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Abstract.    Present investigation deals with the free vibration characteristics of nanoscale-beams resting on elastic 
Pasternak’s foundation based on nonlocal strain-gradient theory and a higher order hyperbolic beam model which 
captures shear deformation effect without using any shear correction factor. The nanobeam is lying on two-
parameters elastic foundation consist of lower spring layers as well as a shear layer. Nonlocal strain gradient theory 
takes into account two scale parameters for modeling the small size effects of nanostructures more accurately. 
Hamilton’s principal is utilized to derive the governing equations of embedded strain gradient nanobeam and, after 
that, analytical solutions are provided for simply supported conditions to solve the governing equations. The obtained 
results are compared with those predicted by the previous articles available in literature. Finally, the impacts of 
nonlocal parameter, length scale parameter, slenderness ratio, elastic medium, on vibration frequencies of nanosize 
beams are all evaluated. 
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1. Introduction 

 
Over the past few years, the use of structural elements such plates and beams at macro/nano 

scales in various MEMS/NEMS are rising with a great speed due to the rapid progress in 
nanotechnology. It has been observed that at nanoscale, the physical and mechanical properties of 
nanostructures present obvious size dependency that make them to exhibit important mechanical, 
electrical and thermal performances which are better to the conventional ones at macroscale 
(Eltaher et al. 2016, Tounsi et al. 2013a, Benguediab et al. 2014b).Therefore, exploring of size-
dependency is still a challenging issue in studying of nanoscale structures for reliable design. It is 
well known that the classical continuum theories fail to take into account the size effect due to the 
lack of a scale parameter. Hence, to counter this complication, nonlocal continuum theories such as 
nonlocal elasticity theory of Eringen (1972, 1983) and strain gradient theory (Lam et al. 2003) 
have been successfully used to capture the small-scale effects. Due to of its prominence, the 
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Eringen’s nonlocal elasticity theory has been used in a various studies to investigate mechanical 
behavior of nanoscale structures (Reddy and Pang 2008, Heireche et al. 2008). Peddieson et al. 
(2003) developed for the first time a version of nonlocal elasticity to study the behavior of a 
nonlocal Euler–Bernoulli beam model. Wang and Liew (2007) explored the static deflection of 
micro- and nano-micro scale structures using Euler–Bernoulli and Timoshenko beam theory. 
Reddy (2007) used various beam theories to study the bending, buckling and vibration of 
nanobeams based the nonlocal differential equations of Eringen. The generalized differential 
quadrature method has been developed. Murmu and Adhikari (2010) provided an analytical 
method to investigate the nonlocal transverse vibration of double nanobeam-system using nonlocal 
elasticity theory. Thai (2012) employed a nonlocal beam theory to investigate the bending, 
buckling, and free vibration of nanobeams based on nonlocal refined beam theory. In another work, 
Thai (2012), Thai and Vo (2012) employed both higher order and sinusoidal shear deformations 
beam models and Eringen’s nonlocal elasticity theory to explore the static, buckling and dynamic 
behaviors of nanoscale beams. Tounsi et al. (2013b) investigated thermal buckling characteristic of 
nanobeams by employing an efficient higher-order nonlocal beam theory. Zenkour and Sobhy 
(2015) developed a new simple shear and normal deformations beam model to explore thermo-
mechanical loading effect on bending behavior of nanoscale beams. Zhu and Li (2017a) examined 
the twisting statical behaviors of functionally graded (FG) nanotubes using Eringen’s nonlocal 
integral model. Also in the recent past years the mechanical behavior of nanobeams is inspected 
based on various shear deformation beam theories (Berrabah et al. 2013, Tounsi et al. 2013a, b, 
Benguediab et al. 2014a, Behera and Chakraverty 2013, Besseghier et al. 2015, Hadj Elmerabet et 
al. 2017, Ebrahimi and Daman 2017, Thai et al. 2018, Yazid et al. 2018, Bouafia et al. 2017, 
Youcef et al. 2018, Belkorissat et al. 2015, Ahouel et al. 2016, Mokhtar et al. 2018, Khetir et al. 
2017, Besseghier et al. 2017, Karami et al. 2017, Zemri et al. 2015, Al-Basyouni et al. 2015, 
Karami et al. 2018a, Bensaid and Bekhadda 2018). 

