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Abstract.    In this article, the critical buckling of a single-walled carbon nanotube (SWCNT) embedded in Kerr’s 
medium is studied. Based on the nonlocal continuum theory and the Euler-Bernoulli beam model. The governing 
equilibrium equations are acquired and solved for CNTs subjected to mechanical loads and embedded in Kerr’s 
medium. Kerr-type model is employed to simulate the interaction of the (SWNT) with a surrounding elastic medium. 
A first time, a comparison with the available results is made, and another comparison between various models 
Winkler-type, Pasternak-type and Kerr-type is studied. Effects of nonlocal parameter and aspect ratio of length to 
diameter of nanobeam, as well as the foundation parameters on buckling of CNT are investigated. These results are 
important in the mechanical design considerations of nanocomposites based on carbon nanotubes. 
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1. Introduction 

 
Carbon nanotube (CNT) is one of the miracles of this century its (CNTs) are molecular-scale 

tubes of graphitic carbon with the supreme and outstanding characteristics. The carbon nanotubes 
(CNTs) embedded in elastic medium broadly attract researchers’ attention in recent years, have 
widespread applications in different fields such as nanotechnology, electronics, chemistry, physics, 
engineering and reinforced composite structures as well as potential uses in architectural fields 
(Shahsavari et al. 2018a, Fakhar and Kolahchi 2018, Tounsi et al. 2016, Karami and Janghorban 
2016, Ould Youcef et al. 2015, Karami et al. 2018b, Kolahchi et al. 2017b, Guessas et al. 2018, 
Amnieh et al. 2018, Golabchi et al. 2018). The very unusual mechanical, electrical and 
thermomechanical properties of CNTs make them as one of the greatest hopeful reinforcement 
materials for high performance structural and multifunctional composites instead of conventional 
fibers, with adding them as reinforcements for polymers leaded to several important studies to 
estimate their mechanical properties accurately (Kolahchi and Cheraghbak 2017, Kolahchi et al. 
2017c, Bousahla et al. 2014, Bouhadra et al. 2018, Abualnour et al. 2018, Madani et al. 2016, 
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Zarei et al. 2017, Abdelmalek et al. 2017, Belmahi et al. 2018, Hajmohammad et al. 2018b, 
Hosseini and Kolahchi 2018, Kolahchi et al. 2015, Kaci et al. 2018, Draiche et al. 2016, Mahi et 
al. 2015, Zine et al. 2018). 

At the nano scale, length dimensions are often small enough to call out the applicability of 
classical continuum theories because at this scale, the mechanical characteristics of structures are 
often different from their macroscopic behavior. Consequently, many non-local theories that 
consider the scale effect have been proposed such as Functionally Graded Nanotube-Reinforced 
Composite (Karami et al. 2018c), nonlocal second-order shear deformation theory (Karami et al. 
2018d), and the nonlocal theory of elasticity (Eringen 1972), these theories take into account the 
influence of the screen introducing the intrinsic scale length in the constituent relations. Among 
the theories of the nanoscale, the theory of non-local elasticity developed by (Eringen 1983) who 
considered that the state of stress at a reference point in the body is considered as a function of the 
states of stress of all points. Recently, The theories of the nanoscale have been widely used to 
study the responses of nano and micro structures, such as the static (Karami et al. 2017, Ahouel et 
al. 2016, Karami et al. 2018d), the buckling and postbuckling (Arani and Kolahchi 2016, Bellifa et 
al. 2017b, Bouazza et al. 2015b, Larbi Chaht et al. 2015, Zemri et al. 2015, Kolahchi et al. 2017c, 
Zamanian et al. 2017, Khetir et al. 2017, Hajmohammad et al. 2017) and dynamic instability (She 
et al. 2018a, Belkorissat et al. 2015, Wu et al. 2018, Bouadi et al. 2018, Bounouara et al. 2016, 
Karami et al. 2018f, Youcef et al. 2018, Besseghier et al. 2017, Kolahchi and Bidgoli 2016, Ehyaei 
et al. 2017, Cherif et al. 2018, She et al. 2018a, Ebrahimi and Fardshad 2018), bending (Bouafia et 
al. 2017). 

