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Abstract.  In this article we present modular neural control for a leg-wheel hybrid robot consisting of 
three legs with omnidirectional wheels. This neural control has four main modules having their 
functional origin in biological neural systems. A minimal recurrent control (MRC) module is for 
sensory signal processing and state memorization. Its outputs drive two front wheels while the rear 
wheel is controlled through a velocity regulating network (VRN) module. In parallel, a neural oscillator 
network module serves as a central pattern generator (CPG) controls leg movements for sidestepping. 
Stepping directions are achieved by a phase switching network (PSN) module. The combination of 
these modules generates various locomotion patterns and a reactive obstacle avoidance behavior. The 
behavior is driven by sensor inputs, to which additional neural preprocessing networks are applied. The 
complete neural circuitry is developed and tested using a physics simulation environment. This study 
verifies that the neural modules can serve a general purpose regardless of the robot’s specific 
embodiment. We also believe that our neural modules can be important components for locomotion 
generation in other complex robotic systems or they can serve as useful modules for other 
module-based neural control applications. 
 

Keywords:  neural networks; mobile robot control; autonomous robots; obstacle avoidance; reactive 

behavior 

 
 
1. Introduction 
 

Recently, roboticists have become more interested in multi-modal locomotion to enhance 

mobility and ensure integrity of robotic systems for locomotion in different terrains/surfaces as 

well as for autonomous exploration missions, e.g., planetary exploration and scouting in hazardous 

areas including transportation and rescue tasks. Thus, new types of robots like leg-wheel hybrid 

robots with different configurations have been increasingly developed to solve these tasks 

(Besseron et al. 2005, Nakajima and Nakano 2008, Tanaka and Hirose 2008, Klavins et al. 2000, 

Allen et al. 2003, Eich et al. 2008, Halme et al. 2001, Mahmoud et al. 2008). For example, the 

robot HyLoS (Besseron et al. 2005) consisting of four legs and four standard wheels was 
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developed to traverse different slopes. The robot Chariot III (Nakajima and Nakano 2008) was 

constructed with four legs and two wheels beside its body. It can locomote on rough terrain 

including climbing up a stair. One impressive hybrid robot is the leg-wheel hybrid jumping robot 

AirHopper II (Tanaka and Hirose 2008). It combines leg, jumping, and wheel mechanisms. As a 

consequence, the robot can move on flat surfaces using wheels and jump over large obstacles as 

well as land using its legs. In contrast to HyLoS, Chariot III, and AirHopper II where each of their 

legs has more than one degree of freedom (DOF), robots like RHex (Klavins et al. 2000), Whegs 

(Allen et al. 2003), and ASGUARD (Eich et al. 2008) have only one active joint (i.e., one DOF) at 

each “wheel-like” leg for propulsion to overcome various obstacles including rugged and sandy 

grounds, slopes and even stairs. 

To tackle this challenging problem (i.e., multi-locomotion modes for autonomous exploration 

missions), during the last years we have developed a leg-wheel hybrid robot consisting of three 

legs with omnidirectional wheels which is able to transform into a spherical shape 

(Laksanacharoen and Jearanaisilawong 2009, Chadil et al. 2011). It combines the idea of using legs, 

wheels, and a rolling sphere for multi-modal locomotion. The conceptual design of this robot was 

that it will be initially packed and deployed in a spherical configuration. Due to its closed spherical 

shape, the robot allows for easy transportation and deployment; for instance, a number of these 

robots can be packed and deployed together from an aircraft. Cushioning materials can be added 

on the shell for soft landing. After landing, the robot will passively roll for some distance (Chadil 

et al. 2011). Afterwards it will transform into two inter-connected hemispheres and extend its three 

legs to further locomote using wheels or legs for autonomous exploration. To the best of our 

knowledge, this type of robot, which combines legs, wheels, and a rolling sphere for multi-modal 

locomotion, so far has not been developed by other researches. As described above, there are 

several leg-wheel hybrid robots but without rolling sphere while there are spherical rolling robots 

but without legs and wheels (Kim et al. 2010, Armour and Vincent 2006). 

Continuing the development of our robot system, this article presents neural control of our 

leg-wheel hybrid robot for the generation of active locomotion using wheels and legs as well as 

controlling a reactive obstacle avoidance behavior in cluttered environments. This pure neural 

network control has a modular structure which is inspired by biological neural locomotion systems 

of insects (Bassler and Büschges 1998, Delcomyn 1999). Such a structure is also considered as a 

major advantage (Valsalam and Miikkulainen 2009, Valsalam and Miikkulainen 2008), compared 

to many other controllers (see the Discussion section for details). The entire control is composed of 

two main components: the neural sensory preprocessing and the modular neural locomotion 

control. The neural sensory preprocessing is for processing sensory inputs used to drive 

corresponding behaviors while the modular neural locomotion control consisting of four modules 

is for locomotion generation. Each module has its functional origin in the biological neural 

locomotion systems (i.e., neural and biological justifiable, see the Discussion section for details). 

This study also verifies that these neural modules can serve as a general purpose largely regardless 

of the robot’s specific embodiment; i.e., it can be applied to not only walking robots and simple 

wheel robots studied in the past but also to this special designed leg-wheel hybrid robot (i.e., 

transferable and generic, see the Discussion section for details). The complete neural circuitry is 

also robust to changes of structures; i.e., modules can be completely removed leading to graceful 

degradation of the agent’s functionality while as a whole the system can still function partially (see 

the Discussion section for details). All the essential features required from our modular neural 

control circuit distinguish it from others. Here, the controller will be developed and evaluated  
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Fig. 1 (a), (b) The physical robot in dormant and transformed modes, respectively. (c), (d) Simulated 

three-legged robot with omnidirectional wheels in its virtual environment. Beams around the robot 

are infrared sensors IR1,2,3,4,5,6. To model the omnidirectional wheels, we set friction coefficients for 

two orthogonal directions (x- and y-axes in (c)) of each wheel independently. As a consequence, 

the wheel rolls forward like a normal wheel (i.e., rolling with full force around y-axis) but it will 

slide sideways with almost no friction (i.e., freely rotating around x-axis) 
 
 
using a physics simulation environment. 

 

 
2. Simulated leg-wheel hybrid robot 
 

We use the physical simulation environment called “Yet Another Robot Simulator” (YARS) 

(Zahedi et al. 2008) to simulate our leg-wheel hybrid robot (Fig. 1(a)-(b)). It provides a defined set 

of geometries, joints, motors and sensors which are adequate to create the robot in a virtual 

environment. The robot model (Fig. 1(c)-(d)) is qualitatively consistent with the real one (Chadil et 

al. 2011) in the aspect of geometry, mass distribution, motor torque/speed, and sensors. The robot 

is generally designed based on the concept of a spherical form where its three identical legs, each 

attached with an omnidirectional wheel at its end, are kept inside its shells (body) in order to 

perform passive rolling motion (Chadil et al. 2011). This form (called dormant mode, Fig. 1(a)) 

provides the compact shape of the robot. For active locomotion, it will transform into two 

hemispherical shells where the wheeled legs are projected out of the shells (called transformed 

mode, Fig. 1(b)). In this study, we consider the robot locomotion only in the transformed mode. 

