerical models for concrete.
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