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Abstract.  In the present investigation, thermal buckling and free vibration characteristics of functionally graded 

(FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type 

solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-

mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness 

based on power-law model and the material properties are assumed to be temperature-dependent. Eringen’s nonlocal 

elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton’s principle, the nonlocal 

equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are 

obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in 

following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal 

parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural 

frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the 

proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the 

literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on 

thermal stability and vibration characteristics of FG nanobeams. 
 

Keywords:  thermal buckling; Timoshenko beam theory; vibration; functionally graded nanobeam; 

nonlocal elasticity theory 

 
 
1. Introduction 

 
Functionally graded material (FGM) is a composite material varying its microstructure from 

one material to another with a specific gradient, resulting in corresponding changes in the effective 

material properties (including elasticity modulus, thermal expansion coefficient and thermal 

conductivity) of the material (Ebrahimi and Rastgoo 2018). The FG materials can be designed to 

produce an optimum distribution of component materials for specific function and applications. 

Typically, FG materials are made of a mixture of two materials, mainly ceramic and metal phases, 

to achieve a composition with a certain functionality. In comparison with traditional composites, 

FGMs possess various advantages, for instance, higher fracture toughness, enhanced thermal 
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resistance, minimization or elimination of stress concentration, and increased bonding strength 

along the interface of two dissimilar materials. During the past decade, beams made of FGMs have 

found wide applications as structural elements in modern industries such as aeronautics/ 

astronautics manufacturing industry, mechanical engineering and engine combustion chamber, 

nuclear engineering and reactors. Motivated by these engineering applications, ceramic-metal 

FGMs have also attracted intensive research interests. Sofiyev and Kuruoglu (2015) studied 

buckling analysis of non-homogeneous orthotropic truncated conical shells subjected to combined 

loading of axial compression and external pressure. The superposition and Galerkin methods are 

used to achieve the expressions for critical loads of non-homogeneous orthotropic truncated 

conical shells with simply supported boundary conditions. Nanobeams are one of the basic 

components in micro/nano electromechanical systems (MEMS/NEMS), biomedical sensors and 

atomic force microscopy (AFM). Therefore understanding the mechanical and physical properties 

of nanostructures is necessary for its practical applications. For instance, Alizada et al. (2012) 

presented stress analysis of a substrate coated by nanomaterials with a vacancy under uniform 

extension load. They assumed that vacancies do not vary along the width of the substrate. 

Nanoscale engineering materials have attracted great interest in modern science and technology 

after the invention of carbon nanotubes (CNTs) by Iijima (1991). They have significant mechanical, 

thermal and electrical performances that are superior to the conventional structural materials. In 

recent years, nanobeams and CNTs hold a wide variety of potential applications (Zhang et al. 2004) 

such as sensors, actuators, transistors, probes, and resonators in NEMSs. For example, in 

MEMS/NEMS; nanostructures have been used in many areas including communications, 

machinery, information technology and biotechnology technologies. The classical continuum 

theory is quite efficient in the mechanical analysis of the macroscopic structures, but its 

applicability to the identification of the size effect on the mechanical behaviors on micro- or nano-

scale structures is questionable. This limitation of the classical continuum theory is partly due to 

the fact that the classical continuum theory does not admit the size dependence in the elastic 

solutions of inclusions and inhomogeneities. However the classical continuum models need to be 

extended to consider the nanoscale effects and this can be achieved through the nonlocal elasticity 

theory proposed by Eringen (1983) which consider the size-dependent effect. According to this 

theory, the stress state at a reference point is considered as a function of strain states of all points in 

the body.  This nonlocal theory is proved to be in accordance with atomic model of lattice 

dynamics and with experimental observations on phonon dispersion. Moreover, in recent years the 

application of nonlocal elasticity theory, in micro and nanomaterials has received a considerable 

attention within the nanotechnology community. Wang and Liew (2007) carried out the static 

analysis of micro- and nano-structures based on nonlocal continuum mechanics using Euler-

Bernoulli beam theory and Timoshenko beam theory. Aydogdu (2009) proposed a generalized 

nonlocal beam theory to study bending, buckling, and free vibration of nanobeams based on 

Eringen model using different beam theories 

To improve the performance of composite structures, the development of the FG materials are 

being accelerated to optimize some certain functional properties of structures by tailoring the 

material architecture at nano/micro scale. The rapid developments of MEMS and NEMS make the 

FG materials possible to be applied in nano/micro scaled systems such as thin films in the form of 

shape memory alloys, atomic force microscopes (AFMs), micro sensors, micro piezoactuator and 

nano-motors to achieve high sensitivity and desired performance. In such applications, size effects 

or small scale effects play major role which should be considered to study the mechanical 

behaviors of such small scale structures. FG nanobeams are one of the most important 
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nanostructures which are commonly used as components in MEMS, NEMS and AFMS with the 

order of microns or sub-microns, and their properties are closely related to their microstructures. 

