
 

 

 

 

 

 

 

Advances in Nano Research, Vol. 6 No. 4 (2018) 299-321 
DOI: https://doi.org/10.12989/anr.2018.6.4.299 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=anr&subpage=5              ISSN: 2287-237X (Print), 2287-2388 (Online) 
  
 
 

 
 
 
 

A layerwise theory for buckling analysis of truncated conical 
shells reinforced by CNTs and carbon fibers integrated with 

piezoelectric layers in hygrothermal environment 
 

Mohammad Hadi Hajmohammad 1, Mohammad Sharif Zarei 2, 

Ahmad Farrokhian 1 and Reza Kolahchi 
3 

 
1
 Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran 

2
 Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran 

3
 Department of Civil Engineering, Meymeh Branch, Islamic Azad University, Meymeh, Iran 

 
(Received July 16, 2018, Revised October 3, 2018, Accepted October 8, 2018) 

 
Abstract.  A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric 

truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon 

fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The 

Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the 

core. The proposed layerwise theory is based on Mindlin’s first-order shear deformation theory in each layer and 

results for a laminated truncated conical shell with three layers considering the continuity boundary condition. 

Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature 

method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, 

CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and 

external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the 

CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes 

decreases the buckling load. 
 

Keywords:  buckling; piezoelectric truncated conical shells; multiphase nanocomposite; layerwise theory; 

hygrothermal load 

 
 

1. Introduction 
 
The application of sandwich structures in many industries is rising due to their excellent 

properties such as high strength, low weight and resistance to fatigue. One of the special types of 

these structures is truncated conical shell with application in aerospace, marine and automobile 

industries. Due to their practical interest, sandwich structures have been the subject of numerous 

works. However, in this work, we focused on the buckling analysis of piezoelectric truncated 

conical shells. 

Mechanical analysis of sandwich conical shells is reported by several researchers. Tong (1994) 

studied laminated conical shells using first order shear deformation theory (FSDT) based on power 
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series solution. Sharnappa et al. (2007) presented the damping and frequency parameters of 

conical sandwich shell with electro-rheological fluid (ER) core. Free vibration of antisymmetric 

and symmetric cross-ply composite laminated truncated conical shells was studied by Viswanathan 

et al. (2012) using the spline function technique. Abediokhchi et al. (2013) investigated buckling 

of conical laminated shell panels using classical shell theory and solved using DQM. Based on 

improved higher-order panel theory, the buckling response of a sandwich truncated conical 

composite panel was performed by Malekzade Fard and Livani (2014). Nonlinear dynamics of 

laminated composite bimodular conical panels was presented by Khan and Patel (2015) by 

employing shooting technique coupled with length/pseudo-arc length continuation and Newmark 

time marching arc algorithms. Viswanathan et al. (2015) analyzed free vibration of anti-symmetric 

angle-ply laminated conical shells using Bickley-type splines to obtain the generalized eigenvalue 

problem. Buckling analysis of sandwich functionally graded conical panels was studied by Demir 

et al. (2016) using method of discrete singular convolution. An improved high-order theory was 

employed by Shekari et al. (2017) to present the vibration of sandwich truncated rotating conical 

shells with a soft core. Buckling vibration responses of sandwich laminated truncated conical 

shells were presented by Nasihatgozar and Khalili (2017) considering curvature effects. Sofiyev et 

al. (2017) demonstrated the effectiveness of functionally graded integrating for the vibration of 

truncated conical sandwich shells. The mechanical and thermal stability of a composite 

functionally graded truncated conical shell reinforced by carbon nanotube fibers were studied by 

Duc et al. (2017d). 

For the published papers in the field of the piezoelectric sandwich structure, an efficient one-

dimensional model was developed by Kapuria et al. (2003) for the statics of sandwich 

piezoelectric beams using third-order zigzag theory. An investigation on the nonlinear dynamic 

response and vibration of the imperfect laminated three-phase polymer nanocomposite panel 

resting on elastic foundations was presented by Duc et al. (2015). Coupled piezoelectric layerwise 

higher-order laminate mechanics were used by Plagianakos and Papadopoulos (2015), applicable 

to sandwich shells and shallow composite cylindrical under the electric and mechanical loads. 