Due to difficulties encountered in experimental methods to predict the responses of 
nanostructures, the continuum mechanics methods are widely used to predict the responses of 
Visco and piezoelectric nano beam and nano plates (Kolahchi et al. 2016a, c, 2017e, 
Hajmohammad et al. 2018a, Shokravi 2017b, Cherif et al. 2018, Hajmohammad et al. 2018c, 
Kolahchi 2017). The continuum mechanics methods is one of the hypotheses of several theory 
such as: Euler-Bernoulli, Timoshenko, levinson and higher order shear deformation theory 
(Belabed et al. 2014, 2018, Bennoun et al. 2016, Bouderba et al. 2016, Boukhari et al. 2016, 
Bourada et al. 2015, Fourn et al. 2018, Hamidi et al. 2015, Hebali et al. 2014, Houari et al. 2016, 
Mouffoki et al. 2017, Tounsi et al. 2013b, Younsi et al. 2018, Zidi et al. 2014, 2017). 

Most structures and nanostructures are subjected to axial compressive, buckling may occur, and 
the deflection of a structural member increase gradually with increased applied load. Buckling 
refers to this transition to large, often catastrophic displacements also leading to the sudden 
collapse of a mechanical component and structural instability, which is often called buckling. 
Buckling canoccur due to mechanical or thermal loads. Recently, the buckling of various structures 
have been widely studied (Abdelaziz et al. 2017, Ait Amar Meziane et al. 2014, Bellifa et al. 
2017a, Chikh et al. 2017, El-Haina et al. 2017, Menasria et al. 2017, Bousahla et al. 2016, 
Mokhtar et al. 2018) 

Many investigators have discussed the vibration and buckling of single-walled (SW) and multi-
walled (MW) CNTs with various theories which are treated as beams, thin shells or solids in 
cylindrical shapes (Naceri et al. 2011, Wang et al. 2006, Zidour et al. 2015, Bensattalah et al. 2016, 
Bouazza et al. 2014, 2015b, Ehyaei et al. 2017, Chemi et al. 2018, Hamidi et al. 2018, Karami et 
al. 2018a, Chemi et al. 2015, Rakrak et al. 2016, Tounsi et al. 2013b, Dihaj et al. 2018, Kolahchi 
et al. 2016b). In most applications of nanocomposites, the CNT are embedded in an elastic 
foundation medium. The first type of elastic foundation is presented by Winkler as the “one-
parameter” foundation model since it is characterized only by the vertical stiffness of the Winkler 
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foundation springs (Murmu and Pradhan 2010, Pradhan and Reddy 2011). Karami et al. (2018g) 
analyze the wave dispersion of graphene with initial stress mounted on Winkler foundation. 
Several researchers (Filonenko-Borodich 1940) have been improved the Winkler model by using 
the second parameter to description the existence of shear stress inside the elastic medium. 

In fact, both the first type of elastic foundation and the second type presented by Pasternak 
have been utilized by (Beldjelili et al. 2016, Bouderba et al. 2013, Yazid et al. 2018, Zaoui et al. 
2019, Attia et al. 2018). The size-dependent dynamic deflections of viscoelastic orthotropic 
nanoplates under moving load embedded within visco-Pasternak substrate is analyzed by 
(Shahsavari et al. 2017). Recently, TheWinkler-Pasternak and visco-Pasternak’s mediumhave been 
widely used to study the responses of nano and micro structures (Shahsavari et al. 2018a, She et al. 
2018a). 

To further improve the Pasternak model, (Kerr 1965) had added the third parameter (Kerr-type). 
The major role of the third parameter (Kerr-type) is to give more flexibility in controlling the 
grade of foundation-surface continuity between the loaded and the unloaded area of the beam-
elastic system. In the Kerr-type model, the elastic medium is envisaged as consisted of lower and 
upper spring beds sandwiching an incompressible shear layer (Limkatanyu et al. 2013). However, 
Even though the model of Kerr-type foundation was developed since the mid-sixties, it has been 
found that theoretical studies of nanostructure resting or incorporated into the Kerr foundation are 
rare in the literature (Shahsavari et al. 2018b). The shear buckling lead of imperfect FG nanoplates 
incorporate porosities resting on an elastic Kerr foundation model environment is analyzed by 
(Karami et al. 2018f). 