Nevertheless, the possible applications rely on a good understanding of the vibration and thermal 

stability characteristics of FG nanobeams at small-scale. Therefore, establishing an accurate model 

of FG nanobeams is very important for successful NEMS design. 

Recently, FGMs find increasing applications in micro- and nano-scale structures such as thin 

films in the form of shape memory alloys, atomic force microscopes, micro sensors, micro 

piezoactuator and nano-motors (Fu et al. 2003). Moreover, with the development of the material 

technology, FGMs have also been employed in MEMS/NEMS. In all of these applications, the size 

effect plays major role which should be considered to study the mechanical behaviors of such 

small scale structures. Beams are the core structures widely used in MEMS, NEMS and AFMS 

with the order of microns or sub-microns, and their properties are closely related to their 

microstructures. On the other hands, FG nanobeams are important structural elements and hence, 

because of high sensitivity of MEMS/ NEMS to external stimulations, understanding mechanical 

properties and vibration behavior of them are of significant importance to the design and 

manufacture of FG MEMS/NEMS. Furthermore, different fabrication processes of nanoscale 

functionally graded material have been focused by the several researchers. The design and 

fabrication of stepwise functionally graded synthetic nanocomposites using combined powder 

stacking and compression molding techniques were studied by Bafekrpour et al. (2012). They 

concluded that the electrical and thermal properties of nanocomposites could be manipulated by 

changing the gradient patterns. Therefore, establishing an accurate model of FG nanobeams is a 

key issue for successful NEMS design. The free vibration analysis of FG microbeams was 

presented by Ansari et al. (2011) based on the strain gradient Timoshenko beam theory. They also 

concluded that the value of gradient index plays an important role in the vibrational response of 

the FG microbeams of lower slenderness ratios. Ebrahimi and Salari (2015) also studied the 

thermo-electrical buckling of the piezoelectric nanobeams subjected to in-plane thermal loads and 

applied electric voltage. Recently, Eltaher et al. (2012) presented a finite element formulation for 

free vibration analysis of FG nanobeams based on nonlocal Euler beam theory. Using nonlocal 

Timoshenko and Euler–Bernoulli beam theory, Simsek and Yurtcu (2013) investigated bending 

and buckling of FG nanobeam by analytical method. More recently, vibration behaviour of  

simply supported Timoshenko FG nanobeams were investigated by Rahmani and Pedram (2014). 

Material properties are assumed to be temperature independent in these works and the thermal 

environment effects were not considered. Furthermore, the common use of FGMs in high 

temperature environment leads to considerable changes in material properties. For example, 

Young’s modulus usually decreases when temperature increases in FGMs. To predict the behavior 

of FGMs under high temperature more accurately, it is necessary to consider the temperature 

dependency on material properties. 

It can be evaluated from the literature survey that there is no study on the thermal buckling and 

vibration of FG Timoshenko nanobeams under nonlinear temperature rise via nonlocal elasticity 

theory. In fact, it is crucial to consider simultaneously nonlinear temperature rise and nonlocal 

effects for more accurate thermal buckling and vibration analysis and design of temperature 

dependent inhomogeneous nanobeams. 

In view of the above, the aim of the present article is to develop a inhomogeneous nanobeam 

under nonlinear temperature distribution for thermal buckling and vibration analysis of 

Timoshenko nanobeams within the framework of nonlocal elasticity theory. An analytical method 

called Navier solution is employed for vibration and thermal buckling analysis of size-dependent 
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FG nanobeams. It is assumed that material properties of the beam, vary continuously through the 

beam thickness according to power-law form and are temperature dependent. Nonlocal 

Timoshenko beam model and Eringen’s nonlocal elasticity theory are employed. Governing 

equations and boundary conditions for the free vibration of a nonlocal FG beam have been derived 

via Hamilton’s principle. These equations are solved using Navier type method and numerical 

solutions are obtained. The detailed mathematical derivations are presented while the emphasis is 

placed on investigating the effect of several parameters such as thermal effects, constituent volume 

fractions, mode number, aspect ratio and small scale on critical buckling temperature and vibration 

characteristics of FG nanobeams. Comparisons with analytical solutions and the results from the 

existing literature are provided for two-constituents metal–ceramic nanobeams and the good 

agreement between the results of this article and those available in literature validated the 

presented approach. Numerical results are presented to serve as benchmarks for the application 

and the design of nanoelectronic and nano-drive devices, nano-oscillators, and nanosensors, in 

which nanobeams act as basic elements. They can also be useful as valuable sources for validating 

other approaches and approximate methods. 
 