Describing a controller for locomotion in the spherical mode (Shu et al. 2009) will go beyond the 

scope of this work. 
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All in all the robot has seven degrees of freedom driven by DC motors: one active middle joint  

for the transformation process and two active joints of each leg where each of them moves the leg 

up and down and drives the wheel. In addition to the robot mechanical feature, we also simulate six 

infrared proximity sensors (IR1,2,3,4,5,6, Fig. 1(d)) to generate obstacle avoidance behavior. 

Here, we add a Gaussian-distributed noise with a standard deviation of, e.g., 5 %  to each 

sensor value. The simulated robot with its virtual environment is shown in Figs. 1(c)-(d). This 

simulation environment is embedded in the Integrated Structure Evolution Environment (ISEE) 

(Hülse et al. 2004). The ISEE is a software platform consisting of the evolution program EvoSun, 

the execution program Hinton and the simulators, e.g., YARS (see (Manoonpong 2007) for the 

scheme of the ISEE). Hinton allows constructing and analyzing neural control while EvoSun can 

optimize it using a special evolutionary algorithm, the ENS
3
 (evolution of neural systems by 

stochastic synthesis, see (Hülse et al. 2004) for more details). In this study, we implement neural 

control on Hinton. Since the evolution program is part of ISEE, it is straightforward to optimize the 

(recurrent) neural parameters, if required. 

 
 

3. Biologically inspired modular neural control 
 

To control the active locomotion of the leg-wheel hybrid robot, we employ modular neural 

control. While different methods can be applied for locomotion generation, this modular neural 

control is selected in order to provide a basic control structure to the system where an online neural 

learning mechanism (Manoonpong et al. 2013) or an evolutionary algorithm (Hülse et al. 2004) for 

parameter adaptation could be later applied to obtain adaptive and robust behaviors. Moreover, a 

modular approach is able to deal with transferring and scaling issues; i.e., applying to different 

robots (Hornby et al. 2005) or when more degrees of freedom are added (Valsalam and 

Miikkulainen 2009, Valsalam and Miikkulainen 2008). We also discuss a major advantage of using 

a modular approach in more details in the Discussion section. 

Here it is used to generate various locomotion patterns (e.g., omnidirectional motion including 

sidestepping) as well as a reactive obstacle avoidance behavior. The modular neural control 

consists of four main modules or networks: a minimal recurrent control (MRC) network, a velocity 

regulating network (VRN), a neural oscillator network (abbreviated CPG, see below), and a phase 

switching network (PSN). The MRC network is for sensory signal processing and directly drives 

two front wheels (Mleft, wheel, Mright, wheel, Fig. 2) while a rear wheel (Mrear, wheel, Fig. 2) is indirectly 

controlled through the VRN module. In parallel, the neural oscillator network serves as a central 

pattern generator (CPG) (Ijspeert 2008). It produces the basic rhythmic signals for driving leg 

movements (Mleft, leg, Mrigth, leg, Fig. 2) to obtain, e.g., sidestepping while the stepping directions are 

controlled through the PSN module. All modules are described in detail in the following sections. 

The complete structure of this modular controller and the location of the corresponding motor 

neurons are shown in Fig. 2. 

All neurons of the network are modelled as discrete-time non-spiking neurons. The state and 

output of each neuron are governed by Eqs. (1)-(2), respectively 

        ,,1,=)(=1)(
1=

nibtowta ijij

n

j

i    (1) 

104



 
 
 
 
 
 

Biologically inspired modular neural control for a leg-wheel hybrid robot 

 

Fig. 2 (a) The sensor-driven neural locomotion control of the leg-wheel hybrid robot consists of two 

components: Neural sensory preprocessing and modular neural locomotion control. Each of them 

has their own input neurons (i.e., IR1,, IR6 and I1, , I5) modelled as linear buffers while other 

remaining neurons are modelled with respect to Eqs. (1)-(2). The modular neural control has three 

different neuron groups: input, hidden, and output. Input neurons I receive sensory signals. Hidden 

neurons H are divided into four modules (MRC, VRN, CPG, and PSN) having different 

functionalities (see text for details). Output neurons are described as motor neurons (M1…..7). All 

connection strengths together with bias terms are indicated by the small numbers except some 

parameters of the VRN given by 7246.1 , 48285.2 , 7246.1C . Dashed arrows 

indicate additional synapses which can be added to obtain more locomotion behaviors. (b) The 

movements of the leg joints (M1,3) and the body joint (M7). The right leg joint (M5) having the same 

movement as the left one (M3) is omitted. (c) The location of the motor neurons on the robot. For 

clarity and trackable in text, indexing of motor neurons is used as: M1 = Mrear,leg, M2 = Mrear,wheel, M3 

= Mleft, leg, M4 = Mleft, wheel, M5= Mright, leg, M6 = Mright, wheel, M7= Mbody 
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where n  denotes the number of units, bi represents a fixed internal bias term together with a 

stationary input to neuron i, ai their activity, wij the synaptic strength of the connection from neuron 

j to neuron i, and oi the neuron output. Input neurons are here configured as linear buffers (ai = oi). 

The entire network is constructed, experimented, and analyzed through the ISEE. 


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3.1 Wheeled locomotion control  

 
In this section, we describe the first network group used to control three wheels (Mrear,wheel, 

Mleft,wheel, Mright,wheel, Fig. 2. It consists of the minimal recurrent control (MRC) network and the 

velocity regulating network (VRN). 
 

3.1.1 Minimal recurrent control (MRC) 
The MRC has been originally evolved through the evolutionary algorithm ENS

3
, integrated into 

the ISEE (see (Hülse et al. 2004) for more details), for generating obstacle avoidance behavior of a 

miniature Khepera robot (Hülse et al. 2004), which is a two wheeled platform. The fitness function 

was simply given as: For a given time go straight ahead as long and as fast as possible (see 

(Pasemann et al. 2003b) for more details). The result of which shows that the network consisting of 

two mutually inhibiting neurons with self-connection is sufficient for solving the task (Fig. 2(a)). 

The MRC has been formulated as the dynamical neural Schmitt trigger by Hülse and Pasemann 

(Hülse and Pasemann 2002) such that one can manually modify the connection parameters to 

obtain appropriate obstacle avoidance behavior for specific properties of different robot platforms 

and environments. 
Here, we apply it to directly drive the two front wheels (Mleft,wheel, Mright,wheel, Fig. 2) of our robot. 

It basically serves for driving robot motion and controlling the turning directions of the robot to 

avoid obstacles and to escape from a corner and even a deadlock situation. We here empirically 

adjusted the connection weights of the network for our robot (see Supplementary Information for 

more details of weight adjustment). The resulting weights are shown in (Fig. 2(a)). Using these 

weights, the network exhibits hysteresis effects (Supplementary Fig. 1) which guarantee optimal 

functionality for avoiding obstacles and escaping from corner and deadlock situations (Hülse et al. 

2004). Additionally, the setup parameters enable the network to eliminate the noise of the sensory 

signals. 

We use four infrared (IR) sensor signals (two for each side, IR1,2 and IR3,4 (Fig. 1(d))) for 

obstacle detection at its front. They are transmitted to the inputs I1,2 of the network (Fig. 2). The 

sensor signals are mapped onto the interval [ 1 , +1], with 1  representing no obstacles, and 

1  representing near obstacles. I1 corresponds to an approximate mean value of the two left IR 

sensor signals and I2 to that of the two right ones. 

