
 

 

 

 

 

 

 

Advances in Robotics Research, Vol. 2, No. 1 (2018) 45-57 

DOI: https://doi.org/10.12989/arr.2018.2.1.045                                                                                                45 

Copyright © 2018 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=arr&subpage=7                 ISSN: 2287-4976 (Print), 2287-4984 (Online) 
 
 
 

 
 
 
 

Projection mapping onto multiple objects  
using a projector robot 

 

Hirotake Yamazoe
*1, Misaki Kasetani2, Tomonobu Noguchi2 and Joo-Ho Lee1a 

 
1
College of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 

525-8577, Japan 
2
Graduate School of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, 

Kusatsu, Shiga, 525-8577, Japan 

 
(Received January 1, 2018, Revised February 22, 2018, Accepted February 23, 2018) 

 
Abstract.  Even though the popularity of projection mapping continues to increase and it is being 

implemented in more and more settings, most current projection mapping systems are limited to special 

purposes, such as outdoor events, live theater and musical performances. This lack of versatility arises from 

the large number of projectors needed and their proper calibration. Furthermore, we cannot change the 

positions and poses of projectors, or their projection targets, after the projectors have been calibrated. To 

overcome these problems, we propose a projection mapping method using a projector robot that can perform 

projection mapping in more general or ubiquitous situations, such as shopping malls. We can estimate a 

projector’s position and pose with the robot’s self-localization sensors, but the accuracy of this approach 

remains inadequate for projection mapping. Consequently, the proposed method solves this problem by 

combining self-localization by robot sensors with position and pose estimation of projection targets based on 

a 3D model. We first obtain the projection target’s 3D model and then use it to accurately estimate the 

target’s position and pose and thus achieve accurate projection mapping with a projector robot. In addition, 

our proposed method performs accurate projection mapping even after a projection target has been moved, 

which often occur in shopping malls. In this paper, we employ Ubiquitous Display (UD), which we are 

researching as a projector robot, to experimentally evaluate the effectiveness of the proposed method. 
 

Keywords:  projection mapping; projector robot; multiple objects; self-localization; point cloud 

 
 
1. Introduction 
 

The popularity of projection mapping continues to increase, and it is being used in various 

situations (Rok et al. 2013, Lee et al. 2015). Projection mapping is generally conducted at large-

scale events, for example, onto stations or castles. Another example is projection mapping in 

theaters or at live musical performances. Projection mapping is also used in advertisements. With 

projection mapping, we can show items more attractively and advertise products with one 

mannequin by projecting images of various clothing onto it. Although projection mapping is done  
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Fig. 1 Assumed situation and conventional setup 

 

 

Fig. 2 Proposed method 

 

 

in many different circumstances, most are conducted during special events. 

In contrast, we conduct projection mapping in more general situations, as shown in Fig. 1. We 

achieve projection mapping onto multiple objects that are placed in shopping malls or train 

stations, for example. In such situations, several problems occur based on conventional projection 

mapping methods. 

Conventional projection mapping requires a calibration process that estimates in advance the 

relative relationship between a projector and its target. After calibration, we cannot move the 

projector or the projection target, since moving them would require recalibration. When projecting 

onto multiple objects, a dedicated projector is required for each projection target. Accordingly, 

many projectors are required for a given deployment. Since we need to calibrate all of the 

projectors, performing these projector calibrations is time-consuming. Thus, using the 

conventional projection mapping methods, projection mapping would be difficult in the situation 

illustrated in Fig. 1. 

We aim to solve these conventional projection mapping problems and to achieve projection 

mapping onto multiple objects by introducing a robot equipped with a projector: a projector robot 

(Kasetani et al. 2015). As shown in Fig. 2, the projector robot first moves to its first designated 

position and performs the projection mapping. After that, it moves to its next designated position 

and carries out the next stage of projection mapping. Using our method, we can achieve projection 

mapping onto multiple objects even when these objects are moved.  

Recently, some developers have used robot arms to perform projection mapping from moving 

projectors or onto moving targets, such as “Box” (Box 2013). However, because these systems 
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require preparation in advance to establish the correspondence between the robot arm’s 

movements and the projection contents, the projectors or projection targets cannot be moved 

freely, thus limiting the applicable situations for their use. Some researchers have proposed 

projection mapping onto deformable objects (Narita et al. 2017, Bermano et al. 2017, Siegle et al. 

2017), but these works have not focused on projection mapping onto multiple objects or the 

required movement compensation for target objects that have moved. 