Dynamic response of laminated sandwich plates with smart actuator and sensor layers and soft 

core were presented by Araújo et al. (2016) based on finite element model. Aylikci et al. (2017) 

studied the 3D buckling delamination problem in the PZT/Metal/PZT sandwich plates using the 

so-called 3D linearized theory of stability. Hajmohammad et al. (2017a) investigated dynamic 

buckling of viscoelastic laminated sandwich plate with CNT-reinforced layers and viscoelastic 

piezoelectric layers at the top and bottom face sheets. Kolahchi et al. (2017a) investigated wave 

propagation of smart viscoelastic nanocomposite sandwich plate under the magnetic field. An 

exact solution method was developed by Ebrahimi and Jafari (2017) for analyzing the vibration 

characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering 

porosity distribution and various boundary conditions via a four-variable shear deformation refined 

beam theory. Kolahchi et al. (2017b) studied optimization for dynamic buckling in sandwich 

piezoelectric nanocomposite plates based on Grey Wolf algorithm. Duc et al. (2017a, b, c) studied 

thermal and mechanical stability of a functionally graded composite truncated conical shell, plates 

and double curved shallow shells reinforced by carbon nanotube fibers. Based on Reddy’s third-

order shear deformation plate theory, the nonlinear dynamic response and vibration of imperfect 

functionally graded carbon nanotube-reinforced composite plates was analyzed by Thanh et al. 

(2017). Duc et al. (2018) presented the first analytical approach to investigate the nonlinear 

dynamic response and vibration of imperfect rectangular nanocompsite multilayer organic solar 

cell subjected to mechanical loads using the classical plate theory. A nonlocal second-order shear 
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deformation formulation was presented by Karami et al. (2018) to investigate the size-dependent 

thermal buckling of embedded piezoelectric sandwich nanoplates with FG core. An analytical 

solution of the buckling governing equations of functionally graded piezoelectric (FGP) 

nanobeams obtained by using a developed third-order shear deformation theory was presented by 

Ebrahimi and Barati (2018). 

In this study, a layerwise FSDT is developed to present the buckling analysis of sandwich 

nanocomposite smart truncated conical shell subjected to temperature and moisture changes. The 

structure is consisted of a multiphase nanocomposite core and two piezoelectric layers. The 

Kelvin-Voigt and Halpin-Tsai models are utilized for considering structural damping effects and 

calculating the equivalent material properties of the core, respectively. The buckling load is 

calculated using DQ method. The influences of some parameters such as boundary conditions, 

CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature 

changes and external voltage are investigated on the buckling load of the smart structure. 
 

 

2. Halpin-Tsai model 
 

Fig. 1 presents a sandwich smart truncated conical shell with piezoelectric layers. The core is 

reinforced by CNTs and carbon fibers and the top piezoelectric layer is subjected to electric field. 

The geometrical parameters of the truncated conical shell are r1, and r2 the radii of the cone at its 

small and large ends, respectively; α cone semi-vertex angle; L is the length of the cone; tt, tb and tc 

respectively, actuator thickness, sensor and core layers. 

Based on Halpin-Tsai model, the equivalent properties of the nanoconposite core are 

(Hajmohammad et al. 2017b) 
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Fig. 1 A schematic of smart sandwich truncated conical shell with piezoelectric layers 
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where G, E, V, ρ and v are respectively, shear modulus, Young’s modulus, volume fractions, 

density and Poisson’s ratio. The subscript MNC and F show the matrix of nanocomposite and 

fibers, respectively. However, the elastic modulus of nanocomposite is 
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where VM and EM are matrix volume fraction and Young’s modulus, respectively; tCN, ECN, 
CN, 

dCN and VCN represent respectively, the thickness, Young’s modulus, length, outer  diameter and 

CNTs volume percent which are 
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where wCN, ρCN and ρm are CNTs mass fraction, density of CNTs and matrix, respectively. The 

mass density and Poisson’s ratio of the MNC are 
 

,MNC M 
 

(10) 
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where vMNC and vM are Poisson’s ratio of the MNC and matrix, respectively. Since the amounts of 