Applying the output signals of H1 and H2 directly to their target motor neurons Mleft,wheel, 

Mright,wheel and indirectly to the motor neuron Mrear,wheel (Fig. 2) via the VRN (described below), the 

robot motion can be (autonomously) switched; for instance, switching from moving forward to 

turning left when there are obstacles on the right, and vice versa. The network outputs also 

determine in which direction the robot should turn in deadlock situations depending on which 

sensor side has been previously active. In a special situation, like moving toward a wall or a corner, 

I1 and I2 (Supplementary Fig. 1(a)) would have a value around 1.0 at the same time. As a 

consequence, H1 and H2 would then have a value of around 1.0; thereby the robot will move 

backward. During moving backward, the activation of the sensory signal of one side might be still 

active while the other might be inactive. Correspondingly, the robot will turn into the opposite 

direction of the active signal and it can finally leave from the wall or the corner. 

 

3.1.2 Velocity regulating network (VRN) 
In general, as one locomotion mode, one could use only the two front wheels (Mleft,wheel, 
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Mright,wheel, Fig. 2) while the rear wheel (Mrear,wheel, Fig. 2) is inhibited and lifted above ground by the 

rear leg (Mrear,leg, Fig. 2(b)) during turning. However, to obtain more effective turning behavior we 

control the rear wheel with respect to turning motion driven by Mleft,wheel, Mright,wheel. The rear wheel 

Mrear,wheel is indirectly driven through the VRN which changes its rotational direction. The VRN is a 

simple feed-forward neural network with two input, four hidden, and one output neurons (Fig. 

2(a)). It was trained by using the backpropagation algorithm. It works as a multiplication operator 

(Supplementary Fig. 2). Since it was developed and already presented in our previous work 

(Manoonpong et al. 2007a), we do not explain its detail here. The detail of the network 

development is referred to (Manoonpong et al. 2007a) and also Supplementary Information. 

Here, we directly apply the VRN for our task. It is integrated into the modular neural 

locomotion control (Fig. 2(a)) where the neuron H3 is added to combine both outputs of the MRC 

and project to the input neuron H4 of the VRN. Another input neuron H5 of the VRN receives its 

input from the neuron H2 of the MRC. As a result, the VRN drives the rear wheel with low 1  

activation to rotate clockwise leading to a right turn when there are obstacles on the left (i.e., the 

output of H1 is 1  while the output of H2 is 1 ) and vice versa. In case no obstacle is 

detected (i.e., the output of H1,2 is 1 ), the rear wheel will be inactive (zero activation) leading 

to forward motion of the robot. Forward motion will be achieved due to the properties of the 

omnidirectional wheel. The summary of the wheeled locomotion driven by the  

inputs I1,2 is shown in Table 1. The motor neurons of the wheels are driven by binary values since 

we consider here only rotational directions of the wheels. However, one could add additional 

sensors and the VRNs for speed regulation of the wheels. 

 

3.2 Legged locomotion control 
 

In this section, we describe the second network group used to allow the robot to perform legged 

locomotion. The network consists of the neural oscillator network serving as a central pattern 

generator (CPG) to generate periodic movements and the phase switching network (PSN) to 

control the sidestepping directions (i.e., left and right). According to the robot configuration, if the 

front legs (Mleft,leg, Mright,leg, Fig. 2) periodically move with phase difference  /2 to each other, we 

automatically obtain sidestepping (Fig. 3). We do not use any planning to lift a leg during 

sidestepping here. The left and right legs basically follow the CPG signals having phase difference 

 /2 to each other (see below). There is also no balancing mechanism used here. The robot 

basically uses its rear body part as a supporter (i.e., this body part always touches the ground) 

during leg movement. It is important to note that forward and backward stepping motions are not 

possible with the current robot setup. To achieve forward and backward stepping motions, we need 

to add other active shoulder joints that can move the legs forward and backward (Manoonpong 

2007). 

 

3.2.1 Neural oscillator network 

The concept of CPGs for legged locomotion has been studied and used in several robotic 

systems particular in walking robots (Ijspeert 2008). Various CPG models have been proposed, 

such as nonlinear oscillators (Ijspeert 2008) and continuous-time neural oscillators (e.g., Matsuoka 

model (Matsuoka 1985), Terman-Wang model (Terman and Wang 1995), Wilson-Cowan model 

(Wilson and Cowan 1972)). 

Here the model of a CPG is realized by using the discrete-time dynamics of a simple 2-neuron  
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Fig. 3 Simple animation showing a sequence of leg movements leading to the stepping motions to the left 

(a) and the right (b) with respect to the robot view. Note that during stepping the rear leg of the 

robot is lifted such that its rear hemispherical shell is on the ground while its front part is kept 

above the ground. By doing so, its rear leg will not resist sideways motion 

 

Table 1 Control parameters for the different motions
a

 

Motions 1H  2H  wheelrearM ,  wheelleftM ,  wheelrightM ,  

Forward 1.0  1.0  0.0 1.0  1.0  

Turn left 1.0  1.0  1.0  1.0  1.0  

Turn right 1.0  1.0  1.0  1.0  1.0  

Turn left *  1.0  1.0  1.0  1.0  1.0  

a
The robot will move forward when there are no obstacles on the left and right sides; such that H1 and H2 

show low 1  activation. It will turn left when there is an obstacle on its right; such that H1 shows low 
1  activation while H2 shows high 1  activation. It will turn right when there is an obstacle on its left; 

such that H1 shows high 1  activation while H2 shows low 1  activation. In a special case, if there 

are obstacles on left and right sides making H1 and H2 show high 1  activation, it will then turn left
*
 due 

to the added hidden neuron H3 of the network. This will allow the robot to effectively avoid obstacles and 

escape from corner and deadlock situations. We intuitively set to turn left in this special situation. However, 

one could also modify the network such that the rear wheel turns right in this situation. In general, without 

rotating the rear wheel the robot can move to left or right with respect to the rotation of the front wheels. 

However, the rear wheel would produce a small resistance resulting in slightly difficult to turn. In addition, 

rotating this rear wheel will allow the robot to perform better turning and can simply avoid obstacles without 

the resistance of the rear wheel when it does not rotate or rotates passively. 

 

 

network presented by Pasemann et al. (2003a). The network consists of two neurons with full 

connectivity (Fig. 2(a)) and additional biases. Its weight matrix W  is an element in the special 

orthogonal group which is associated with a rotation in the plane and represented by functions of 

the rotation angle  . The weight matrix is given by Eq. (3) (compare Fig. 2(a)) 
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The parameters ( ,  ) need to be selected in accordance with the dynamics of the system 

staying near the Neimark-Sacker bifurcation set where quasi-periodic attractors occur (Pasemann 

et al. 2003a). As a consequence, the network can generate almost sine-shaped waveforms with   
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  1 . Increasing   will increase amplitude but slightly distort the waveforms. The frequency 

of the oscillations depends crucially on   ],[  . We first set   to a high value, e.g., 1.7, to 

obtain a high amplitude and an appropriate waveform while we empirically adjust   using the 

simulation to achieve an appropriate frequency for generating sidestepping of the robot. As a result, 

it is set to 0.25 which is appropriate for our purposes here (see Supplementary Information for 

more detail of the network). 
 