 

2. Theory and formulation 
 

2.1 Nonlocal power-law FG nanobeam equations 
 

Consider a FG nanobeam of length L, width b and uniform thickness h in the unstressed 

reference configuration. The coordinate system for FG nanobeam is shown in Fig. 1. The 

nanobeam is made of elastic and isotropic functionally graded material with properties varying 

smoothly in the z thickness direction only. The effective material properties of the FG nanobeam 

such as Young’s modulus Ef, shear modulus Gf and mass density ρf are assumed to vary 

continuously in the thickness direction (z-axis direction) according to a power function of the 

volume fractions of the constituents. According to the rule of mixture, the effective material 

properties, Pf, can be expressed as Şimşek and Yurtcu (2013) 
 

f c c m mV VP P P 
 

(1) 

 

where Pm, Pc, Vm and Vc are the material properties and the volume fractions of the metal and the 

ceramic constituents related by 
 

1c mV V 
 (2a) 

 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 
 

1
( )

2

P

c

z
V

h
 

 
(2b) 

 

here p is the non-negative variable parameter (power-law index) which determines the material 

distribution through the thickness of the beam and z is the distance from the mid-plane of the FG 

nanobeam. 

The FG nanobeam becomes a fully ceramic beam when p is set to be zero. Therefore, from Eqs. 
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Table 1 Temperature dependent coefficients of Young’s modulus, thermal expansion coefficient, mass 

density and Poisson’s ratio for Si3N4 and SUS304 (Tang et al. 2018) 

Material Properties P0 P-1 P1 P2 P3 

Si3N4 

E (Pa) 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 

α (K-1) 5.8723e-6 0 9.095e-4 0 0 

ρ (Kg/m3) 2370 0 0 0 0 

κ (W/mK) 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 

v 0.24 0 0 0 0 

SUS304 

E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0 

α (K-1) 12.330e-6 0 8.086e-4 0 0 

ρ (Kg/m3) 8166 0 0 0 0 

κ (W/mK) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 

v 0.3262 0 -2.002e-4 3.797e-7 0 

 

 

 

Fig. 1 Geometry and coordinates of Timoshenko FG nanobeam 
 

 

(1)-(2), the effective material properties of the FG nanobeam such as Young’s modulus (E), mass 

density (ρ), thermal expansion (α), thermal conductivity (κ) and Poisson’s ratio (v) can be 

expressed as follows 
 

 
1

( )
2

p

c m m
E E E

z

h
Ez    

 
 
 

,
     

 
1

( )
2

p

c m m

z
z

h
      

 
 
   

 
1
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p

c m m

z
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h
      

 
 
 

,      
1

( )
2

p

c m m

z
z

h
     

 
 
   

(3) 

 

 
1

( )
2

p

c m m

z
z

h
     

 
 
   

(3) 

 

To predict the behavior of FGMs under high temperature more accurately, it is necessary to 

consider the temperature dependency on material properties. Temperature dependency of the FGM 

constituents is frequently expressed based on Touloukian formula which captures the higher order 

dependencies. The temperature-dependent case, on the other hand, represents the conditions where 

properties are calculated at current temperature based on the Touloukian model described by Eq. 

(4). The nonlinear equation of thermo-elastic material properties in function of temperature T(K) 
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can be expressed as 
 

1 2 3

0 1 1 2 3( 1 )P P P T P T P T P T

    
 

(4) 

 

where P0, P-1, P1, P2 and P3 are the temperature dependent coefficients which can be seen in the 

table of materials properties (Table 1) for Si3N4 and SUS304. The bottom surface (z = -h/2) of FG 

nanobeam is pure metal (SUS304), whereas the top surface (z = h/2) is pure ceramics (Si3N4). 

 
2.2 Kinematic relations 
 

The equations of motion is derived based on the Timoshenko beam theory according to which 

the displacement field at any point of the beam can be written as 
 

   , , , ( , )xu x z t u x t z x t 
 

(5a) 

 

( , , ) ( , )zu x z t w x t
 (5b) 

 

where t is time, θ is the total bending rotation of the cross-section, u and w are displacement 

components of the mid-plane along x and z directions, respectively. Therefore, according to the 

Timoshenko beam theory, the nonzero strains are obtained as 
 

xx

u

x
z

x










   
(6) 

 

xz

w

x
 


 
  

(7) 

 

where εxx and γxy are the normal strain and shear strain, respectively. Based on the Hamilton’s 

principle, which states that the motion of an elastic structure during the time interval t1 < t < t2 is 

such that the time integral of the total dynamics potential is extremum 
 

0
( ) 0

t

U T V dt     
(8) 

 

here U is strain energy, T is kinetic energy and V is work done by external forces. The virtual 

strain energy can be calculated as 
 

( )ij ij xx xx xz xz
v v

U dV dV              
(9) 

 

Substituting Eqs. (6) and (7) into Eq. (9) yields 
 

0
( ( ) ( ) ( ))

L u w
U N M Q dx

x x x


    

  
   

  
 

(10) 

 

In which N is the axial force, M is the bending moment and Q is the shear force. These stress 

resultants used in Eq. (10) are defined as 
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, ,xx xx s xz
A A A

N dA M z dA Q K dA        
(11) 

 

The kinetic energy for Timoshenko beam can be written as 
 

2 2

0

1
( , ) ( ( ) ( ) )

2

L
x z

A

u u
T z T dA dx

t t


 
 

  
 

(12) 

 