CNTs are low, the Poisson’s ratio of the MNC and matrix are assumed equal (Hull and Clyne 

2001). The transverse and longitudinal thermal expansion coefficients are 
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where 𝛼11
𝐹  and 𝛼22

𝐹  are the fiber thermal expansions and 𝛼𝑀𝑁𝐶  is the thermal expansion of 

MNC which can be given as 
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where 𝛼𝑀  and 𝛼𝐶𝑁  are thermal expansion of matrix and CNTs, respectively. Here, the influence 

of moisture on the fiber or CNTs is neglected. The coefficients of moisture for the nanocomposite 

are 
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where βM is the coefficient of moisture in the matrix. The moisture and temperature changes are 

assumed as 

 

0 ,T T T  
 (18) 

 

0 ,H H H  
 (19) 

 

where H0 and T0 illustrate the moisture and temperature, respectively. 

 

 

3. Layerwise FSDT 
 

There are many new theories for modeling of different structures. Some of the new theories 

have been used by Tounsi and co-authors (Meziane 2014, Zidi et al. 2014, Attia et al. 2015, Zemri 

et al. 2015, Larbi Chaht et al. 2015, Mahi et al. 2015, Ahouel et al. 2016, El-Haina et al. 2017, 

Menasria et al. 2017, Chikh et al. 2017, Mouffoki et al. 2017, Khetir et al. 2017). 

Using the layerwise FSDT, the displacements of the structure can be expressed as (Reddy 2003) 
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 (20) 
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(21) 
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( , , , ) ( , , ),i iw x z t w x t   (22) 
 

where i = a, s show the actuator and sensor layers, respectively; 𝑢0
𝑖 , 𝑣0

𝑖  and 𝑤𝑖  are the mid 

surface displacements in the 𝑥, 𝜑 and 𝑧 directions, respectively; 𝜃𝑥
𝑖  and 𝜃𝜑

𝑖  are respectively 

rotations around x and 𝜑 curvilinear coordinates and 
 

, .
2 2

t c b c
t bt t t t

z z z z
    

      
     

(23) 

 

Using Eqs. (20)-(22), the strains can be written as 
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The boundary conditions of continuity between layers are 
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Substituting Eq. (34) into Eqs. (20)-(22) yields 
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4. Piezoelasticity theory 
 

The basic equation of the piezoelasticity theory is (Kolahchi et al. 2016a) 
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where the terms 𝑄𝑗𝑚
𝑖 , 𝑒𝑖𝑗

𝑘  and ∈𝑖𝑖
𝑘  are elastic, piezoelectric and dielectric constants, respectively; 

βxx, βφφ and αxx, αφφ are respectively moisture coefficients and thermal expansion; ΔH and ΔT are 

moisture and temperature different, respectively; 𝐷𝑚
𝑘  and 𝐸𝑚

𝑘  are the electric displacement and 

electric field, respectively which the last can be expressed as a function of electric potential (i.e., ϕi) 
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The distribution of electric potential across the thickness of the actuator is 
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where Φk (x, φ, t) is the electric potential and V0 is the external voltage. Noted that super index k is 

related to actuator (a) and sensor (s) layers. 

Neglecting the dielectric and piezoelectric constants in Eq. (40), the stresses of the multiphase 

nanocomposite core can be derived. 
 

 

5. Governing equations 
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The internal force due to the moisture and thermal loads as well as mechanical load can be 

written as 
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where 𝑁𝑥
𝐸  is the external mechanical load applied to the structure in x-direction. Applying 

Hamilton's principle, the equations of motion for 𝛿𝑢0
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where the force resultants are 
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The assumed boundary conditions (BCs) are 
 

 Simply-Simply (SS) 
 

𝑣𝑖 = 𝑤𝑖 = 𝜃𝑥
𝑖 = 𝑁𝑥

𝑖 = 𝑀𝑥
𝑖 = 0,          on both ends (50) 

 

 Clamped-Clamped (CC) 
 

𝑢𝑖 = 𝑣𝑖 = 𝑤𝑖 = 𝜃𝑥
𝑖 = 𝜃𝜑

𝑖 = 0,          on both ends (51) 

 

 Clamped-Simply (CS) 
 