3.2.2 Phase switching network (PSN) 

To steer the sidestepping directions (i.e., lateral motions to the left and right), one possibility is 

to reverse the phase of the periodic signals driving the motors (Mleft,leg, Mright,leg, Fig. 2). That is, 

these periodic signals can be switched to lead or lag behind each other by  /2 in phase depending  

on the given input I5. 

To do so, we apply the PSN developed in our previous study (Manoonpong et al. 2008). The 

PSN is a hand-designed feedforward network consisting of four hierarchical layers with 12 neurons. 

The synaptic weights and bias terms of the network were determined in a way that they do not 

change the periodic form of its input signals and keep the amplitude of the signals as high as 

possible. The detail of the network development is referred to (Manoonpong et al. 2008) and 

Supplementary Information. 

Here, the PSN receives a binary input from the neuron I5 (i.e., binary neuron) which can be set 

manually or driven by and infrared sensor signal. Simultaneously, it also receives continuous 

periodic inputs from the neurons H11,12 (i.e., continuous neurons governed by Eqs. (1)-(2)) of the 

neural oscillator. And it finally provides continuous periodic outputs at its output neurons H23,24. All 

other neurons of the PSN are also continuous neurons. In fact, the network switches the phase of 

the two sinusoidal signals originally coming from the neural oscillator network when I5 is changed 

from 0 to 1 and vice versa (see section below). By applying this network property, the movements 

of the left and right legs will be reversed corresponding to the modification of I5. Consequently, the 

robot will change its sidestepping directions from the right to the left and vice versa. The summary 

of the legged locomotion driven by the input I5 is shown in Table 2. 

In order to control the sidestepping via sensory signals, i.e., here using the infrared sensors IR5,6 

(Fig. 1(d)), for, e.g., obstacle avoidance, we add another network designed as an XOR gate (Fig. 

4(a)). This neural network has two input neurons, one hidden neuron, and one output neuron. All 

neurons are modelled as a standard additive neuron with the sigmoidal transfer function according 

 

 

Table 2 Control parameters for sidestepping directions
b
 

Actions  3I  4I  5I  

Sideways left 1.0  0.0  1.0  

Sideways right 1.0  0.0  0.0  

b
Note that I3 is set to 1.0  for legged locomotion in order to stop rotating motion of the wheels while the 

robot performs sidestepping. Otherwise I3 is set to 0.0  for wheeled locomotion. In other words, I3 is used to 

select between wheeled and legged locomotion. I4 is used to control the robot to be the dormant mode or the 

transformed mode. The robot will be in the dormant mode (Fig. 1(a)) when I4 is set to 1.0  while it will be in 

the transformed mode (Fig. 1(b)) when I4 is set to 0.0 . 
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to Eq. (2). The network was trained by using the backpropagation algorithm (Rumelhart et al. 

1980). Here we use the XOR network instead of an XNOR module which was developed for 

sideward walking of six- and eight-legged robots (Manoonpong et al. 2008) since the XOR  

network provides proper function for this task, i.e., activating sidestepping of the leg-wheel hybrid  

robot. Note that the widely used version of an XOR network with the standard sigmoidal transfer 

function having the output range of [0,,1] is not used here since we want to keep all hidden and 

motor neurons with the same transfer function (i.e., tanh) for simplicity. The look up table of an 

XOR gate is also not considered here for consistence reasons and we want to keep the complete 

controller as one neural circuit. 

The IR signals (IR5,6) are linearly mapped onto the interval [ 1 , +1], with 1  representing no 

obstacles, and 1  representing near obstacles. They are provided to the input neurons of the 

network. However, these sensory signals have to be first filtered before feeding them to the XOR 

network. Therefore we again apply the hysteresis effect of the recurrent neural network to 

eliminate sensory noise. Thus, the input neurons of the XOR network are configured as the 

hysteresis elements. Each of them has input and recurrent weights similar to the MRC network. 

The hysteresis effect of these single recurrent neurons is shown in Fig. 4(b) and the complete XOR 

network for sensory preprocessing together with its weights is shown in Fig. 4(a). The output N4 of 

the network corresponding to the given inputs (i.e., the filtered IR signals N1,2) is presented in 

Table 3. 

We directly feed the output of N4 to its target neuron I3 in the neural locomotion control. Note 

that we add here a bias term at I3 in order to scale the input signal to the range between 0.0 and 1.0. 

As a consequence, the sidestepping will be activated when N4 gets high activation 1.0   

 
Fig. 4 (a) Neural preprocessing network of the IR signals I5,6 (dashed frame). It is created as an XOR 

network with a self-connection at its input neurons. As a result, the input neurons function as 

hysteresis elements. The output of the network N4 is fed to I3 and the output of one hysteresis 

element N2 is indirectly connected to I5 via the additional hidden neuron N5. (b) The hysteresis 

effect between the input and output of N1. The input IR5 varies between 1.0  and 1.0  

while its output shows high 1.0  activation when the input increases to values above 0.3 . 

On the other hand, it will show low 1.0  activation when the input decreases below 0.3  
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Table 3 The input-output characteristic for the XOR network 

1N  2N  4N  

1.0  1.0  1.0  

1.0  1.0  1.0  

1.0  1.0  1.0  

1.0  1.0  1.0  

 

 

meaning that one of the N1 and N2 driven by the IR signals (IR5,6) shows a high output signal 

1.0  (compare Table 3). Furthermore, the output signal of the hysteresis element N2 serves to 

control the lateral direction through I5 of the neural locomotion controller. The neuron N5 is added 

to also scale the signal to a range between 0.0 and 1.0. 

Once the sidestepping pattern is activated, the robot will step laterally to the right as long as the 

N2 signal shows low 1  activation; otherwise it will step laterally to the left (compare Tables 

2-3). Hence, the robot will perform sidestepping to the right if it detects an obstacle at its left side 

via the IR5 sensor and vice versa. In special conditions, e.g., detecting obstacles on both lateral 

sides during moving forward, the IR5 and IR6 sensors will give high output activations at the same 

time resulting in the inhibition of sideways motions. The robot then continues to move forward 

using its wheels. 
 

 

4. Experiments and results 
 

In this section, five experiments demonstrating the robot behavior under the neural control (Fig. 

2) are described. It is implemented on the ISEE. These experiments present locomotion behaviors 

of the robot using legs and wheels including its reactive obstacle avoidance behavior in the physics 

simulator (YARS). Here we report data acquired during various (reactive) locomotion behaviors. 

Video clips of these can be found at http://www.manoonpong.com/HybridRobot/. It is important to 

note that in all experiments the robot was set to the transformed mode. That is the input I4 (Fig. 2) 

was set to 0 resulting in the motor of the body joint Mbody being driven by low 1  activation (cf. 

Fig. 2(b)). 
 