Also the virtual kinetic energy can be expressed as 
 

0 1 2
0

( ) ( )
L u u w w u u

T I I I dx
t t t t t t t t t t

      


          
               


 
(13) 

 

where (I0, I1, I2) are the mass moment of inertias, defined as follows 
 

2

0 1 2( , , ) ( , )(1, , )
A

I I I z T z z dA   
(14) 

 

For a typical FG nanobeam which has been in high temperature environment for a long period 

of time, it is assumed that the temperature can be distributed nonlinearly across its thickness. So 

that the case of nonlinear temperature rise is taken into consideration. Hence, the first variation of 

the work done corresponding to temperature change can be written in the form 
 

0

L
T w w

V N dx
x x




 


 
 

(15) 

 

where NT is thermal resultant can be expressed as 
 

/2

0
/2

( , ) ( , )( )
h

T

h
N E z T z T T T dz


   

(16) 

 

where T0 is the reference temperature. By Substituting Eqs. (10), (13) and (15) into Eq. (8) and 

setting the coefficients of δu, δw and δθ to zero, the following Euler–Lagrange equation can be 

obtained 
2 2

0 12 2

N u
I I

x t t

  
 

    
(17a) 

 
2 2

02 2

TQ w w
N I

x x t

  
 

    
(17b) 

 
2 2

1 22 2

M u
Q I I

x t t

  
  

    
(17c) 

 

Under the following boundary conditions 
 

N = 0   or   u = 0   at   x = 0   and   x = L (18a) 
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Q = 0   or   w = 0   at   x = 0   and   x = L (18b) 

 

M = 0   or   θ = 0   at   x = 0   and   x = L (18c) 
 

2.3 The nonlocal elasticity model for FG nanobeam 
 

Based on Eringen nonlocal elasticity model (Eringen 1983), the stress at a reference point x in a 

body is considered as a function of strains of all points in the near region. This assumption is 

agreement with experimental observations of atomic theory and lattice dynamics in phonon 

scattering in which for a homogeneous and isotropic elastic solid the nonlocal stress-tensor 

components ζij at any point x in the body can be expressed as 
 

( ) ( , ) ( ) ( )ij ijx x x t x d x  


    
 

(19) 

 

where tij (x′) are the components of the classical local stress tensor at point x which are related to 

the components of the linear strain tensor εkl by the conventional constitutive relations for a 

Hookean material, i.e. 
 

ij ijkl klt C 
 (20) 

 

The meaning of Eq. (19) is that the nonlocal stress at point x is the weighted average of the 

local stress of all points in the neighborhood of x, the size of which is related to the nonlocal kernel 

).,(  xx   Here xx   is the Euclidean distance and η is a constant given by 
 

0e a
l

 
 

(21) 

 

which represents the ratio between a characteristic internal length, a (such as lattice parameter, C–

C bond length and granular distance) and a characteristic external one, l (e.g., crack length, 

wavelength) trough an adjusting constant, e0, dependent on each material. The magnitude of e0 is 

determined experimentally or approximated by matching the dispersion curves of plane waves 

with those of atomic lattice dynamics. According to Eringen (1983), for a class of physically 

admissible kernel ),(  xx   it is possible to represent the integral constitutive relations given 

by Eq. (19) in an equivalent differential form as 
 

2
0

2(1 ( ) ) kl kle a t  
 

(22) 

 

where 2 is the Laplacian operator. Thus, the scale length e0a takes into account the size effect on 

the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal 

constitutive relations may be simplified as 
 

2
2

0 2
( ) xx

xx xxe a E
x


 


 

  
(23) 

 
2

2

0 2
( ) xz

xz xze a G
x


 


 

  
(24) 
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where ζ and ε are the nonlocal stress and strain, respectively. E is the Young’s modulus, G = E / 

2(1 + v) is the shear modulus. For Timoshenko nonlocal FG beam, Eqs. (23) and (24) can be 

rewritten as 
2

2
( )xx

xx xxE z
x


  


 

  
(25) 

 
2

2
( )xz

xz xzG z
x


  


 

  
(26) 

 

where (μ = (e0a)2). Integrating Eqs. (25) and (26) over the beam’s cross-section area, the force-

strain and the moment-strain of the nonlocal Timoshenko FG beam theory can be obtained as 

follows 
2

2 xx xx

N u
N A B

x x x



  

  
    

(27) 

 
2

2 xx xx

M u
M B D

x x x



  

  
    

(28) 

 
2

2
( )xz

Q w
Q C

x x
 
 

  
   

(29) 

 

In which the cross-sectional rigidities are defined as follows 
 

2( , , ) ( , ) (1, , )xx xx xx
A

A B D E z T z z dA   
(30) 

 

( )xz s
A

C K G z dA   
(31) 

 

where Ks = 5/6 is the shear correction factor. The explicit relation of the nonlocal normal force can 

be derived by substituting for the second derivative of N from Eq. (17a) into Eq. (27) as follows 
 

3 3

0 12 2
( )xx xx

u u
N A B I I

x x x t x t

 