Actually, material gradation can considerably reduce maximum stresses and change the spatial 
location where such maximums arise (Bounouara et al. 2016, Attia et al. 2018). This provides the 
opportunity of fitting material variation to reach desired stresses in a structure. Also many 
researchers investigated the vibration, bending and buckling of FG structures based on refined 
higher order shear deformation theories by including the stretching thickness effect (Hebali et al. 
2014, Bennoun et al. 2016, Bousahla et al. 2014, Belabed et al. 2014, Bouhadra et al. 2018, 
Younsi et al. 2018, Abualnour et al. 2018, Draiche et al. 2016, Bouafia et al. 2017, Karami et al. 
2018, Hamidi et al. 2015). In addition, the thermal and hyghro-thermal effects were studied by 
several authors to show their importance on mechanical behavior of FG structures (Bousahla et al. 
2016, Bouderba et al. 2016, El-Haina et al. 2017, Menasria et al. 2017, Bouderba et al. 2013, 
Beldjlili et al. 2016, Chikh et al. 2017, Hamidi et al. 2015, Tounsi et al. 2013c). On the other hand, 
the effect of various boundary conditions on FG sandwich structures is studied by many 
researchers (Abdelaziz et al. 2017, Ait Amar Meziane et al. 2014, Bouderba et al. 2016). 

To capture the size effect of nanostructures more accurately; nonlocal strain gradient theory 
was introduced (Lam et al. 2003), in which two scale parameters are suggested associated to 
nonlocal stress field and strain gradient stress field in order to generalize the Eringen’s nonlocal 
model and taking into account the stiffness-hardening effect (Lim et al. 2015, Li et al. 2016) 
explored the free vibration behavior of an inhomogeneous nanobeams based on nonlocal strain 
gradient theory (NL-SGT); they showed that both nonlocal and length-scale parameters have a 
significant effect on the vibration frequencies. The nonlinear vibration analysis of FG nanobeams 
have been investigated by Simsek (2016) based on NL-SG theory and Hamiltonian approach. In 
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another work, Li et al. (2016a, b) contributed to longitudinal vibration characteristic of size-
dependent rods via NL-SG theory. Ebrahimi et al. (2016) used the NL-SG theory for study the 
wave dispersion of thermally acted on heterogeneous nanoplates. Also, Ebrahimi and Barati (2017) 
investigated hygrothermal impacts on buckling behavior of size-dependent shear-deformable 
curved FG nanobeams more accurate prediction of mechanical behavior of nanostructures by using 
the newly developed NSGT. The NL-SG theory has been also applied to show both the stiffness-
softening and hardening effects on the longitudinal dynamic and tension of nanorods, CNTs 
and monolayer graphene (Zhu and Li 2017b, c), they found that the nonlocal strain gradient 
models show a good results match well with the experimental data (or MD simulation results). 
Moreover, an investigation is performed using NSGT on post-buckling behavior of functionally 
graded nanobeams (Li and Hu 2017). Zeighampour et al. (2017) examined the wave propagation 
in fluid-conveying double-walled carbon nanotube (DWCNT) via the nonlocal strain gradient 
theory. Karami et al. (2018b) utilized the new nonlocal strain gradient 3D elasticity theory to 
analyze the mechanical behavior of anisotropic spherical nanoparticles. In another work, Karami et 
al. (2018c) formulated a variational approach for wave dispersion in anisotropic doubly-curved 
nanoshells based on a new nonlocal strain gradient higher order shell theory. 

 Nanobeams and nanoplates are frequently in contact with an elastic medium in many practical 
cases. One of the most advantageous models, which has recently been used for the analysis of 
structures at macro and nanoscale lying on elastic foundation, is the two-parameter elastic 
foundation model (Winkler-Pasternak), due to its efficiency and simplicity. Pradhan et al. (2009) 
used the Winkler and Pasternak foundation model to investigate the vibration behavior of single-
walled carbon nanotubes embedded in polymer matrix, based on nonlocal Timoshenko beam 
theory. The Winkler-type model was used by Besseghier et al. (2011) to explore the thermal effect 
on wave propagation of double-walled carbon nanotubes embedded in an elastic medium. Aissani 
et al. (2015) studied the static, buckling and vibration behaviors of nanosize-beams embedded in 
an elastic medium based on a new nonlocal hyperbolic shear deformation beam theory. 
Chakraverty and Behera (2015) have investigated the vibration and buckling characteristics of 
Euler Bernoulli nanobeams embedded in an elastic medium. They used the boundary characteristic 
orthogonal polynomials in the Rayleigh-Ritz method to solve the governing equations. Ebrahimi 
and Barati (2017a, b) investigated the free vibration characteristics of the third order shear 
deformable FG nanobeams embedded on elastic medium. They showed that the increase of 
Winkler or Pasternak parameter has led to an increment in non-dimensional frequencies. In another 
work, Ebrahimi and Barati (2016c) and Ebrahimi and Daman (2017) employed nonlocal strain 
gradient theory to explore free vibration response of curved functionally graded nanobeams resting 
on Winkler–Pasternak foundation under various boundary conditions. 