Several projector robots have been proposed and developed (Cerevo Inc. 2016, Keecker 2017, 

Machino et al. 2006, Lee 2007, Park and Kim 2009, Choi et al. 2013, Maegawa et al. 2013, 

Sticker et al. 2015, Tatsumoto et al. 2017) that are equipped with self-localization sensors 

(odometry, laser range finder, etc.) and a projector. By using these sensors, we can obtain the 

robot's position and pose. As a result, the projector’s position and pose in the environment can also 

be obtained. However, the position and pose estimation accuracy are insufficient for projection 

mapping. 

In this paper, we propose a method to achieve projection mapping onto multiple objects with a 

projector robot by combining self-localization by the robot’s sensors with position and pose 

estimation of projection targets based on a 3D model. An RGB-D camera, such as KINECT, is 

mounted on the projector robot to obtain the 3D point cloud of the projection target. With the 

obtained 3D point cloud, we estimate the projection target’s accurate position and pose for 

accurate projection mapping. 

Projection mapping is also called Spatial Augmented Reality (SAR) (Bimber and Rasker 2005) 

or Projection-based Augmented Reality, and many researchers have proposed projection mapping 

systems in the context of AR (Schöning et al. 2009, Mine et al. 2012, Leutert et al. 2013, Akiyama 

et al. 2016, Fukiage et al. 2017). However, such research mainly focused on projections onto 

planar surfaces and did not consider projections onto 3D objects. In addition, since they did not 

employ a projector mounted on a robot, its projection areas are limited. 

On the other hand, these research efforts could achieve various effects by projecting additional 

information such as changing the colors/appearances of the original surfaces (Akiyama et al. 

2016), or animating static objects (Fukiage et al. 2017). In addition, aiming to introduce robots in 

public spaces such as shopping malls or museum, recently, many researchers have proposed 

service robots and their behavior models (Glas et al. 2012, Noguchi et al. 2015, Doering et al. 

2015). By combining these research works and our proposed method, we will be able to achieve 

more attractive projection mapping.  

Section 2 describes an overview of our proposed method. Section 3 describes the proposed 

projection mapping onto multiple objects. Section 4 shows the experimental results of our 

proposed method, and Section 5 summarizes our paper. 

 

 

2. Overview of proposed method 
 

2.1 Requirements of projector robot 
 

We first describe the following requirements of the projector robot for our proposed method: 

• The robot must be able to conduct such self-localization as Simultaneous Localization and 

Mapping (SLAM) (Brenneke et al. 2003, Cole and Newman 2006) and move to designated 

positions. 

• It must be able to capture a 3D point cloud of its surrounding environment with an RGB-D  
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Fig. 3 Ubiquitous display 

 

 
Fig. 4 Process flow 

 

 

camera for accurate position and pose estimation of projection targets from the projector. 

As an example of a projector robot that satisfies these requirements, we introduce our research 

on Ubiquitous Display (UD) (Lee 2007, Maegawa et al. 2013), which is a robot with a projector 

that can provide human-centered information provisions (Lee 2007). Fig. 3 shows UD’s system 

configuration, which consists of a mobile platform (KUKA youBot), a projector with a pan-tilt 

mechanism, and such sensors as two laser range finders (LRF) (Hokuyo UTM-30LX), an 

odometry (included in  KUKA youBot), and an RGB-D camera (Microsoft Kinect V1) (Fig. 3). 

UD satisfies the above requirements. In this paper’s experiment, we employ it as a projector robot. 

 

2.2 Process flow 
 

Fig. 4 shows our proposed method’s process flow, which is divided into two phases: 

preparation and projection. Each phase mainly consists of processes for self-localization and 

accurate pose estimation of the projection targets. 
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In the preparation phase, we obtain data required for projection mapping by the projector robot. 

The proposed method assumes that a 3D model of the projection target and the projection contents 

and an environmental map and the position and pose of the projection target are given in advance 

(Fig. 4 left). First, we measured the 3D model of the projection target and manually set its position 

and pose. The projection contents are prepared on the constructed 3D model. 

In the projection phase, the robot first moves to its designated position for the projection based 

on the environmental map. Next, it captures the 3D point cloud around the projection target. 

Aligning the constructed 3D model of the projection target with the captured 3D point cloud, we 

estimate the accurate 3D position and the target’s pose in the environment. Finally, we generate 

projection images for projection mapping based on the target’s estimated position and pose for 

accurate projection mapping. 

 

 

3. Projection mapping by projector robot 
 

3.1 Definition of coordinate system 
 

Before describing the method’s details, we first define the coordinate systems used in this paper 

(Fig. 5). 

A world coordinate system 𝑪𝑤 is a manually defined coordinate scheme. Environmental maps 

are expressed by this coordinate. The projector and RGB-D camera coordinate systems 𝑪𝑝, 𝑪𝑐 are 

the coordinate systems of the projector and the RGB-D camera, respectively. The relative relation 

between them, 𝑹𝑐𝑝, 𝑻𝑐𝑝, are calibrated in advance. 