4.1 Wheeled and legged locomotion 
 

The first and second experiments have been done to show wheeled and legged locomotion 

behaviors. In these experiments, all input neurons (I1,2,3,4,5, Fig. 1) were set manually
1
. While the 

inputs I1,2 were set to 1  and the input I4was set to 0 (i.e., the transformed mode with forward 

motion), the inputs I3,5 were regulated. In the first experiment, we let the robot move over flat 

terrain and continuously changed inputs I3,5 to investigate its basic locomotion. As a consequence, 

by simply controlling the input I3 (cf. Fig. 2) the robot can quickly change its locomotion from 

using wheels to legs and vice versa. During legged locomotion, changing the input parameter I5 

                                                      
1
Note that we do not apply infrared sensor signals to the input neurons (I1,2,3,4,5, Fig. 1) in order to clearly see 

the robot locomotion behaviors. 
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from zero to one leads to sidestepping to its left and changing I5 back to zero leads to sidestepping 

to its right. These behaviors have been carried out sequentially and with continuous transitions. 

The robot moves using its wheels with a speed of 10  cm/s while it performs sidestepping using 

its legs with a speed of 6  cm/s. The input parameters and motor signals during the experiment 

are shown in Fig. 5. The video clips of this experiment showing forward motion using wheels and 

sidestepping using legs can be found at  

http://www.manoonpong.com/HybridRobot/Forward.mpg, 

http://www.manoonpong.com/HybridRobot/SidewaysRight.mpg, and  

http://www.manoonpong.com/HybridRobot/SidewaysLeft.mpg, respectively. 

 

4.2 Escape behavior using wheeled and legged locomotion 

 

In the second experiment, the robot was steered through flat terrain with obstacles having a 

height of 70% of a wheel radius ( 2.0  cm). This is the highest climbable obstacle. Here, at the 

 

 

 

Fig. 5 Input parameters and motor signals during the first experiment. (a) Input parameters I1,2 (Fig. 2) 

were set to 1  at all times in order to inhibit turning motions thus resulting in only forward 

motion. (b) Input parameters I3,4,5 (Fig. 2). I3 is used to switch between wheeled (I3 = 0) and legged 

(I3 = 1) locomotion. I4 was here set to 0 in order to keep the robot in the transformed mode (Fig. 

1(b)). Setting I4 to 1 leads to the dormant mode (Fig. 1(a)). I5 is used to steer the sidestepping 

directions. Setting I5 to 0 leads to the sidestepping to the right SR  and setting it to 1 leads to the 

left SL . (c) Motor signals at the leg joints (Mrear,leg, Mleft,leg, Mright,leg, (Fig. 2)). The motors Mleft,leg, 

Mright,leg show the periodic signals when the legged locomotion mode is activated. One can observe 

that when the robot steps sideways to its right the periodic signal of Mright,leg leads the one of Mleft,leg 

by  /2 in phase and vice versa when the robot steps sideways to its left. (d) Motor signals at the 

wheels (Mrear,wheel, Mleft,wheel, Mright,wheel, (Fig. 2)). Low 1  activation drives the wheels in a way 

that the robot moves forward F while zero activation means the wheels have no motion (i.e., they 

will roll freely in the direction of their axis (cf. Fig. 1(b)). Indexing of motor neurons is used as: M1 

= Mrear,leg, M2 =Mrear,wheel, M3 = Mleft,leg, M4 =Mleft,wheel, M5 =Mright,leg, M6 =Mright,wheel  
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beginning the robot moved forward using wheeled locomotion. As soon as it got stuck; we set the 

input I3 to high 1  activation in order to enable legged locomotion. As a result, the legged 

locomotion allows the robot to climb over obstacles obstructing its path and thereby enhances its 

mobility. A series of photos of this experiment is shown in Fig. 6. The video clip of this experiment 

can be found at   

http://www.manoonpong.com/HybridRobot/ClimbingOverObstacle.mpg. Note that the limitation 

of climbing over higher obstacles ( 2.0>  cm) is because of the physical constraints of the robot 

which are: 1) motor torque and 2) one degree of freedom legs. Due to these constraints, the 

stepping behavior of the robot cannot generate strong drag force to propel the robot body over 

higher obstacles. In addition, since no balance control was integrated in this current controller, its 

rear body part always touches the ground during climbing; thereby producing additional resistance. 

 

4.3 Obstacle avoidance behavior using wheeled locomotion 

 

The third and fourth experiments have been performed to assess the ability of the neural 

 

  

Fig. 6 Escape behavior of the robot using the wheeled and legged locomotion in the second experiment. 

Input parameters and motor signals are comparable to Fig. 5. Phases 1-2: the robot was set to the 

wheeled locomotion mode (I3 = 0) for moving forward. Phase 3: it got stuck. Phases 4-6: it was 

manually set to the legged locomotion mode (I3 = 1) for sidestepping to its left. It then climbed 

over obstacles. Phases 7-9: it was manually set to return to the wheeled locomotion mode (I3 = 0) 

for again moving forward. As a result, it can escape from an obstacle area 
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Fig. 7 Sensor and motor signals during the third experiment. (a), (b) Approximate mean values of the 

two left I1 and right I2 IR sensor signals before processing by the MRC network and the output 

signals H1,2 after processing (cf. Fig. 2). (c)-(f) The motor neuron signals (cf. Fig. 2(c)). Indexing 

of motor neurons is used as: M1 =Mrear,leg, M2 =Mrear,wheel, M3 =Mleft,leg, M4 =Mleft,wheel, M5 =Mright,leg, 

M6 =Mright,wheel  

 

 

controller (Fig. 2) generating obstacle avoidance behavior. Here wheeled locomotion was activated 

while the legged locomotion was inhibited and the robot moved through flat terrain with very high 

obstacles. Fig. 7 shows the sensor and motor signals during avoiding obstacles and escaping from a 

sharp corner and Fig. 8 displays a series of photos according to these signals. 

It can be seen that the robot moved forward at the beginning. During moving forward, the 

motors of two front wheels Mleft,wheel, Mright,wheel, were driven by low 1  activation while the 

motor of a rear wheel Mrear,wheel was inactive (i.e., having zero activation). In this case the motors of 

leg joints Mrear,leg, Mleft,leg, Mright,leg were inhibited with low 1  activation to stay in the downward 

position (cf. Fig. 2(b)). After around 105 time steps, the robot encountered the corner  

and I2 gradually activated to a high level. At around 10 time steps later, I1 activated showing a 

pattern similar to I2. As I2 strongly activated, first H2 became activated such that it then inhibited 

H1. As a consequence, Mrear,wheel became activated (i.e., showing high 1  activation) and 

Mleft,wheel changed its activation from low 1  to high 1  (i.e., changing its rolling direction) 

making the robot turn left. The robot kept on turning left until around 235 time steps and then 

returned to normal forward motion. Fig. 9 shows the sensor and motor signals of another obstacle 

avoidance behavior while Fig. 10 displays a series of photos according to these signals. 

In this situation the robot moved toward a wall and at around 170 time steps
2
 it was very close 

to the wall thereby activating I1 and I2. However, I1 got higher activation than I2 which activated H1  

                                                      
2
The update frequency of the system is approximately 25 Hz. Thus 170 time steps are about 6.8 seconds. 
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and then inhibited H2. As a result, Mrear,wheel switched to the low activation and Mright,wheel changed its 

activation from low to high (i.e., changing its rolling direction) leading to a right turn. After around 

250 time steps, it returned to normal forward motion. At around 450 time steps, it again detected 

another wall where the signals developed in similar patterns to those of the previous wall encounter 

resulting in another right turn. Eventually, the robot was able to avoid the obstacles and continued 

to move forward. We encourage readers to also watch a video clip showing another obstacle 

avoidance behavior at  

http://www.manoonpong.com/HybridRobot/ObstacleAvoidanceI.mpg. 