   
   

       
(32) 

 

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of M from Eq. (17c) into Eq. (28) as follows 
 

2 3 3 2

0 1 22 2 2 2
( )T

xx xx

u w u w
M B D I I I N

x x t x t x t x

 


     
     

         
(33) 

 

By substituting for the second derivative of Q from Eq. (17b) into Eq. (29), the following 

expression for the nonlocal shear force is derived 
 

3 3

0 2 3
( ) ( )T

xz

w w w
Q C I N

x x t x
 

  
   

     
(34) 
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The nonlocal governing equations of Timoshenko FG nanobeam in terms of the displacement 

can be drieived by substituting for N, M and Q from Eqs. (32)-(34), respectively, into Eq. (17) as 

follows 
2 4 2

xx xx 0 1 0 12 2 2 2

2 4 2

2 2 2 2
0

u u u
A B I I I I

x x t x t x t t

  

      

      
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2.4 Non-uniform temperature distribution 
 

In this study, nonlinear temperature rise across the thickness is assumed. The steady-state one-

dimensional heat conduction equation with the known temperature boundary conditions on bottom 

and top surfaces of the FG nanobeam can be obtained by solving the following equation (Zhang 

2013) 
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(36) 

 

Solving this equation via polynomial series and taking the sufficient terms to assure the 

convergence, yields the temperature distribution across the nanobeam thickness as 
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where ΔT = Tc ‒ Tm. 
 

 

3. Solution procedures 
 

Here, based on the Navier type method, analytical solutions of the governing equations for free 

vibration and thermal buckling of a simply supported FG nanobeam is presented. The 

displacement functions are expressed as product of undetermined coefficients and known 

trigonometric functions to satisfy the governing equations and the conditions at x = 0, L. The 

following displacement fields are assumed to be of the form 
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where (Un, Wn, θn) are the unknown Fourier coefficients to be determined for each n value. 

Boundary conditions for simply supported beam are as Eq. (41) 
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Substituting Eqs. (38)-(40) into Eqs. (35a)-(35c) respectively, leads to Eqs. (42)-(44) 
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By setting the determinant of the coefficient matrix of the above equations, the analytical 

solutions can be obtained from the following equations 
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where [K] and [KT] are stiffness matrix and the coefficient matrix of temperature change, 

respectively, and [M] is the mass matrix. By setting this polynomial to zero, we can find natural 

frequencies ωn and critical buckling temperature ΔTcr. 
 

 

4. Numerical results and discussions 
 

This section is dedicated to discuss about the effects of nonlocal parameter as well as the power 

law index, temperature change and thickness ratios on the thermal buckling and vibration behavior 

of FG nanobeam based on the nonlocal elasticity theory. For this purpose, the FG nanobeam 

considered here consist of Steel (SUS304) and Silicon nitride (Si3N4) with thermo-mechanical 

material properties listed in Table 1. The bottom surface of the beam is pure Steel, whereas the top 

surface of the beam is pure Silicon nitride. The beam geometry has the following dimensions: L 
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(length) = 10 nm, b (width) = 1 nm and h (thickness) = varied. It is assumed that the temperature 

increase in metal surface to reference themperature T0 of the FG nanobeam is Tm ‒ T0 = 5K (Kiani 

and Eslami 2013). Relation described in Eq. (46) are performed in order to calculate the non-

dimensional natural frequencies 
 

2ˆ ωL ρ A / EIc c 
 

(46) 

 

where I = bh3/12 is the moment of inertia of the cross section of the beam. To evaluate accuracy of 

the natural frequencies predicted by the present method, the non-dimensional natural frequencies 

of simply supported FG nanobeam with various nonlocal parameters previously analyzed by 

Navier method are reexamined. Table 2 compares the results of the present study and the results 

presented by Rahmani and Pedram (2014) which has been obtained by analytical method for FG 

nanobeam with different nonlocal parameters (varying from 0 to 5). The reliability of the presented 

method and procedure for FG nanobeam may be concluded from Table 2; where the results are in 

an excellent agreement as values of non-dimensional fundamental frequency are consistent with 

presented analytical solution. 

After making certain about the credibility of the numerical results of current study, the effects 

of different parameters such as aspect ratio, nonlocality parameter and gradient index on the 

thermal buckling of FG nanobeam are investigated. In Table 3 critical buckling temperature of the 

simply supported FG nanobeams are presented for various values of the gradient index (p = 0, 0.2, 

0.5, 1, 2, 5), nonlocal parameters (μ = 0, 1, 2, 3, 4) and three different values of aspect ratio (L/h = 

40, 50, 60) based on Navier solution method. It is indicated that increasing of nonlocal parameter 

leads to lower critical buckling temperature difference. In other words, by increasing the influence 

of small scale effect, the stiffness of FG nanobeams decreases. It can be also observed that the 

critical buckling temperature difference of FG nanobeams decreases by increasing the value of L/h 

ratio and this behavior is the same for all values of power index. Moreover, an increase in the 

nonlocal parameter leads to the decrease of the buckling temperature and it is more tangible for the 

nanobeams with lower values of L/h ratio. Also, it can be seen that an increase in the power law 

index lead to lower critical temperature by decrease the stiffness of nanobeam. 