The model coordinate system 𝑪𝑚  is defined as a coordinate whose origin is the model’s 

centroid, and the Y and Z axes are defined manually as the model’s upward and front directions. 

 

3.2 Preparation phase  
 

In the preparation phase, we obtain a 3D model of the projection targets, the projection 

contents, and the environmental map.  

 

3.2.1 Preparation of projection target models 
First, we built a 3D model of the projection targets by employing KinectFusion (Newcombe et 

al. 2011). We converted the obtained 3D model to the model coordinate and used it for estimating 

the position and pose of the projection targets. 
After building the 3D model, we made contents of the projection mapping by coloring it. In the 

current implementation, we employed Meshlab (Cignoni et al. 2008). Figs. 6 and 7 show an 

example of the projection target and its colored 3D model for projection mapping.  

 

3.2.2 Construction of environmental map  
Next we construct an environmental map so the robot can move to its designated positions with 

Simultaneous Localization and Mapping (SLAM) (Brenneke et al. 2003, Cole and Newman 2006). 

Although the constructed environmental map varies depending on the robot’s sensors, an example 

is shown in Fig. 8 of an environmental map constructed by the UD. In the current implementation, 

we employed the ICP-SLAM algorithm from the Mobile Robot Programming Toolkit (MRPT) 

(MRPT n.d.) to construct the environmental map. 
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Since the proposed method requires the positions and poses of the projection targets, these 

values are measured in advance. In addition, we defined the robot’s positions when it performs 

projection mapping onto each projection target. These positions are also required in the proposed 

method. Here, note that unlike conventional projection mapping, our proposed method does not 

need accurate positions or poses of the projection targets and the projector. This is an advantage of 

our proposed method. 

 

 

 
Fig. 5 Coordinate systems 

 

 

Fig. 6 Example of projection target 

 

 

Fig. 7 Example of 3D model and projection content 
 

50



 

 

 

 

 

 

Projection mapping onto multiple objects using a projector robot 

 

Fig. 8 Example of environmental map 

 

 

Fig. 9 Example of ICP results (blue: initial, green: ground truth, red aligned results) 

 

 

Fig. 10 Example of projection before estimation 

 

 

Fig. 11 Example of projection after estimation 

Projection target pos.

Initial Pos.

of robot

Designated robot pos.
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3.3 Projection phase 
 

3.3.1 Moving to the designated positions 
As the first step of the projection phase, the projector robot moves to its designated position 

based on its self-localization. After that, it changes the poses of the projector and the RGB-D 

camera to face to the projection target, based on the robot’s current position and the given 

projection target position. For self-localization in the current implementation, we again employed 

ICP-SLAM from the MRPT (MRPT n.d.). 

 

3.3.2 Accurate position and pose estimation of projection targets 
Subsequently, to estimate the relative relationship between the projector and the projection 

target, the robot captures the 3D point cloud data of the scene around the projection target, and we 

align the projection target’s 3D model to the obtained point cloud data. 
We employed the Iterative Closest Point (ICP) algorithm for the alignment. Here, since it 

requires initial values, we calculate them for the alignment. Let 𝑹𝑡𝑖
(𝑐)

, 𝑿𝑡𝑖
(𝑐)

 be the initial values of 

the pose and position of the projection target in the RGB-D camera coordinate 𝑪𝑐, 𝑹𝑡𝑖
(𝑐)

, 𝑿𝑡𝑖
(𝑐)

 can 

be calculated as follows 

 

 

(1) 

where 𝑹𝑡 , 𝑿𝑡 are the projection target’s pose and position given in the environmental map, 𝑹𝑤𝑐   is 

the rotation matrix from 𝑪𝑤 to 𝑪𝑐, and 𝑿𝑐 is the projector position in 𝑪𝑤. Note that the captured 

3D point cloud is in RGB-D camera coordinate 𝑪𝑐. Using 𝑹𝑡𝑖
(𝑐)

, 𝑿𝑡𝑖
(𝑐)

 as the initial values for ICP, 

we can estimate 𝑹𝑡
(𝑐)

, 𝑿𝑡
(𝑐)

, which are the projection target’s accurate position and pose in 𝑪𝑐 . 

Currently, we employ an implementation of the ICP algorithm from the Point Cloud Library 

(PCL) (Rusu and Cousins 2011). Fig. 9 shows an example of the ICP results, where the blue mark 

is the initial position and pose, the green mark is the ground truth, and the red mark indicates the 

aligned results. 

