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Abstract.  In the present article, the general wave propagation behavior of a single lamellae biological system was 
analyzed. The Lamellae is the main component of cortical bone. Its shape can be approximated by a cylindrical shell; 
so with using shell theories as displacement relations and the nonlocal strain gradient theory (NSGT) as constitutive 
relation was obtained the equation of motion. Using the NSGT leads to the effectiveness of scale parameter on 
equations of motion and the obtained results. The governing equations are derived by Hamilton's principles. The 
results are showing the variations of the overall trend of wave velocity toward wave vector have descending scheme 
and wave frequency against wave vector have ascending scheme; also were investigated effects of size and 
geometrical parameters on wave velocity and wave frequency. It was shown uptrend of types of wave velocities for 
wave vectors greater than 10

5
. 
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1. Introduction 
 

Surveying biological material from the perspective of engineering science extremely has been 

done to achieve: a) biomimetic material, b) displaying vital signs status c) improve functionality 

and elimination of defects of living organs; in the simple word, investigators are trying to incept 

from which be and optimized during millions of years or trying to show what those are, or trying 

to add something to biological structures to make a more optimized system. Mathematical analysis 

of biological structures has always been a favorite of researchers; as a better understanding of 

these structures and more importantly, it is possible to predict their behavior in different situations. 

Bone as a biological structure is the solid compound of the skeleton of creatures and the part of 

the framework of the body, among duties of this member is, making strength in the body, 

protection of some tissues, etc. Bones are the place for the production of white blood cells and red 

blood cells. They are a source of minerals, in particular, calcium; bones transmit minerals 

whenever the body needs them. Most bones are composed of two parts: a) spongy bone, b) cortical 

bone. The outer part (cortical bone) of the rigid bone is made of collagen and calcium structure as 

hydroxyapatite and so on. However, there are other tissues such as blood vessel and nerve in it. 

This section of bones are made of units with the regular arrangement are known as the Haversian 
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system. Haversian system consists of a central hole (Havers's duct) that contains the nerves and 

vessels and bony centered cylinders that are called lamellae which surrounds the central hole. 

Every 5-6 lamellae make the osteon unit (Cowin and Stephen 2001). Done works on this structure, 

in the past, are as below: Rho et al. in 1998 surveyed the entire mechanical works done on the 

bone before and finally with asking some questions delivered the work to others. Liu et al. (1999) 

carried out experiments on the lamellae and extruded flexural module and work-to-fatigue of it. 

Gourion-Arsiquaud et al. (2014) studied the structure of bone with a scanning electron microscope 

(SEM) and transmission electron microscope (TEM) and obtained young modules, flexural 

modules and work-to-fatigue of lamellae. 

Hoffler et al. (2000) performed nanoindentation test and achieved to mechanical properties of 

bone such hardness and elastic moduli. Sun et al. (2016) studied the mechanical properties of 

lamellae in the various plane. Hassenkam et al. (2004) performed tests to obtain the mechanical 

properties of bone with focus approach on the nanostructure of bone. Currey et al. (2006) extracted 

coefficients of variation of mechanical properties of bone; and then also they (Currey and John 

2011) investigated the hierarchal structure of bone. Faingold et al. (2013) with nanoindentation 

and SEM surveyed properties of single lamellae in various plates. Ren et al. (2015) studied various 

aspects of mechanical properties of bone such as the hierarchical structure of bone and fluid flow 

in bone and hydrostatic pressure. Also Wang et al. (2018) presented a pin-moment model of 

flexoelectric actuators while active vibration compensator on moving vessel by hydraulic parallel 

mechanism was investigated by Tanaka (2018). 

 Weiner et al. (1999) investigated the components of bone with Atomic force microscope infrared 

(AFM-IR) test and Fourier-Transform Infrared (FTIR) spectroscopy. Mitchell et al. (2015) for a 

better understanding of lamellae investigated the arrangement of the fiber of lamellae, thickness, 

orientation, and its compositions. Xie et al. (2017) studied time-dependent properties of bone and 

dependence of those to volume fraction. Unal et al. (2018) investigated hygro- electrical properties 

of bone. Hamed et al. (2010) modeled cortical bone as composite material and hierarchical levels 

and extracted elastic moduli and stiffness matrix of cortical bone; as an extension, they carried out 

the same work with continuum approach and finite element and achieved to good agreement with 

experimental results (Hamed et al. 2012). 