In this paper, the critical buckling of a CNT embedded in Kerr’s medium based on the nonlocal 
Euler Bernoulli beam theory is studied. A comparison study with published results acquired by 
other investigators is presented showing an excellent agreement. The effects of nonlocal parameter, 
radius and length of CNT, as well as the foundation parameters on buckling of CNT embedded in 
an elastic medium are investigated. 

 
 

2. Basic equations of carbon nanotube (CNT) 
 
2.1 Elastic medium 
 
Consider a CNT of length L, diameter d and thickness t as shown in Fig. 1. The CNT is 

surrounding with Kerr’s medium. This foundation model is represented by (Van Cauwelaert et al. 
2002) 
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Where w is the transverse displacement of CNT, the foundation model consists of two spring 

layer (the upper and lower springs) of constants kw and kc, and an intermediate shear layer with 
constant kG. It is usually more convenient to use the bending stiffness D of the beam writing by 

 
EID   (1b)

 
Where I and E are the moment of inertia and elastic modulus of nanotube of carbon. 
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Fig. 1 Schematic diagram for simply-supported carbon nanotube embedded in Kerr’s foundations 
 
 
2.2 The model of nonlocal elasticity of (SWCNTs) 
 
Based on Eringen nonlocal elasticity model Eringen (1976, 1983), the stress at a reference point 

in the body is considered to be a functional of the strain field at every point. When the effects of 
strains are neglectedat in points other than x, one get to local theory of elasticity. For homogeneous 
and isotropic elastic solids, the constitutive equation of non-local elasticity can be given by 
Eringen AC (1983). Non-local stress tensor (t) at point (x′) is defined by 
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where (Cijkl) is the classical, macroscopic stress tensor at point x′, σij and εij are stress and strain 
tensors respectively. K(|x ‒ x′|, τ) is the kernel function and (τ = e0a/l) is a material constant that 
depends on internal and external distinctive length (such as the lattice spacing and wavelength)., 
where (e0a) is a constant proper to each material, a is an internal characteristic length, e.g., length 
of (C–C) bond, lattice parameter, granular distance, and (L) is an external characteristic length. 

As solving of integral constitutive Eq. (2) is difficult, a simplified equation in one-dimensional 
differential form is used as a basis of all nonlocal constitutive formulation 
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where (E) is the Young’s modulus of the material. Thus, the scale coefficient (e0a) in the 
modelling will lead to small-scale effect on the response of structures at nano size. 

The expressions of the axial strain 3 can be defined by 
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where (w) is the transverse displacement. 
The shear force and the bending moment can be defined by 
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A

xydAT   (5)

 
Based on Eqs. (3), (4) and (5) the bending moment (M) and the shear force (T) for the non-local 

model can be expressed as 
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dAyI 2  is the moment of inertia, (A) is the cross-section area of the beam, 

Equilibrium equations of (SWCNTs) embedded in Kerr’s foundations. 
Using Euler-Bernoulli beam theory, the force equilibrium equations and the moment on the 

one-dimensional structure for transverse vibrations of an elastic beam can be easily provided 
follows 
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where (x) is the axial coordinate, (w) is the transverse deflection of the (SWCNT), (M) and (T) are 
the resultant bending moment and shear force, (ρ) is the mass density of the material, (A) is the 
area of the cross section of the nanotube beam, (I) the second moment of inertia,. f(x) is the 
interaction pressure per unit axial length between the nanotube and the surrounding elastic 
medium, 

Based on Eqs. (6), (7) and (8), the following relation can be obtained 
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The derivation of Eq. (9) is as follows 
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Substituting Eq. (10) into Eq. (8), we can obtain 
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The derivation of Eq. (11) is as follows 
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Substituting Eqs. (1) and (12) into Eq. (7), we obtain the below governing nonlocal equation for 