To generate projection images, we require 𝑹𝑡
(𝑝)

, 𝑿𝑡
(𝑝)

, which are the projection target’s position 

and pose in projector coordinate 𝑪𝑝. 𝑹𝑡
(𝑝)

, 𝑿𝑡
(𝑝)

 can be calculated as 

 

 

(2) 

where 𝑹𝑐𝑝, 𝑻𝑐𝑝 are the relative relations from 𝑪𝑐 to 𝑪𝑝.  

 

3.3.3 Generation of projection images 
Finally, we generated images for projection mapping by projecting the colored 3D model to the 

2D projector coordinate. Let 𝒙(𝑝) be the 2D positions in the 2D projector coordinate and calculate 

it as follows 

𝒙(𝑝)  =  𝑨𝑝 (𝑹𝑡
(𝑝)

𝑿𝑡
(𝑚)

+ 𝑿𝑡
(𝑝)

),  (3) 

where 𝑨𝑝  is the intrinsic matrix of the projector and 𝑿𝑡
(𝑚)

 is the 3D model data in model 
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coordinate 𝑪𝑚. 

Thus, the projection images aligned to the projection target can be accurately generated to 

achieve projection mapping onto multiple objects by the projector robot. Figs. 10 and 11 show 

examples of the projection before and after position and pose estimation of the projection targets 

using ICP. 

 

 
 

 

Fig. 12 Experimental environment 

 
 

 

Fig. 13 Projection target 1(mannequin) 

 

 

Fig. 14 Projection target 2 (toy) 
 

Target 1
(mannequin) Target 2

(toy)

Robot pos. for Target 1

Robot pos. for Target 2

Initial pos.
of robot
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Fig. 15 Projection result of target 1 

 

 
Fig. 16 Projection result of target 2 

 
Table 1 Projection mapping errors [mm] 

 Target 1 Target 2 

1
st
 

2
nd

 

3
rd

 

4.0 

6.0 

12.0 

6.0 

6.0 

19.0 

 
 
4. Experiment 
 

To show the effectiveness of the method, we performed the following experiment. As shown in 

Fig. 12, two projection targets were placed in the environment. We performed projection mapping 

on them with the projector robot. As described above, we employed the UD shown in Fig. 3 as the 

projector robot. Figs. 13 and 14 show the projection targets and their projection contents. In the 

experiment, we used only an odometry for self-localization. 

The following are the projection mapping procedures. First, the robot moved to projection 

target 1 from its initial position and performed projection mapping on it. Next, the robot moved to 

projection target 2 and performed projection mapping on it. After that, the robot returned to target 

1 and performed projection mapping on it. Finally, the projection mappings were performed three 

times for each target. Figs. 15 and 16 show examples of projection mapping. 

To evaluate the accuracy of our proposed projection mapping, we measured projection errors as 
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follows. The robot first performed projection mapping from the ideal position and pose. Here, the 

projection contents included markers for measuring projection errors, and we manually marked the 

positions to which they were projected. After that, the robot went back to its initial position and 

moved to the designated positions to perform the proposed method’s projection mapping. Finally, 

we manually measured the marked positions to obtain the projection errors. Table 1 shows the 

results. The errors of the 1
st
 and 2

nd
 projections were less than 6 [mm]; however, the errors of the 

3
rd

 projections increased, perhaps because the self-localization errors accumulated. This increased 

the error of the initial value for ICP, and the errors of the position and pose estimation increased. 

 

 

5. Conclusions 
 

In this paper, we proposed projection mapping onto multiple objects with a projector robot. 

Although conventional projection mappings are limited to such special situations as live theater or 

outdoor events, our proposed method achieved projection mapping in more general situations, for 

example, projections onto various items in a shopping mall. Although we can estimate the 

projector’s position and pose using the robot’s self-localization sensors, the accuracy for projection 

mapping is inadequate. Therefore, our proposed method overcame this problem by combining self-

localization by robot sensors with accurate position and pose estimation of the projection targets 

based on 3D models of the targets. We capture the projection target’s 3D models in advance and 

accurately estimate the target’s position and pose based on the captured 3D models. These 

processes enable us to achieve accurate projection mapping. In the experiment, we employed 

Ubiquitous Display (UD) as a projector robot and confirmed that accurate projection mapping can 

be performed. 

Future works will improve the projection mapping accuracy. Recently, some researchers 

propose methods for projection mapping onto a moving object (Chen et al. 2015, Sueishi et al. 

2017). Although these methods employ high speed cameras or projectors, by improving our 

method based on these techniques, we will be able to improve the projection mapping accuracy. 

We are also developing an environment for creating projection contents. Furthermore, since our 

proposed method is based on a projector robot, we will exploit that advantage and investigate 

robot services that might provide not only projection mapping but also navigation or other 

information.  
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