In order to highlight the effect of the nonlocal parameter and aspect ratio on the thermal 

buckling behavior of the FG nanobeams, the critical buckling temperature against the L/h ratio 

with the assumption of p = 0.5, 2, is illustrated in Fig. 2. This figure indicates that the decrease of 
 

 

Table 2 Comparison of the nondimensional fundamental frequency for a S-S FG nanobeam with various 

gradient indexes when L/h = 50 

μ 

p = 0 p = 0.2 p = 1 p = 5 

Rahmani 

and Pedram  

(2014) 

Present 

study 

Rahmani 

and Pedram 

(2014) 

Present 

study 

Rahmani 

and Pedram 

(2014) 

Present 

study 

Rahmani 

and Pedram 

(2014) 

Present 

study 

0 9.8631 9.86315733 8.6895 8.68954599 6.9917 6.99174004 5.9389 5.93894397 

1 9.4097 9.40973040 8.2901 8.29007206 6.6703 6.67031728 5.6659 5.66592012 

2 9.0136 9.01358936 7.9411 7.94106762 6.3895 6.38950303 5.4274 5.42739007 

3 8.6636 8.66360601 7.6327 7.63272858 6.1414 6.14140878 5.2166 5.21665314 

4 8.3515 8.35146095 7.3577 7.35772548 5.9201 5.92013713 5.0287 5.02869994 

5 8.0708 8.07079327 7.1104 7.11045428 5.7212 5.72117899 4.8597 4.85970034 
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Table 3 Material graduation and aspect ratio effect on the critical buckling temperature ΔTcr [K] of a S-S FG 

nanobeam with different nonlocality parameters 

μ L/h 
Gradient index 

0 0.2 0.5 1 2 5 

0 

40 127.3340 111.4220 98.1295 87.4235 78.9567 70.9984 

50 77.9423 67.5578 58.9611 52.0963 46.7232 41.7252 

60 51.0893 43.7102 37.6665 32.8897 29.1981 25.8089 

1 

40 114.9980 100.4660 88.3464 78.5996 70.9053 63.6861 

50 70.0424 60.5421 52.6965 46.4459 41.5674 37.0425 

60 45.6016 38.8368 33.3148 28.9647 25.6165 22.5559 

2 

40 104.6950 91.3161 80.1761 71.2304 64.1812 57.5792 

50 63.4449 54.6830 47.4646 41.7270 37.2614 33.1317 

60 41.0186 34.7668 29.6805 25.6867 22.6254 19.8392 

3 

40 95.9606 83.5598 73.2501 64.9835 58.4811 52.4023 

50 57.8521 49.7163 43.0296 37.7267 33.6113 29.8165 

60 37.1336 31.3167 26.5997 22.9079 20.0898 17.5362 

4 

40 88.4628 76.9011 67.3042 59.6207 53.5877 47.9581 

50 53.0508 45.4524 39.2222 34.2926 30.4777 26.9705 

60 33.7984 28.3548 23.9549 20.5224 17.9130 15.5592 

 

 

  

(a) p = 0.5 (b) p = 2 

Fig. 2 The variation of the critical buckling temperature of S-S FG nanobeam with aspect ratios 

and nonlocality parameters for different material graduations 

 

 

the critical buckling temperature resulting from the increase of the nonlocal parameter occurs in all 

the L/h ratios so that at the lower L/h ratios, the rate of variations is higher. It is also obvious that 

the effect of the nonlocal parameter becomes more pronounced for lower L/h ratios. This illustrates 

the size-dependence of the nanoscale beams which plays an important role in the nonlocal theory. 
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Table 4 Temperature and material graduation effect on first three dimensionless frequency of a S-S FG 

nanobeam with different nonlocality parameters (L/h = 20) 

μ
 
 𝜔 𝑖  

ΔT = 10[K] ΔT = 30[K] ΔT = 60[K] 

Gradient index Gradient index Gradient index 

0 0.2 1 5 0 0.2 1 5 0 0.2 1 5 

0 

1 9.6481 7.7976 5.7716 4.6905 9.4632 7.6281 5.6135 4.5334 9.1788 7.3665 5.3678 4.2869 

2 38.6707 31.3183 23.2774 18.9846 38.4886 31.1520 23.1233 18.8321 38.2137 30.9008 22.8902 18.6010 

3 85.5836 69.3213 51.5487 42.0461 85.4002 69.1540 51.3939 41.8928 85.1245 68.9024 51.1608 41.6618 

1 

1 9.1873 7.4229 5.4910 4.4600 8.9929 7.2446 5.3246 4.2944 8.6932 6.9687 5.0648 4.0334 

2 32.6830 26.4612 19.6563 16.0230 32.4673 26.2641 19.4735 15.8420 32.1410 25.9657 19.1961 15.5666 