Buckling of nanotubes based on Euler–Bernoulli beam theory 
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Since finding an analytical solution is possible for simply supported boundary conditions for 

the present problem, the (SWNT) beam is assumed simply supported. As a result, the boundary 
conditions have the following form 13 
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Where )(W  is the amplitude of deflection of the beam. In addition the pressure per unit axial 

length, acting on the outermost tube due to the surrounding elastic medium, can be described by a 
Kerr’s model (see Eq. (1)). 

Substitution of Eq. (14) into Eq. (13) gives the correspondent buckling load via nonlocal Euler-
Bernoulli beam model of the CNT is embedded in a Kerr’s medium (PN.E.K) is as follows 
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Note that for kc = ∞, the upper spring layer vanishes and the Eq. (15) transforms into buckling 

load of the CNT is embedded in a Pasternak’s medium (PN.E.P) 
 

     

  
2 22 4 2 4

. . 22 2

1 0 0

1 0

w G G

N E P

e a k k e a k EI
P

e a

   

 

   



(16)

 
Further note that for (kc = ∞ and kG = 0), the upper spring layer, the shear layer vanishes and the 

Eq. (15) transforms into buckling load of the CNT is embedded in a Winkler’s medium (PN.E.W) 
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3. Numerical results and discussions 
 
3.1 Validation 
 
The effects of nonlocal parameter (e0a), length (L), rod diameter (d), Kerr’s foundation (kc, kw 

and kG) and mode numbers (N) on the buckling analysis of the CNTs are written in Eq. (13). It is 
interesting to note that by putting e0a = 0, we obtain the corresponding local elasticity equation for 
SWCNT (Wang et al. 2006). Analytical solutions exist for SWCNT with nonlocal effects without 
any elastic medium. The analytical solution Wang et al. (2006) is given by 
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Table 1 show how the present results can be validated by other published literatures in buckling 

analysis of CNTs (Pradhan and Reddy 2011, Wang et al. 2006). The data adopted in generating 
these results are: E = 1 TPa, G = E/[2(1 + ν)], ν = 0.19, rod diameter d = 1 nm and I = πd4/64. The 
various non-dimensional parameters used are 
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Table 1 Comparison between exact and approximate buckling loads Pcr (nN) for the simply supported based 
on nonlocal Euler-Bernoulli beam model 

e0a 
(nm) 

0 1 2 

L/d 

 Pcr (exact) 
(Wang 
et al. 
2006) 

Pcr (DTM) 
(Pradhan 

and Reddy 
2011) 

Pcr 
Present 

Pcr (exact)
(Wang 
et al. 
2006) 

Pcr (DTM) 
(Pradhan 

and Reddy 
2011) 

Pcr 
Present

Pcr (exact) 
(Wang 
et al. 
2006) 

Pcr (DTM) 
(Pradhan 

and Reddy 
2011) 

Pcr 
Present

10 4.8447 4.8447 4.8447 4.4095 4.4095 4.4095 4.0460 4.0460 4.0460

12 3.3644 3.3644 3.3644 3.1486 3.1486 3.1486 2.9588 2.9588 2.9588

14 2.4718 2.4718 2.4718 2.3533 2.3533 2.3533 2.2456 2.2456 2.2456

16 1.8925 1.8925 1.8925 1.8222 1.8222 1.8222 1.7569 1.7569 1.7569

18 1.4953 1.4953 1.4953 1.4511 1.4511 1.4511 1.4094 1.4094 1.4094

20 1.2112 1.2112 1.2112 1.1821 1.1821 1.1821 1.1542 1.1542 1.1542
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Table 2 Comparison of axial buckling load of the CNT embedded in Winkler, Pasternak and Kerr’s medium 
using the present theory with those obtained by (Wang et al. 2006) 

 
e0a = 0 nm e0a = 1 nm e0a = 2 nm 

L/d = 5 L/d = 10 L/d = 5 L/d = 10 L/d = 5 L/d = 10

Without medium (Wang et al. 2006) 19.3789 4.8447 13.8939 4.4095 7.5137 3.4735 

Without medium (Present) 19.3789 4.8447 13.8939 4.4095 7.5137 3.4735 

Winkler medium (Present) 39.2733 9.8183 33.7882 9.3831 27.4081 8.44710

Pasternak medium (Present) 58.9082 14.7271 53.4232 14.2919 47.0430 13.3558

Kerr medium (Present) 45.3062 11.3265 39.8211 10.8913 33.4410 9.95530

 
 