𝑢𝑖 = 𝑣𝑖 = 𝑤𝑖 = 𝜃𝑥
𝑖 = 𝜃𝜑

𝑖 = 0     𝑎𝑡     𝑥 = 0 

𝑣𝑖 = 𝑤𝑖 = 𝜃𝑥
𝑖 = 𝑁𝑥

𝑖 = 𝑀𝑥
𝑖 = 0     𝑎𝑡     𝑥 = 𝐿 

(52) 

 

 

6. DQM 
 

Using DQM, the differential equations are changed to algebraic one based on the following 

equations (Kolahchi et al. 2016b, Kolahchi 2017c, Zarei et al. 2017) 
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where 𝐴𝑖𝑘
(𝑛) and 𝐵𝑗𝑙

(𝑚) are the weighting coefficients which may be expressed as 
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(57) 

 

The weighting coefficients for the second, third and fourth derivatives can be determined via 

multiplication of weighting coefficients in each others. 

In addition, the grid points distribution can be calculated from 
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Using DQM, the motion equations can be expressed as 
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0
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b bbb bd bb bd

G G

db dd db ddd d

Y YK K K K
F

K K K KY Y
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         

(60) 

 

where [K] is the stiffness matrix; [KG] shows the matrix of force coefficients; F is the buckling 

load; {Y} is the displacement vector; subscripts b and d indicate the boundary and domain points. 

Eliminating the boundary points in Eq. (60), we have 
 

 1[ ] [ ] ,b bb bd dY K K Y 
 

(61) 

 

Substituting Eqs. (61) into Eq. (60) yields 
 

* *[ ] [ ] 0,
d

K Y F KG Y 
 (62) 

 

where 
 

* 1[ ] [ ] [ ][ ] [ ],G G

dd db bb bd
KG K K K K 

 (63) 

 
* 1[ ] [ ] [ ][ ] [ ].

dd db bb bd
K K K K K 

 (64) 

 

Finally, Eq. (62) should be solved to calculate the buckling load of the structure. 
 

 

7. Numerical results 
 

A sandwich piezoelectric truncated conical shell with cone semi vertex angle of α = 30 and 

length to cone large radius ratio of L/r2 = 2 is assumed. The core is from Epoxy armed by carbon 

fibers and CNTs with the properties shown in Table 1 (Hajmohammad et al. 2017b). 

The smart layers are from PZT-5 with the moisture and temperature-dependent material 

properties as 

 TEEE  11111011 1  (65a) 

 

 TEEE  22122022 1  (65b) 

 

 TGGG  12112012 1  (65c) 

 

 TGGG  13113013 1  (65d) 

 

 TGGG  23123023 1  (65e) 

 

 Txx  111110 1   (65f) 

 

 T 221220 1   (65g) 

 

 110 1111xx H    
 

(65h) 
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Table 1 Material properties of Epoxy, CNTs and carbon fibers 

Material Properties 

Epoxy 

Young’s modulus: EM = (3.51 ‒ 0.0034T + 0.142H) GPa, 

Poisson’s ratio: vM = 0.3, Density: ρM = 1200 Kg/m3, 

Thermal expansion coefficient: αM = 45(1 + 0.0001 ΔT) × 10-6 K-1, 

Moisture coefficient: βM = 2.68 × 10-3 wt%-1 

Carbon fibers 

Young’s modulus: 𝐸11
𝐹 = 233.05 𝐺𝑃𝑎 and 𝐸22

𝐹 = 23.1 𝐺𝑃𝑎, 

Shear modulus: 𝐺12
𝐹 = 8.96 𝐺𝑃𝑎, Poisson’s ratio: vF

 = 0.2, Density: ρF = 1750 Kg/m3
, 

Thermal expansion coefficient: 𝛼𝑥𝑥
𝐹 = −0.54 × 10−6 𝐾−1

 
and 𝛼𝜑𝜑

𝐹 = 10.8 × 10−6 𝐾−1, Volume percent: VF = 0.6 

CNTs 

Young’s modulus: ECN = 640(1 ‒ 0.0005ΔT) GPa, Poisson’s ratio: vCN
 = 0.27, 

Density: ρCN = 1350 Kg/m3
, Outer diameter: dCN = 1.4 nm, 

Thickness: tCN = 0.34 nm, Length: CN = 25×10-6 m, 

Thermal expansion coefficient: αCN = 4.5361×10-6 K-1
 and αCN = 4.6677×10-6 K-1

, 

respectively at T = 300 K, T = 500 K
 
and T = 7700 K. 