 

4.4 Obstacle avoidance behavior using wheeled and legged locomotion 

 

The last experiment uses the complete controller (Fig. 2) with all sensors to demonstrate the use 

of wheels and legs for a reactive obstacle avoidance behavior. In this case we use the infrared 

sensors IR5.6 to allow the robot to detect obstacles at its lateral sides. The sensors will then drive 

sidestepping motions making the robot step away from the obstacles. Simultaneously the front IR 

sensors are still used to let it turn away from the obstacles using its wheels. Fig. 11 shows the 

sensor and motor signals of this experiment and Fig. 12 presents a series of photos according to 

these signals. 

 

 

Fig. 8 The obstacle avoidance behavior of the robot with respect to the signals shown in Fig. 7 
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Fig. 9 Sensor and motor signals during the fourth experiment. (a), (b) Approximate mean values of the two 

left I1 and right I2 IR sensor signals before processing by the MRC network and the output signals 

H1,2 after processing (cf. Fig. 2). (c)-(f) The motor neuron signals (cf. Fig. 2(c)). Indexing of motor 

neurons is used as: M1 = Mrear,leg, M2 = Mrear,wheel, M3 = Mleft,leg, M4 = Mleft,wheel, M5 = Mright,leg, M6 = 

Mright,wheel  

 

 
Fig. 10 The obstacle avoidance behavior of the robot with respect to the signals shown in Fig. 9 

116



 
 
 
 
 
 

Biologically inspired modular neural control for a leg-wheel hybrid robot 

 

 

At the beginning (around 100 time steps), since the robot detected obstacles on both lateral 

sides, it continued to move forward using its wheels due to the functionality of the XOR network 

described above. During moving forward, the motors of the two front wheels Mleft,wheel, Mright,wheel 

performed rolling motions while the rear wheel Mrear,wheel was inactive. From around 300 to 500 

time steps, the robot stepped to the left in order to avoid a lateral obstacle on its right. In this 

situation, the front leg joints Mleft,leg, Mright,leg performed periodic movements while the rear leg joint 

Mrear,leg lifted the leg above ground. At around 620 time steps it was far enough from the obstacle; 

therefore, it returned to move forward using its wheels. At around 700 time steps, it detected an 

 
Fig. 11 Sensor and motor signals during the fifth experiment. (a), (b) Approximate mean values of the two 

front left I1 and right I2 IR sensor signals before processing by the MRC network and the output 

signals H1,2 after processing (cf. Fig. 2). (c), (d) IR5,6 signals before preprocessing and the output 

signals N1,2 after preprocessing (compare Fig. 4). (e) The signal of the input parameter I3 switching 

between wheeled (I3 = 0) and legged (I3 = 1) locomotion. It is driven by the output of the XOR 

network N4. (f) The signal of the input parameter I5 controlling the sidestepping directions to the 

right (I5= 0) or the left (I5 = 1). It is driven by the IR6 indirectly through hidden neurons N2,5 (cf. 

Fig. 4). (g)-(l) The motor neuron signals (cf. Fig. 2(c)). Indexing of motor neurons is used as: M1 = 

Mrear,leg, M2 = Mrear,wheel, M3 = Mleft,leg, M4 = Mleft,wheel, M5 = Mright,leg, M6 = Mright,wheel 
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obstacle on its left. Hence, it then turned right. During turning its left side IR sensor IR5 increased 

( 1.0 ) leading to sidestepping to the right at around 1000 time steps. Afterwards, it returned to 

normal forward motion. At around 1700 time steps, it approached another obstacle leading to turn 

left and then step sideways to its left. Finally, after avoiding the obstacle it returned to the forward 

motion at around 2400 time steps.  

As demonstrated, the sensor-driven neural controller (Fig. 2) enables the robot to successfully 

solve the obstacle avoidance task and this controller also shows an example of how both 

locomotion modes could be driven by sensory signals. Additionally, the controller can even protect 

the robot from getting stuck in corners as shown in Figs. 8-10. Thus, due to this functionality, the 

robot can autonomously perform exploration. We encourage readers to see another demonstration 

at http://www.manoonpong.com/HybridRobot/ObstacleAvoidanceII.mpg. 

 
 

5. Discussion 
 

We simulated a leg-wheel hybrid robot using the physics simulation environment called YARS. 

The simulated robot is intended to be used to develop and test neural controllers before 

 

 

 
Fig. 12 The obstacle avoidance behavior of the robot with respect to the signals shown in Fig. 11 
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implementation on the real one (Chadil et al. 2011). The complete sensor-driven neural controller 

of the robot developed here enables it to avoid obstacles and escape from corners as well as 

deadlock situations. Thus, due to this functionality, the robot can autonomously perform 

exploration. This controller can also automatically select locomotion modes according to sensory 

signals. In general, the robot uses its wheels for basic locomotion and its legs to step away from 

obstacles driven by IR sensor signals. It can also use its legs to climb over small obstacles where in 

this study we manually control the robot for testing this function. However, later this climbing 

behavior will be driven by proprioceptive sensory information. In addition to the use of hybrid 

locomotion for climbing over obstacles (cf. Fig. 6) and obstacle avoidance (cf. Fig. 12), it is 

important to note that the robot could use its legs for movement when its wheels are broken; i.e., 

changing its locomotion from forward motion using wheels to sidestepping using legs (cf. Fig. 5). 

This sensor-driven controller can be considered as a model-based control technique which was 

constructed with an artificial neural network using discrete-time dynamics. Part of it was 

developed by realizing dynamical properties of recurrent neural networks; i.e., hysteresis effects 

and quasi-periodic attractors. The controller is composed of two main components: the modular 

neural locomotion control and the neural sensory preprocessing networks. The modular neural 

locomotion control has four subnetworks (modules): a minimal recurrent control (MRC) network, 

a velocity regulating network (VRN), a neural oscillator network (CPG), and a phase switching 

network (PSN). It generates a wide range of locomotion patterns like omnidirectional motion 

including sidestepping using wheels and legs. The neural preprocessing networks serve to filter 

sensory noise as well as preprocess the sensory data where the network outputs appropriately 

change locomotion direction and/or speed through our premotor neuron modules (i.e., VRN and 

PSN). This results in a reactive behavior; i.e., obstacle avoidance. Nevertheless, controlling 

locomotion direction and speed can be also achieved by modifying neural parameters or control 

inputs projecting onto motor neurons (von Twickel et al. 2011). 

In fact, our modular neural locomotion control exhibits some essential features: Neural and 

biological justifiable, modular, transferable, generic, and robust. These features distinguish it from 

conventional control methods (e.g., classical control (Besseron et al. 2005, Nakajima and Nakano 

2008), AI control algorithms (Halme et al. 2001, Mahmoud et al. 2008), and biologically inspired 

control (Klavins et al. 2000, Eich et al. 2008, Allen et al. 2003)) which have been applied to other 

leg-wheel hybrid robots (as described in the Introduction section). 