3 62.1630 50.3359 37.4093 30.4970 61.9103 50.1053 37.1957 30.2853 61.5294 49.7575 36.8730 29.9649 

2 

1 8.7839 7.0948 5.2451 4.2580 8.5804 6.9081 5.0707 4.0842 8.2658 6.6181 4.7972 3.8087 

2 28.7999 23.3105 17.3059 14.0997 28.5548 23.0865 17.0980 13.8937 28.1833 22.7463 16.7814 13.5789 

3 51.1661 41.4188 30.7643 25.0663 50.8588 41.1382 30.5042 24.8083 50.3944 40.7138 30.1098 24.4162 

3 

1 8.4269 6.8043 5.0273 4.0788 8.2146 6.6094 4.8450 3.8971 7.8853 6.3057 4.5580 3.6074 

2 26.0190 21.0533 15.6212 12.7204 25.7475 20.8050 15.3906 12.4917 25.3348 20.4270 15.0381 12.1405 

3 44.4503 35.9715 26.7025 21.7451 44.0963 35.6481 26.4025 21.4471 43.5599 35.1574 25.9458 20.9923 

4 

1 8.1079 6.5446 4.8325 3.9186 7.8870 6.3417 4.6426 3.7290 7.5434 6.0246 4.3422 3.4251 

2 23.9000 19.3329 14.3363 11.6679 23.6042 19.0623 14.0847 11.4181 23.1533 18.6489 13.6986 11.0329 

3 39.8026 32.2004 23.8890 19.4432 39.4069 31.8388 23.5531 19.1094 38.8057 31.2884 23.0401 18.5975 

 

 

In order to investigate the vibration characteristics of the FG nanobeam under nonlinear 

temperature rise, the first three non-dimensional fundamental frequencies of simply-supported FG 

nanobeam is presented in Table 4, which figures out the effect of nonlocal parameter (varying from 

0 to 4 (nm)2), gradient index (varying from 0 to 5) and three different values of linear temperature 

changes (ΔT = 10, 30, 60) for L/h = 20 on the natural frequency characteristics of FG nanobeam. 

First of all, when the two parameters vanish (μ = 0 and p = 0) the classical isotropic beam 

theory is rendered. Furthermore, the effects of temperature change, nonlocal parameter and 

gradient indexes on the dimensionless frequencies are presented in this table. Also, there is no 

rigorous study made on estimating the value of small scale to simulate mechanical behaviour of 

functionally graded micro/nanobeams. Hence all researchers who worked on size-dependent 

mechanical behaviour of FG nanobeams based on the nonlocal elasticity method investigated the 

effect of small scale parameter on mechanical behaviour of FG nanobeams by changing the value 

of the small scale parameter. The nonlocal parameter, μ = (e0a)2, is experimentally obtained for 

various materials. Therefore, in the present study, a conservative estimate of the nonlocal 

parameter is in the range of 0-4 (nm)2 (Rahmani and Pedram 2014). 

As seen in Table 4, the natural frequencies decreases for increasing values of the power index 

from 0 up to 5. This is due to the fact that for large values of power law index, the material 

properties of the nanobeam become similar to the material properties of a metal with higher 

thermal expansion coefficients in comparison to the ceramic. Thus, one could easily control the 

frequencies and critical buckling temperature of the FG nanobeams by tuning the power index. 

Also, it is revealed that the major effect of power law index is for p < 5. Whilst the variations of 
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natural frequencies with respect to p for p > 5 are not significant when compared to p < 5. 

However, the increasing of nonlocal parameter causes the decreasing in fundamental frequency, at 

a constant material graduation index. In addition, it is seen that the first three dimensionless 

natural frequencies decrease by increasing temperature change and it can be stated that 

temperature change has a significant effect on the dimensionless natural frequencies, especially for 

lower mode numbers. 

Variations of the first three dimensionless natural frequencies of the simply supported FG 

nanobeams with respect to temperature changes for different values of gradient indexes and 

nonlocal parameters are depicted in Figs. 3-5, respectively. It is seen from the figures that the 
 

 

  

(a) p = 0.2 (b) p = 5 

Fig. 3 Variations of the first dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of nonlocal parameters and gradient indexes (L/h = 50) 

 

 

  

(a) p = 0.5 (b) p = 2 

Fig. 4 Variations of the second dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of nonlocal parameters and gradient indexes (L/h = 50) 
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(a) p = 0.5 (b) p = 2 

Fig. 5 Variations of the third dimensionless natural frequency of the S-S FG nanobeam with respect to 

temperature change for different values of nonlocal parameters and gradient indexes (L/h = 50) 

 

 

 

Fig. 6 Variations of the first dimensionless natural frequency of the S-S FG nanobeam with 

respect to temperature change for different values of aspect ratios (p = 0.5, μ = 2) 

 