 

 
Fig. 1 Shape of a single lamellae with showing angular coordinate system elements 
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However, even though the mechanics of the bone belongs to bioengineering, at the nano range 

it can be mapped to nano mechanical structures to understand its stability and other mechanical 

responses. Few prominent kinds of literature have been reported on assessing the various 

characteristics of nanoplates and nanobeams. Among them, Tlidji et al. (2019) evaluated the free 

vibration response of FG microbeam. Through refined nonlocal shear deformation beam theory, 

Zemri et al. (2015) investigated the mechanical response of FG nanobeams. Bouafia et al. (2017) 

probed the bending and free flexural vibration behaviors of functionally graded nanobeams using 

A nonlocal quasi-3D theory. Considering the surface effects, the dynamic behaviour of nanobeams 

were studied by Youcef et al. (2018). The effect of thermal environment on the vibration analysis 

of nano and micro beam were performed by Cherif et al. (2018), Akgoz and Civalek (2017), 

Ebrahimi and Salari (2015). Using new nonlocal trigonometric shear deformation theory, the free 

vibration analysis of embedded nanosize FG plates was studied by Besseghier et al. (2017). It was 

extended by Mouffoki et al. (2017) to demonstrate the influence of hygrothermal effects on the 

natural frequencies. Also, other elasticity theories are proved to be handy in assessing the dynamic 

characteristics of nanostructures (Shaat 2018). 

With the externally applied loading, the stability analysis of nanostructures becomes crucial to 

understand. In this regard, Yazid et al. (2018) proposed a new nonlocal higher order shear 

deformation theory and nonlocal refined plate theory, respectively to evaluate the stability 

response of single-layer graphene sheet. Mercan and Civalek (2016) demonstrated the buckling 

response of boron nitride nanotube through DSC method and extended their evaluation for Silicon 

carbide nanotubes (SiCNTs). Bellifa et al. (2017) studied the nonlinear post-buckling behaviour of 

nanobeams through nonlocal zeroth-order shear deformation theory. Based on nonlocal elasticity 

theory, Mokhtar et al. (2018), studied the buckling analysis of single-layer graphene sheet. The 

buckling analysis of various nanostructures in the thermal environment was also studied and 

reported in the literature (Ebrahimi et al. 206 a,b, Ebrahimi and Salari 2015a, b). The prominence 

of elastic foundations and neutral surface position concept in assessing the mechanical behaviour 

of nanostructures were also highlighted (Ebrahimi and Barati 2016f-n, Ebrahimi and Barati 2017, 

Larbi Chaht et al. 2015). 

Despite the fact that Eringen’s nonlocal theory is broadly applied to take into consideration of 

the small scale effects, it considers only the stiffness-softening influence. It is reported that the 

nonlocal elasticity theory is unable to predict the stiffness-hardening effects by introducing the 

length scale parameter. In the nonlocal strain gradient theory, the stress field accounts for not only 

the nonlocal stress field but also the strain gradients stress field (Karami et al. 2018). 

As mentioned before the cortical bone has a hierarchical structure and composed from units 

have been called osteon. An osteon composed of 5-6 cylindrical shells that have been called 

lamellae. In this paper, for the first time, employed an analytical method for better understanding 

of behavior of bone and analyzed wave propagation of a single lamellae with considering size 

effect by NSGT and governing equations of lamellae derived by using Hamilton's principle. 

 
 

2. Mechanical model 
 

The single lamellae can be modeled as a hollow cylindrical shell (Fig. 1). In the present paper 

the NSGT is used for modeling lamellae (Yazid et al. 2018). The stiffness matrix of a single 

lamellae which is obtained experimentally, is as below Sun et al. (2016) 
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𝐶(𝐺𝑃𝑎) = [
16.08 6.21 0
6.22 16.07 0
0 0 9.88

]                          (1) 

The lamellae displacement fields are denoted by U, V, and W in x, θ, and z coordinates. The values 

of these displacements based on the love thin shell theory can express as below 

0 ,xU u zw 

 

0 , 0( / )( )V v z R w v  

                           (2) 