 

Neural and biological justifiable: 

MRC: In the context of neural systems, hysteresis phenomena have already been discussed as 

models for short-term memory (Harth et al. 1970). These effects allow an agent to keep on doing a 

task till the task is completed even if the stimulus has decayed or is removed. Without such 

memory, the agent might switch between tasks reactively without completing any of them and, thus 

fail to complete tasks. In addition, hysteresis effects require relatively large changes of neural 

activity in order to switch between quasi-stable states; i.e., they are robust to small changes (e.g., 

noise) such that they can be also described as low-pass filters (Manoonpong 2007). From this point 

of view, the hysteresis effects allow robots to memorize their state and exhibit behavior robust 

against noise. These hysteresis effects are directly reproduced by our MRC module. In other words, 

the MRC module with the defined network parameters can be considered as simple short term 

memory and low-pass filters. Note that one can further optimize these network parameters for 

specific tasks, for instance, by using the evolutionary algorithm ENS
3 

(Hülse et al. 2004). The 
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experiments here show that our MRC module with the resulting weights allows the robot to 

memorize its state such that it performs smooth motion and successfully avoids obstacles (see, e.g., 

Figs. 8-9 as well as http://www.manoonpong.com/HybridRobot/ObstacleAvoidanceI.mpg). In 

contrast, using simple finite state control (Chadil et al. 2011) or classical Braitenberg control 

(Braitenberg 1984) without state memory the robot needs to turn several times in order to avoid 

obstacles or it sometimes gets stuck (see http://www.manoonpong.com/ HybridRobot/ObstacleAvo 
idanceI-BC.mpg). 

CPG: The basic locomotion and rhythm of stepping in walking animals mostly rely on central 

pattern generators (CPGs) (Ijspeert 2008, Büschges 2005). CPGs generate basic rhythmic outputs 

in the complete absence of any sensory feedback, and appear to underlie all types of rhythmic 

behavior. Although sensory feedback is not required for generating the basic rhythms, it has an 

important role in modulating and shaping the rhythmic patterns including switching their phase 

(Pearson and Iles 1973) for the production of appropriate motor behavior during locomotion like 

changing walking patterns and directions in order to escape from a predator or to avoid obstacles. 

Besides, evidences show that neural elements of CPGs are part of sensorimotor loop and 

functionally sensory signals might contribute to generation rhythmic activity depending on context 

(Daun et al. 2009). In this study, we implement the functionality of CPGs in part by a neural 

oscillator module (i.e., CPG module). The CPG module can generate basic rhythmic pattern 

without any sensory feedback. Its outputs allow the robot to perform stepping while the phase of 

the rhythmic pattern is controlled by a sensory input through the PSN module. It is important to 

note that here we exclude a sensorimotor loop for the module and use only one module for 

controlling all leg joints, rather than each module for each leg joint (see, e.g., (von Twickel et al. 

2011) for simulations and (von Twickel et al. 2012) for robotic studies) as found in animals 

(Marder and Bucher 2001, Grillner 2006). However, this CPG module shows a minimal approach 

for robot control and if required, one could also optimize the parameters of the CPG network using, 

for instance, the evolutionary algorithm ENS
3
 (see (Hülse et al. 2004) for more details) integrated 

into the ISEE. The simplest way to define the fitness function for this optimization process is to 

take the Euclidean distance from the start to the end point of the robot’s trajectory. 

PSN: There is strong evidence for a phase shifting property since around 1973 from the study of 

Pearson and Iles (1973), who have in the cockroach recorded from inter-segmental neurons in the 

connective elements. Phase relationships between these neurons can change as would be required 

for emulating the functionality of our PSN module. 

VRN: Recent studies by Akay et al. (2007) show that in stick insect locomotion motorneuron 

pools are able to not only drive protractor (swing) and retractor (stance) muscle activities but also 

“reverse" their activities leading to the change of locomotion directions (e.g., from walking 

forward to backward and vice versa). This reversion is also influenced by sensory feedback like 

load signals from the leg. The functionality of these motorneuron pools is directly reproduced by 

our VRN module which controls and reserves motor signals. In principle, the VRN performs as a 

multiplication operator which can inverse motor signals as well as regulate their magnitude 

(Manoonpong 2007). Hence, our study predicts such a multiplicative function at the premotor 

interneurons of stick insects (Akay et al. 2007, Gabriel and Büschges 2007). 

 

Modular: 

From neuroethological studies in walking animals, it is known that the neural network of 

nonspiking interneurons for the locomotion system contributes to different functional “modules” 

120



 
 
 
 
 
 

Biologically inspired modular neural control for a leg-wheel hybrid robot 

(Bässler and Büschges 1998, Delcomyn 1999). They govern the different leg joints resulting in 

walking or stepping behavior. According to Delcomyn (1999), insects exhibit a modular 

organization (i.e., modular structure) of locomotion control elements. Inspired by this finding, our 

neural locomotion control uses a modular structure where its modules (MRC, CPG, VRN, and PSN) 

also have a functional origin in biological neural systems (described above). 

A modular structure, relevant to biological systems, is considered as a major advantage, 

compared to many other approaches due to the following aspects: 1) It is flexible, allowing to 

simply rearrange, add, and/or remove modules for controlling different types of robots (see 

Transferable). 2) Each module can be decoupled where its functioning still remains (see Generic). 

3) It is robust and has fault tolerance capabilities. Damage to a part of the system can result in a 

loss of some of the abilities of the system, but, the whole system can still function partially (see 

Robust). 4) It is able to deal with scaling issue; i.e., when more degrees of freedom are added 

(Valsalam and Miikkulainen 2009, Valsalam and Miikkulainen 2008). 5) It is a way of embedding 

a priori knowledge in a neural network or providing basic functions (as shown in this study), which 

can integrate different neural functions (Manoonpong et al. 2007b), different neural structures 

(Manoonpong 2007) or different kinds of learning mechanisms (Steingrube et al. 2010, 

Manoonpong et al. 2013), depending on the task at hand. 6) The modules generally have a simpler 

structure as compared to the network as a whole. Thus, their functions and dynamics are 

analyzable by observing the input/output relationship of an individual module (see, e.g., hysteresis 

effects of the MRC module). In contrast, approaches using evolutionary algorithms (Yosinski et al. 

2011, Parker and Lee 2003) or reservoir computing (Krause et al. 2010, Salmen and Ploeger 2005) 

with non modularity might end up with large networks which are difficult to understand or analyze 

their dynamics in particular if they use a massive recurrent connectivity structure. Removing some 

connections or neurons of the networks might result in instability or drastically reduce some 

functions of the system. Furthermore, for most of these networks it is difficult to transfer them 

successfully onto different robots without re-evolving or retraining. 

 

Transferable: 

The entire locomotion network consists of four main modules or subnetworks: 1) the MRC 

module, 2) the CPG module, 3) the PSN module, and 4) the VRN module. They have been so far 

successfully implemented on four-, six- and eight-legged robots as well as two wheeled robots 

(Manoonpong 2007, Manoonpong et al. 2008, Manoonpong and Roth 2008). Thus they are 

transferable. Applying to the different systems, the structures and internal parameters of the PSN 

and VRN modules normally remain unchanged. However, only the parameters of the CPG and 

MRC modules (i.e., synaptic weights) might be necessary to be adjusted in order to obtain suitable 

walking frequency and obstacle avoidance behavior, respectively.  