 

fundamental frequency of FG nanobeam decreases with the increase of temperature until it 

approaches to the critical buckling temperature. This is due to the reduction in total stiffness of the 

beam, since geometrical stiffness decreases when temperature rises. Frequency reaches to zero at 

the critical temperature point. Also, the increase in temperature yields in higher frequency after the 

branching point. One important observation within the range of temperature before the critical 

temperature, it is seen that the FG nanobeams with lower value of gradient index (higher 

percentage of ceramic phase) usually provide larger values of the frequency results. However, this 

behavior is opposite in the range of temperature beyond the critical temperature. It is also 

observable that the branching point of the FG nanobeam is postponed by consideration of the 

lower gradient indexes due to the fact that the lower gradient indexes result in the increase of 
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stiffness of the structure. It can be also seen that regardless of the values of power index, the 

natural frequencies are considerably reduced by increasing the nonlocal parameter. This implies 

that the nonlocal effects make the stiffness of the FG nanobeam diminish and so, the small scale 

impact must be accounted. 

Depicted in Fig. 6 is the influences of L/h ratio and temperature changes on dimensionless 

natural frequency of FG nanobeams at p = 0.5, μ = 2. As expected, the increase in aspect ratio 

results in reduction of natural frequency of temperature-dependent FG nanobeams. Also, an 

increase in the temperature change leads to the decrease of the dimensionless natural frequency. 
 

 

5. Conclusions 
 
In the present research, the study of thermal buckling and vibrational behavior of the 

temperature-dependent FG nanobeams subjected to nonlinear temperature distribution through the 

thickness direction was carried out based on the nonlocal elasticity theory accounting for the small 

scale effects. The power law distribution is assumed for the variation of the material properties in 

the nanobeam thickness. Thermo-mechanical properties of the FG nanobeams are assumed to be 

functions of both temperature and thickness. Eringen’s theory of nonlocal elasticity together with 

Timoshenko beam theory is used to model the nanobeam. The governing differential equations and 

related boundary conditions in thermal environment are derived by implementing Hamilton’s 

principle. Accuracy of the results is examined using available data in the literature. After 

performing comparison studies, parametric studies are done to investigate the influences of 

nonlocal parameter, gradient index, mode number, nonlinear temperature rise and aspect ratio on 

the critical buckling temperature and natural frequencies of FG nanobeams. 

It is concluded that various factors such as nonlocal parameter, gradient index, temperature-

dependent material properties, thermal environment and aspect ratio play important roles in 

buckling and vibration behavior of FG nanobeams. It is illustrated that presence of nonlocality 

leads to reduction in natural frequency and buckling temperature. This behavior was more tangible 

for the nanobeams with lower values of L/h ratio. Moreover it is revealed that critical buckling 

temperature decreases with the increase in aspFFPect ratio and this behavior is the same for all 

values of power index. It is also observed that the fundamental frequency decreases with the 

increase in temperature and tends to the minimum point closing to zero at the critical temperature. 

This decrease in frequency with thermal load is attributed to the fact that the thermally induced 

compressive stress weakens the beam stiffness. However, after the critical temperature region, the 

fundamental frequency increases with the increment of temperature. Also, it is concluded that an 

increase in the power law index lead to lower critical buckling temperature and natural frequencies 

by decrease the stiffness of nanobeam. 
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Nomenclature 
 

𝑨
 

area of the cross section 

𝑨𝒙𝒙, 𝑩𝒙𝒙, 𝑫𝒙𝒙 cross-sectional rigidities 

E Young’s modulus 

h thickness of the nanobeam 

I  moment of inertia of the cross section 

𝑰𝟎, 𝑰𝟏, 𝑰𝟐 mass moment of inertias 

L length of the nanobeam 

M bending moment 

N axial force 

𝑵𝑻 thermal resultant 

p power-law index 

𝑷𝑪 material properties of the ceramic constituent 

𝑷𝒎 material properties of the metal constituent 

𝑷𝟎, 𝑷−𝟏, 𝑷𝟏, 𝑷𝟐, 𝑷𝟑 temperature dependent coefficients 

𝑻𝟎 initial temperature 

∆𝑻 temperature change 

u axial displacement 

𝑼 strain energy 

𝑽 work done by external forces 

w transverse displacement 

t time 

T kinetic energy 

𝝆 mass density 

𝜶 thermal expansion coefficient 

𝝈𝒊𝒋 nonlocal stress-tensor components 

𝝎 natural frequency 

𝝎  non-dimensional natural frequency 

𝝁 nonlocal parameter 
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Highlights 
 

 Thermal buckling and free vibration analysis of Timoshenko nanobeams subjected to nonlinear 

temperature rise are studied. 

 The material properties of the nanobeam vary continuously through the beam thickness according to 

power-law form and are temperature dependent based on the Touloukian model. 

 Nonlocal equations are derived by using the Hamilton’s principle and they are solved by applying an 

analytical solution. 

 Effects of nonlocal parameter, nonlinear temperature distribution, geometrical characteristics and 

power law index on the critical buckling temperatures and natural frequencies of size-dependent FG 

nanobeams are discussed. 
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