As a validation example, (Table 1) shows a comparison of axial buckling load P of the CNT 

subjected to axial buckling load calculated by using the present theory with those obtained by 
Pradhan and Reddy (2011), and by Wang et al. (2006). It can be seen in Table 1 the excellent 
agreement of the proposed method of solution with various small scale parameters and those 
obtained in the literature. 

Table 2 shows a comparison of axial buckling load P of the CNT embedded in Winkler, 
Pasternak and Kerr’s medium using the present theory with those calculated by (Wang et al. 2006). 
It is clear that there is excellent agreement between the results. On the other hand, it is clearly seen 
from (Table 2) that the ranges of buckling load are quite different, the range is the smallest for 
Winkler medium, but the range is the largest for Pasternak medium. The reason for this difference 
is attributed to the increasing or decreasing of rigidity of elastic medium. 

 
3.2 Effect of various models of elastic medium: 
 
Now, to study the effect of various elastic foundation parameters on the axial buckling load P of 

the CNT. The lower spring modulus (kw), the upper spring modulus parameter (kc) and the shear 
layer modulus (kG). The lower spring modulus (Winkler modulus parameter) )( WK , for the 
surrounding polymer matrix is varied from 0 to 400, what for L = 10 nm corresponds to the change 
kw = (0÷1,96) GPa/nm, while the shear layer modulus parameter )( GK  is varied from 0 to 10, 
what for L = 10 nm corresponds to the change kG = (0÷4,90) nN/nm. Similar values of modulus 
parameters were taken by Kitipornchai et al. (2006). Both, for the upper spring modulus parameter 

)( CK in this present work is varied from 2 to 1000, what for L = 10 nm corresponds to the change 
kc = (0,01÷205·103) GPa/nm. Note that for )1000( CK  the results in Kerr’s foundation tend to 
the results in Pasternak’s foundation; for )0  and  1000(  GC KK  the results in Kerr’s 
foundation tend to the results in Winkler’s foundation; 

Fig. 2 shows a comparison of critical buckling load of SWCNT between various models of 
elastic medium with simply supported boundary conditions. The material properties for this case 
are taken as E = 1 TPa, d = 1 nm, WK  = 100, GK = 10, CK  = 50, nonlocal parameter e0a = 2 nm. 
It is observed that for various model of elastic medium the buckling load diminished as ratio L/d is 
varied from 1 to 10. In addition, it is observed that there is a significant influence of type of the 
elastic medium on the critical buckling loads of SWCNT. 

In Fig. 3 depicts the effect of scale coefficients on the critical buckling loads of carbon 
nanotube embedded in Kerr’s foundations. The parameter (e0a) values of SWCNT were taken in 
the range of 0–2 nm. From Fig. 3, it is observed that there is a significant influence of small scale 
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Fig. 2 Comparison of critical buckling load of SWCNT between various models of elastic medium 
 
 

4 5 6 7 8 9 10

10

20

30

40

50

60

P(
nN

)

L/d

 e0a=2nm
 e0a=1,5nm
 e0a=1nm
 e0a=0,5nm
 e0a=0nm

Fig. 3 Relation between the values of critical buckling loads and the aspect ratio (L/d) of SWCNT 
with different scale coefficients 

 
 

parameter (e0a) on the critical buckling loads for simply-supported carbon nanotube embedded in 
Kerr’s foundations. Considering nonlocal model are always smaller than the local (classical) 
model. Similar observations are made in this works (Pradhan and Reddy 2011, Wang et al. 2006, 
Zidour et al. 2014) for the analyses of the nano beams. 