 

Generic: 

As shown in this paper, only very few components (MRC, CPG, PSN, VRN) are required to 

achieve a very rich, functionality (i.e., a wide range of locomotion patterns as well as a reactive 

obstacle avoidance behavior). As suggested by their names, the modules each serve a general 

purpose largely regardless of the robot’s specific embodiment (see Transferable) and behavioral 

repertoire. For example, the PSN module can switch the phase of not only periodic signals shown 

here but also different forms like sawtooth signals which are generated by a chaotic CPG module 

as shown in (Steingrube et al. 2010). We believe that our neural modules can serve as useful 

building blocks (i.e., transferable and generalization) for other module-based neural control. 
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Robust: 

The neural circuitry is not sensitive to changes of parameters and can be adjusted within large 

intervals making fine tuning unnecessary, e.g., synaptic weights between modules and synaptic 

weights projecting to motor neurons. Furthermore, synaptic connections can be completely cut or a 

module can be completely removed leading to graceful degradation of the agent’s functionality 

while as a whole the system can still function partially. For instance, removing the CPG module the 

robot will not be able to perform sidestepping but it will still be able to locomote using its wheels 

and vice versa when the MRC module is removed while the CPG module is kept. Such situations 

can be considered from the experiment shown in Fig. 5. For example, during the first period of the 

experiment, the robot moved forward (F) using its wheels. In this case, it can be assumed that the 

CPG and PSN modules are completely removed. This way, the robot cannot perform legged 

locomotion where the motor neurons (M1, M3, M5) controlling the leg joints have their activation of 

1.0  due to their bias term. During the second period of the experiment, the robot stepped to the 

right (SR) using its legs. In this case, it can be assumed that the MRC and VRN modules are 

completely removed. This way, the robot cannot perform wheeled locomotion where the motor 

neurons (M2, M4, M6) controlling the wheels have their default activation of 0.0. Besides this, due 

to the hysteresis loops in the MRC module, the system is insensitive to moderate changes of 

sensory signals, e.g., noise.  

It is important to note that, although our controller is proper for leg-wheel hybrid robot behavior 

generation and exhibits essential features (described above), it has not so far 1) exploited 

sensorimotor loops on its low level motor control and 2) considered real biological data for 

locomotion generation as shown in (von Twickel et al. 2012). These two components will allow for 

robust locomotion under varying environmental conditions. 
 

 

6. Conclusions 
 

This article has presented various locomotion behaviors and a reactive obstacle avoidance 

behavior of a leg-wheel hybrid robot in the YARS physics simulation environment. The robot has a 

special mechanical design which consists of two (hemi) spherical body shells and three legs with 

omnidirectional wheels. It combines the idea of using legs, wheels, and rolling sphere for the 

multi-modal locomotion (one of locomotion modes will be activated at a time) which so far has not 

been shown by other researches.  

In this study, active locomotion behaviors using wheels or legs are generated by biologically 

inspired modular neural control. It consists of four different functional modules having their origin 

in biological neural systems: a minimal recurrent control (MRC) network, a velocity regulating 

network (VRN), a neural oscillator network (CPG), and a phase switching network (PSN). The 

MRC module is for sensory signal processing and state memorization. Its outputs directly drive the 

motions of two front wheels while the rear wheel is indirectly controlled through a velocity 

regulating network (VRN) module. In parallel, a simple neural oscillator network module serves as 

a central pattern generator (CPG) producing basic rhythmic signals for driving leg movements to 

obtain, e.g., sidestepping or climbing over small obstacles. Controlling sidestepping directions is 

achieved by a phase switching network (PSN) module. As a result, this modular neural locomotion 

control serves as a basic control structure and can produce omnidirectional locomotion including 

sidestepping for climbing over obstacles by using four inputs (I1,2,3,5, Fig. 2). Note that the input I4 
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is used to transform the robot into a spherical mode for passive rolling motion
3
. We want to 

emphasize that the controller not only works for the leg-wheel hybrid robot presented here but it 

has been also applied equally efficiency to other types of robots (Manoonpong 2007, Manoonpong 

et al. 2008, Hülse et al. 2004). 

Integrating the neural preprocessing networks of sensor signals provides effective sensor-driven 

behavior control based completely on neural network techniques. The preprocessing obtained by 

simple additive neurons, single recurrent neurons and the XOR network, which combine the 

sensory data and are robust against sensory noise by utilizing hysteresis phenomena of the 

recurrent neurons. As a consequence, the robot can autonomously perform the desired behaviors, 

like obstacle avoidance and exploration, with respect to corresponding sensory inputs. Because the 

design comprises independent modules one can simply replace the neural preprocessing module of 

the IR signals with other types of signal processing units to acquire different reactive behaviors, 

e.g., phototaxis (Manoonpong et al. 2007b) and sound tropism (Manoonpong 2007). 

Recently, we are working on testing the purposed neural controller on the real robot (see 

(Chadil et al. 2011, Laksanacharoen and Jearanaisilawong 2009) for more details of the robot 

mechanics). Preliminary results for legged and wheeled  locomotion can be seen at 

http://www.manoonpong.com/HybridRobot/RealbotSidewaysRight.mpg and http://www.manoonp 

ong.com/HybridRobot/RealbotObstacleAvoidance.mpg, respectively. Due to mechanical problems 

of this first prototype robot (i.e., backlash and slip of the leg driving mechanisms using gears and 

belts, respectively), its legs cannot follow the motor commands all the times as expected. As a 

result, sidestepping using its legs cannot be effectively performed. This problem will be addressed 

in the next prototype but apart from this hardware-based behavior is the same as that of the 

simulation. 

Hence, to overcome the remaining mechanical problems, our next step will be the improvement 

of the leg driving mechanisms. We will also enhance our simulation to achieve a detailed match 

with hardware by following an effective approach called iterative testing presented in (von Twickel 

et al. 2012). The approach uses single joint pendulum test setups to investigated nonlinear joint 

properties, backlash and activation to torque and velocity characteristics where the resulting data is 

integrated into simulation. In addition to this, we will use proprioceptive sensors (i.e., rotational 

sensors of wheels and joint angle sensors of leg joints) for damage detection and apply neural 

learning mechanisms based on correlation and/or reward information (Steingrube et al. 2010, 

Manoonpong et al. 2013) to find behaviorally useful motor responses after damage. For instance, 

the robot will learn to use its legs for movement when its wheels are broken (i.e., changing its 

locomotion from forward motion using wheels to sidestepping using legs); it will learn to find an 

appropriate combination of using wheels and/or legs if one wheel or leg or both of them damage; 

or it will learn to find an appropriate frequency of the CPG of leg movement when one leg is 

damaged. In principle, the robot will learn in an unsupervised manner (i.e., learning through 

correlation between its sensory signals) or learn on the basis of a reinforcement learning concept 

(i.e., learning to maximize a given reward). Besides, we will also investigate on autonomous 

transformation from rolling locomotion to obstacle climbing. 

 

 

                                                      
3

Transformation and passive rolling are not the focus of this study but see 

http://www.manoonpong.com/HybridRobot/RollingAndTransforming.mpg for demonstration and (Chadil et 

al. 2011) for description. 
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Supplementary information accompanies this paper on 

http://www.manoonpong.com/HybridRobot/ 
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