As one can observe from the works previously cited, there is no article published on vibration 
of homogenous nanobeams lying on Winkler–Pasternak foundation and taking into account the 
nonlocal strain gradient theory. Also, most of preceding works on vibration of homogenous 
nanoscale beams have been treated only nonlocal impacts and neglected the strain gradient effects 
and Pasternak elastic foundation. It is well recognized that the dynamic behavior of nanostructures 
is significantly affected by strain fields parameter. Motivated by this significance, this research 
paper investigates the dynamic behavior of nanoscale beam resting on two-parameter elastic 
foundation based on nonlocal strain gradient elasticity theory (NL-SGT) and higher order 
hyperbolic shear deformation beam model which meets the the stress-free boundary conditions on 
the top and bottom surfaces of the nanobeam without using shear correction factors. To capture the 
size effect more accurately the present model incorporates nonlocal stress and strain gradient fields. 
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The two parameter Winkler–Pasternak elastic foundation model is used in the present investigation. 
The governing equations of motion of nonlocal strain gradient nanobeam are derived by 
employing Hamilton’s principle and solved via an analytical solution for simply boundary 
conditions. The obtained results are compared with those found in the literature to check the 
accuracy of the present solution. The effects of nonlocal parameter, length scale parameter, elastic 
medium parameters and slenderness ratio on the dynamic response of nanobeams are all explored. 

 
 

2. Theory and formulation 
 
Considering a nanoscaled beam lying on elastic foundation with the length L , thickness h, and 

rectangular cross-section b × h, in which its coordinates are illustrated in Fig. 1. 
 
2.1 Basic assumptions 
 
The displacement field of the proposed theory is chosen based on the following assumptions: 
 
(i) The displacements are small in comparison with the nanobeam thickness and, therefore, 

strains involved are infinitesimal. 
(ii) The transverse displacement w includes two components of bending wb, and shear ws. 

These components are functions of coordinate x only. 
 

     , b sw x z w x w x  (1)
 
(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 
(iv) The displacement u in x-direction consists of bending, and shears components. 
 

b su u u  (2)
 
The bending component ub is assumed to be similar to the displacement given by the classical 

beam theory. Therefore, the expression for ub can be given as 
 
 

q(x)

h
x

z

Shear Layer

Linear Layer

L  

Fig. 1 Geometry and coordinate of the nanobeam on elastic foundation 
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b
b

w
u z

x


 


(3)

 
In addition, the displacement component due to shear deformation (us) is supposed to be 

parabolic, sinusoidal, hyperbolic and exponential in nature with respect to thickness coordinate. 
Hence, the shear component us gives rise, in conjunction with ws, to a higher order variations of 

shear strain γxz and hence to shear stress τxz through the thickness of the nanobeam in such a way 
that shear stress τxz is zero at the top and bottom faces of the nanobeam. As a result, the expression 
for us can be given as 
 

  s
s

w
u f z

x


 


(4)

 
2.2 Kinematic relations 
 
There are several types of plate and beam theories for modeling of shear deformation effect 

(Bellifa et al. 2017, Mahi et al. 2015, Belabed et al. 2018, Bellifa et al. 2016, Ait Yahia et al. 2015, 
Fourn et al. 2018, Boukhari et al. 2016, Zine et al. 2018, Bensaid et al. 2017, Hachemi et al. 2017, 
Mouffoki et al. 2017, Kaci et al. 2018). In this research paper, the displacement field of the present 
refined higher order shear deformable nanobeam can be obtained as (Thai 2012, Thai and Vo 2012, 
Aissani et al. 2015) 

 

   , , , ( )b sw w
u x z t u x t z f z

x x

 
  

 
(5a)

 

     , , , ,b sw x z t w x t w x t  (5b)

 
Where u and w are displacements of mid-plane along axial and transversal directions, 

respectively, and wb and ws are the bending and shear components of transverse displacement. 
Herein, the function f (z) is used to describe the distribution of the transverse shear strains and 
stresses through the beam thickness. It is essential that the first derivative of the shape function f (z) 
must provide a parabolic curve in the thickness direction and satisfy the tangential zero value at z 
= ±h/2 (Tuan et al. 2016). Thus the SCFs are not required and it is replaced by a shape function for 
estimating the distribution of shear stress through the beam thickness. So, no need to use any shear 
correction factor for both HSDT and RPT (El Meiche et al. 2011) 

 

 
 

  12cos

sinh














 zz
h

h

zf  (6)

 
The non-zero strains of the present nanobeam are given by 
 

  sb
xx zfz   0    and     s

xz g z   (7)
 

where 
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x

u
x 


 00 ,

   