Fig. 2 shows a comparison of critical buckling load of SWCNT between various models of 
elastic medium with simply supported boundary conditions. The material properties for this case 
are taken as E = 1 TPa, d = 1 nm, WK  = 100, GK = 10, CK  = 50, nonlocal parameter e0a = 2 nm. 
It is observed that for various model of elastic medium the buckling load diminished as ratio L/d is 
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Fig. 4 Relation between the values of critical buckling loads of SWCNT embedded in Kerr’s 
foundations and the Winkler modulus for various Shears layer modulus with CK  = 2 

 
 

varied from 1 to 10. In addition, it is observed that there is a significant influence of type of the 
elastic medium on the critical buckling loads of SWCNT. 

In Fig. 3 depicts the effect of scale coefficients on the critical buckling loads of carbon 
nanotube embedded in Kerr’s foundations. The parameter (e0a) values of SWCNT were taken in 
the range of 0–2 nm. From Fig. 3, it is observed that there is a significant influence of small scale 
parameter (e0a) on the critical buckling loads for simply-supported carbon nanotube embedded in 
Kerr’s foundations. Considering nonlocal model are always smaller than the local (classical) 
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Fig. 5 Relation between the values of critical buckling loads of SWCNT embedded in Kerr’s 
foundations and the Winkler modulus for various Shears layer modulus with CK  = 100 
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foundations and the Winkler modulus for various Shears layer modulus with CK  = 1000 

 
 

model. Similar observations are made in this works (Pradhan and Reddy 2011, Wang et al. 2006, 
Zidour et al. 2014) for the analyses of the nano beams. 

The effect of the various parameters of Kerr’s foundations, on the non-local critical buckling 
load for short of single-walled carbon nanotubes (SWCNTs), the ratio of the length to the diameter 
(L/d), is 10 is presented in (Figs. 4-6). The small scale effects is considered (e0a = 2 nm). It is 
clearly seen from figures that the ranges of the critical buckling loads for these deferent parameters 
of elastic medium (Kerr’s foundation) are quite different, the range is the largest for Shears layer 
moduli GK = 10, but the range is the smallest for others. It can be clearly seen that this parameters 
of Kerr’s foundation effect reduces or augmented the buckling loads. In other hand, it is noticed 
that the critical buckling loads are influenced by stiffness of the surrounding polymer elastic 
medium. As these parameters of elastic medium increases (soft elastic medium to hard 
medium),the critical buckling loads also increase. 

 
 

4. Conclusions 
 
The paper presents a embedded carbon nanotube in Kerr’s foundation medium. The buckling 

analysis is obtained by using nonlocal continuum theory and the Euler-Bernoulli beam model. A 
validation example is given to show the accuracy of the present analysis. Influence of the stiffness 
of the elastic medium on critical buckling loads of the CNTs is shown. Winkler-type, Pasternak-
type and Kerr-type models are employed to simulate the interaction of the (SWNT) with a 
surrounding elastic medium. The Kerr-type medium is utilized to taking into account the shear 
coupling between the individual Winkler-spring components through the shear-layer component. 
This feature is unique to the Kerr-type foundation model. The obtained numerical results show that: 

 
 The buckling load P (nN) is rabidly decreasing as the nonlocal parameter e0a decreasing. 
 The minimum value of The buckling load P (nN) occurs in the case of without elastic 
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foundations and the maximum one occurs for the higher values of the foundation parameters 

CK , WK  and GK . 
 The buckling load P (nN) is sensitive to the value of CK  more than these values of 

Winkler’s parameter WK  and shear layer GK . 
 The maximum value of The buckling load P (nN) occurs in the case of Pasternak elastic 

foundations more than these values of Winkler’s and Kerr’s foundations 
 The buckling load P (nN) is increasing as the aspect ratio of length to diameter of the CNT 

decreases 
 

The Kerr-type model results in more realistic interactive foundation forces as compared to the 
Winkler model. 
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