 

 

Table 2 Material property of PZT-5 

Elastic constants Piezoelectric constants 
Thermal and 

moisture coefficients 

E110 = E220 = 61 GPa 

E330 = 53.2 GPa 

G120 = G130 = G230 = 24.2 GPa 

υ12 = 0.35 

υ23 = υ13 = 0.38 

E111 = ‒0.0005 

E221 = E331 = G121 = G131 = G231 = ‒0.0002 

d31 = d32 = ‒1.71×10-10 m/V 

d24 = d15 = 5.84×10-10 m/V 

d33 = 3.74×10-10 m/V 

α120 = α220 = 0.9×10-6 1/K 

α111 = α221 = 0.0005 

β120 = β220 = 2.68×10-3 wt%-1 

β111 = β221 = 0.001 

 

 

 220 2211 H    
 

(65i) 

 

where the constants are listed in Table 2. 
 

7.1 Accuracy and convergence of DQM 
 

The accuracy and convergence of the DQM is studied in Fig. 2 where the non-dimensional 

buckling load (P = F/(LEM)) is plotted versus the grid point number. It is found that the non 

dimensional buckling load is decreased with enhancing the numbers of grid point until in N = 15, 

the results become converge. 
 

7.2 Validation 
 

Since the buckling of smart sandwich truncated conical shell is studied in this paper for the first 

time, for validation we should neglect the effect of CNTs and carbon fibers in the core, top and 

bottom layers, hygrothermal load and structural damping. However, buckling analysis of 
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Fig. 2 Accuracy and convergence of DQM 

 
 

Table 3 Critical buckling loadof laminated sandwich conical shell for ϕ = 15° 

Mode Zhong and Reimerdes (2007) NASTRAN (2007) Present work 

1 -1.718e6 N -1.734e6 N -1.724e6 N 

2 ---- ---- -3.301e6 N 

 
 

a sandwich conical shell with a vertex half-angle of ϕ = 15° and the geometrical and material 

properties the same as Zhong and Reimerdes (2007), is investigated. Based on DQM, the critical 

buckling load is calculated and compared with Zhong and Reimerdes (2007) in Table 3. The 

results show the accuracy of this work. 
 

7.3 The influence of parameters 
 

Figs. 3-10, show the influences of different parameters on the non-dimensional buckling load 

versus weight percent of CNTs. In all of the figures, with enhancing the CNTs weight percent, the 

non-dimensional buckling load is enhanced up to 60% due to improve in the stiffness of the 

sandwich structure. 

Thenon-dimensional buckling load is plotted versus the weight percent of CNTs for different 

non-dimensional external applied voltage (𝑉∗ = (𝑉0/𝐿) 𝐸𝑀/∈11) to top layer of the sandwich 

structure. The results show that applying positive and negative external voltage, respectively leads 

to decrease and increase in the non-dimensional buckling load of the structure. It is due to this fact 

that applying positive and negative external voltage induces tensile and compressive loads in the 

structure, respectively. In addition, with enhancing the CNTs weight percent, the effects of external 

voltage become more prominent. In other words, comparing to external voltage equal to zero, 

applying negative external voltage increases about 11% the buckling load of the sandwich 

structure. 

The effects of moisture and temperature changes on the non-dimensional buckling load versus 

the weight percent of CNTs are shown in Figs. 4 and 5, respectively. It is obvious that with 

enhancing the moisture and temperature changes, the non-dimensional buckling load is reduced. It 
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Fig. 3 The influence of external voltage on the non-dimensional buckling load of the structure 

versus weight percent of CNTs 

 

 

 

Fig. 4 The influence of temperature change on the non-dimensional buckling load of the structure 

versus weight percent of CNTs 

 

 
is since the stiffness of the sandwich structure will be reduced. In conclusion, applying the 

moisture and temperature changes to the structure decreases the non-dimensional buckling load. 