0W w
 

where u0 , 0  , 0w  are axial, circumferential, and radial displacements, respectively. In these 

equations, has been called radius by R, thickness by h and mass density by ρ. We use x, θ and z as 

angular coordinate elements, perpendicular to the lamellae axis The strain components εx, εθ, x  

x   at an arbitrary point of the shell, are as below 

xxxx zwu ,, 
                            (3) 

2
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The stress-strain relationships based on NSGT can be written as 

   

   (6) 
 

And for using Hamilton's principle we need to obtain strain energy U, kinetic energy K and work 

of external forces W 

0
( ) 0

t

U T W dt                            (7) 

Strain energy U of lamellae is expressed as below 
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   (9) 

where in that 

 

 

2 2(1 ( ) )ij s ijkl kll C   
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Mij=

dz

h

h

ij


2/

2/

z

 

Nij =

dz

h

h

ij


2/

2/



 
2 2(1 ( ) )sA l  

 
and for kinetic energy K we have 

2 2 21
( )

2
V

T u v w dV  
                       (10) 

( )
V

T u u v v w w dV      
                   (11) 

and then we have 


2 2 2

2 2 2
]

x

w u v
T hR w hR u hR v dxd

t t t


    
       

        
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 
        (12) 

which with substitution 

0I h
                                 (13) 

Eq. ) 12) become 
2 2 2

0 0 02 2 2
[ ]

A

w u v
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          (14) 

and for external forces we have 

( )u v wW f u f v f w dA                           (15) 

By substituting Eqs. (9), (14), (15) into (7) and integrating by parts, equations of motion can be 

written as below 
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Fig. 2 Variation of wave velocity in different R of the lamellae, with n=1, ls=1nm, h=1nm 
 
 
3. Solution method 

 

For non-axisymmetric waves which in that n>0, the solution of wave given by 

 

 

 

 

(19) 
 

where U, V and W are an undefined constant of amplitude in the longitudinal, circumferential and 

radial directions, c is the wave velocity and kx is the wave vector in the longitudinal direction. 

Substituting Eq. (19) in Eqs. (16)-(18), leads to three coupled equations that can be written as 
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11 12 13

21 22 23

31 32 33

det 0
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F F F

F F F

 
 


 
                            (21) 

with considering K=kx/R and K=10
s
, with knowing n we can obtain c. In addition, Eigen values of 

this matrix give the natural frequency. 

 

 

4. Result and discussion 
 
As the importance of bone in the structure of the body, investigation of wave propagation of 

component of this vital member was investigated. Those components of cortical bone include of 

osteons, lamellae and so on. In this paper, the single lamellae's wave propagation characteristic has 

been studied for a different set of parameters. The component of stiffness matrix was presented in 

Eq. (1). In this case density ρ was considered  98 0 and radius of lamellas R vary from 10 to 

500 micrometer, the thickness of lamellas h varies from 1 to 10 micrometer. For the sake of 

comparison, the respect between wave vector and wave velocity and wave frequency, shown in 

figures. 

First, we examine the ratio of varying longitudinal wave velocity compared to varying wave vector 

with considering a various radius of a single lamellae, with n=1, ls=1*10^-9, and thickness h=1 

nanometer; it can be seen as shown in the Fig. 2 that radius changes don’t have effects on wave 

velocity. In Fig. 3 we compared the natural frequency toward wave vector; we showed shade in the 

charts of the different radius in lower wave vector but in higher wave vector the radius has an 

insensitive effect on wave frequency of a lamellae. 
 

 

 

Fig. 3 Variation of longitudinal wave frequency in different R of the lamella, with n=1, ls=1nm, h=1nm 
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Table2 Variation of wave frequency toward n of a lamellae, with R=100 nm, h=1 nm, ls=1 nm 

Wave frequency(1/nm) s 

n=10 n=5       n=1  

5.23804 5.23796 5.2334 0 

16.5598 16.5598 16.4065 0.5 

52.2075 52.2075 44.669 1 

147.515 147.515 120.653 1.5 

3229.01 3229.01 454.585 2 

5385.76 4458.27 3323.63 2.5 

36559.6 33051.6 31801.6 3 

321601 317816 316510 3.5 

 

 

 

Table 3 variation in longitudinal wave velocity toward variation ls of lamellae, with R=100 nm,n=1 

Wave velocity(Km/s) s 

ls(nm)      

2 1 0  

0.650129 0.650129 0.650129 0 

0.576696 0.576696 0.576696 0.5 

0.568831 0.568831 0.568831 1 

0.568039 0.568039 0.568039 1.5 

0.56796 0.56796 0.567959 2 

0.567963 0.567954 0.567951 2.5 

0.568064 0.567979 0.567951 3 

0.569085 0.568234 0.56795 3.5 

0.579198 0.570783 0.56795 4 

 

 

In Fig. 4 has been shown the overall trend changes of longitudinal wave frequency of a lamellae 

while n=1, ls=1 nm, and radius of lamellae is 100nm and its thickness is 1nm; Fig. 4 show when 

s>9 wave frequency has a very sharp uptrend. Also varying in wave frequencies with different 

circumferential wave number have been shown in Table 1; it is visible incremental effect of n on 

wave frequency in this table. Variation of longitudinal wave velocity with a variation of size effect 

coefficient is visible in Table 2; variation of radial wave velocity with a variation of size effect 

coefficient is visible in Table 3; variation of radial wave velocity with a variation of size effect 

coefficient is visible in Table 4. All three Tables 2-4 show the incremental rate of phase velocity 

commensurate with the size coefficient. Changes in wave frequencies with considering a variation 

of thickness h are visible in Fig. 5. It should be mentioned that these variations have a complicated 

but shading relationship with together; the most clear difference is relate to 8.5<s< 9.5 that as 

increasing in h wave velocities increased. 
 

53



 

 

 

 

 

 

Farzad Ebrahimi, Farin Zokaee and Vinyas Mahesh 

 

 
Fig. 5 Variation of wave frequency toward s(=log(K)), with n=1, ls=3 nm and R=100 nm 

 

 

 

Table 4 variation in radial wave velocity toward variation ls of lamellae, with R=100 nm, n=1 

Wave velocity(Km/s) s 

ls(nm)      

2 1 0  

10366.1 10366.1 10366.1 0 

3278.04 3278.04 3278.04 0.5 

1036.61 1036.61 1036.61 1 

327.804 327.804 327.804 1.5 

103.661 103.661 103.661 2 

32.7811 32.7806 32.7804 2.5 

10.3682 10.3666 10.3661 3 

3.28463 3.27972 3.27808 3.5 

1.05833 1.04295 1.03777 4 

 

 

 

Fig. 6 compared the longitudinal, radial and circumferential wave velocities in the different wave 

vector with considering circumferential wave number n=1 and size coefficient  ls=3 nm. In this 

figure uptrend longitudinal wave velocity for s>5 was observed while radial and circumferential 

wave velocity for s<5 have decreasing trend and for s>5 have an increasing trend. 
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Fig. 6 Variation of wave velocity in different directions towards (=log(K)) , with n=1, ls=3 nm 

 

 

Table 5 Variation in circumferential wave velocity toward variation ls of lamellae, with R=100 nm,n=1 

Wave velocity(Km/s) s 

ls(nm)      

2 1 0  

10366.1 10366.1 10366.1 0 

3278.04 3278.04 3278.04 0.5 

1036.61 1036.61 1036.61 1 

327.805 327.805 327.805 1.5 

103.662 103.661 103.661 2 

32.7826 32.7821 32.782 2.5 

10.373 10.3714 10.3709 3 

3.29986 3.29492 3.29328 3.5 

1.10528 1.08922 1.08382 4 

 

 

5. Conclusions 
 
In this article, a wave propagation characteristic of a single lamellae is explored using NSGT. 

To correlate with the structure of the bone, a beam model is adopted. Finally, with using some 

parametric study, the parameters such as radius, thickness, nonlocal coefficient, circumferential 

wave number on wave velocity and wave frequency of lamellae of bone are investigated. It is 

found that the variation in radius of lamellae does not have a significant effect on wave velocity 

but exhibit a shading effect on wave frequency. In addition it is observed that the size coefficient 

has an incremental effect on the wave velocity. Analogously, increase in the circumferential wave 
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number improves the wave frequency. Effect of thickness on longitudinal wave frequency was 

seen just in the limited domain of wave vector. Comparison between types of wave velocities 

observed in a figure and was shown for s>5 all of them have incremental trend. It is believed that 

the results may act as benchmark solutions in the future analysis and evaluation of single lamellae. 
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