Fig. 6 illustrates the effect of different boundary conditions on the non-dimensional buckling 

load as a function of weight percent of CNTs. This figure shows the considerable effect of 

boundary condition on the buckling load of the smart sandwich structure. As can be seen, the non-

dimensional buckling load of the sandwich truncated conical shell with CC boundary condition is 
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Fig. 5 The influence of moisture change on the non-dimensional buckling load of the structure 

versus weight percent of CNTs 

 

 

 

Fig. 6 The influence of boundary conditions on the non-dimensional buckling load of the structure 

versus weight percent of CNTs 

 

 

about 24% and 2 times higher than that with CS and SS one. In addition, the non-dimensional 

buckling load for the sandwich truncated conical shell with CS boundary condition is about 60% 

higher than that of SS ones. It is due to this fact that the clamped boundary condition improves the 

rigidity of the structure and hence the buckling load increases. 

Fig. 7 demonstrates the influence of cone length to large radius ratio on the non-dimensional 

buckling load versus the weight percent of CNTs. It is found that increasing the cone length to 
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Fig. 7 The influence of cone length to large radius ratio on the non-dimensional buckling load of 

the structure versus weight percent of CNTs 

 

 

 

Fig. 8 The influence of cone large radius to small radius of the cone on the non-dimensional 

buckling load of the structure versus weight percent of CNTs 
 

 

large radius ratio leads to reduction in the non-dimensional buckling load. This is since with 

enhancing the cone length to large radius ratio, the structure stiffness reduces. It is also found that 

with enhancing the cone length to large radius ratio, the effect of CNTs weight percent on the non-

dimensional buckling load decreases and the changes of buckling load versus the weight percent of 

CNTs become more linear. This physically due to this reason that with enhancing the cone length 

to large radius ratio, the shear effects gets less and stiffness of system decreases. The influence of 

large radius to small radius of the cone on the non-dimensional buckling load versus the weight 
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Fig. 9 The influence of core thickness to face sheets thickness on the non-dimensional buckling 

load of the structure versus weight percent of CNTs 
 

 

 

Fig. 10 The influence of cone semi vertex angle on the non-dimensional buckling load of the 

structure versus weight percent of CNTs 
 

 

percent of CNTs is shown in Fig. 8. It can be concluded that, with enhancing the large radius to 

small radius of the cone, the non-dimensional buckling load is reduced due to decrease in the 

rigidity and stiffness of the sandwich structure. 

Fig. 9 presents the influence of the core thickness to face sheets thickness ratio on the non-

dimensional buckling load versus weight percent of CNTs. The results show that with enhancing 

the core thickness to face sheets thickness, the non-dimensional buckling load is increased due to 

improve in the structure stiffness. 
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Fig. 10 demonstrates the influence of semi vertex angle of the cone on the non-dimensional 

buckling load versus the weight percent of CNTs. It can be observed that the non-dimensional 

buckling load enhances with increasing the semi vertex angle of the cone from 30 to 60 degree. 

 

 

8. Conclusions 
 

Buckling response of truncated nanocomposite conical shell integrated with piezoelectric layers 

was presented in this article. The core was reinforced by CNTs and carbon fibers where the 

Halpin-Tsai model was applied for obtaining the equivalent material properties. The piezoelectric 

layers were subjected to 3D electric field and the sandwich structure was in hygrothermal 

environment. Using layerwise FSDT, the governing equations were calculated and solved by DQM 

in order to calculate the buckling load. The influences of some parameters such as boundary 

conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and 

temperature changes and external voltage were investigated on the buckling load of the smart 

structure. The results show that imposing negative voltage enhances the non-dimensional buckling 

load comparing to external voltage equal to zero about 11%. With enhancing the moisture and 

temperature changes, the non-dimensional buckling load will be decreased. Furthermore, with 

enhancing the CNTs weight percent, the non-dimensional buckling load was increased about 60%. 

Meanwhile, the non-dimensional buckling load of the CC structure is about 24% and 2 times 

higher than that with CS and SS one. In addition, enhancing the cone length to large radius ratio 

and cone large to small radius leads to reduction in the non-dimensional buckling load. 
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