2

2
b bw

x
 

 


,
   

2

2
s sw

x
 

 
  

s sw

x
 




,
   

   zfzg '1 ,
 

and
 

   
dz

zdf
zf '

(8)

 
2.3 The nonlocal strain gradient elasticity model 
 
In the case of nonlocal elasticity theory, the stress accounts for both nonlocal elastic stress field 

and the strain gradient stress field. Hence, the constitutive relations for a nonlocal refined shear 
deformable nanobeam can be stated as (Lim et al. 2015, Li et al. 2016a, b, Ebrahimi et al. 2016) 

 
2 2

2 2
xx xx

xx xxE
x x

    
  

     
(9)

 
2 2

2 2
xx xx

xx xxE
x x

    
  

     
(10)

 
where μ = (e0a)2 and η = l2 consider the impacts of nonlocal stress field, and l indicate the material 
length-scale parameter, which can be used to introduce to take into account the effects of higher-
order strain gradient stress field, e0 is a constant appropriate to each material and a is an internal 
characteristic length. It is noted that, these length scale parameters cited above can be determined 
by matching with results of experiment or molecular dynamics. As usual, the size-dependent 
effects are supposed to be omitted in both width and thickness directions of the nanobeam. Besides 
the thickness effects are incorporated in the recent researches dealing with the mechanical 
responses of tiny structures (Li et al. 2018). 

Furthermore, it is lately shown by Karami et al. (2018d, e), Shahsavari et al. (2018) that, there 
is a good agreement between molecular dynamics simulations and nonlocal strain gradient models 
and the general constitutive Eqs. (9) and (10) can reasonably explain size-dependent impacts on 
the dynamic behavior. 

 
2.4 Variational formulation 
 
Hamilton’s principle is used here to obtain the equations of motion. The concept can be 

expressed in analytical form as (Aissani et al. 2015, Bourada et al. 2015, Kheroubi et al. 2016, 
Bensaid et al. 2017) 

 

  0
0


T

dtKVU (11)

 
where δU is the variation of the strain energy; δV represents the potential energy; and the variation 
of the kinetic energy is given by δK. The variation of the strain energy of the beam can be 
expressed by the following relation 
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   
L

A

xzxzxx dAdxU
0


 

2 2
0

2 2
0

L
b s s

b s

d u d w d w d w
N M M Q dx

dx dx dx dx

    
    

 


 

(12)

 

where Mb, Ms and Q represent the stress resultants and they are expressed as 
 

   , ,b s x

A

M M z f dA 
  

and
  


A

xzdAgQ  (13)

 

The variation of the potential energy caused by the practical loads can be given as 
 

 
0

( ) ;
L

e b sV q f w w dx     (14)

 

where q is the transverse external load. The Pasternak type model is utilized to simulate the 
interaction of the nanobeams with the elastic foundation as follows (Aissani et al. 2015, Zidi et al. 
2014, Khalfi et al. 2014, Ait Amar Meziane et al. 2014) 

 
2

2e w p

w
f k w k

x


 


(15)

 

where kw and kp are the Winkler and the Pasternak parameters of the elastic foundation, 
respectively. 

The variation of the kinetic energy can be derived as follows 
 

 
0

L

A

K u u w w dAdx         

 

  0 2 2

0

2

L
b b s s

b s b s

b s s b

dw d w dw d w
I w w w w I K dx

dx dx dx dx

dw d w dw d w
J

dx dx dx dx

  

 

                  
   
 


   

   

   

 

(16)

 

Where dot-superscript sign defines the differentiation with sense to the time variable t; ρ is the 
mass density; and (I0 , I2 , J2 , K2) are the mass inertias expressed as 

 

   
A

dAffzzKJII 22
2220 ,,,,1,,, (17)

 
The explicit equations of motion of the new proposed nonlocal strain-gradient beam model are 

obtained by substituting the expressions for δU, δV, and δK from Eqs. (12), (14) and (15) into Eq. 
(11), integrating by parts, and collecting the coefficients of δw, and δφ, and which are given as 
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follows 
.. ..

2 2 2.. ..

0 2 22 2 2
: ,b b s

b e b s

d M d w d w
w q f I w w I J

dx dx dx
        

   
(18a)

 
.. ..

2 2 2

2 22 2 2
: ,s b s

s

d M d w d wdQ
w J K

dx dx dx dx
     (18b)

 

However, the Euler–Bernoulli beam theory can be obtained from the equilibrium equations in 
Eq. (18), by neglecting the shear deformation effect ws = 0). 

The stress resultants are obtained by substituting Eq. (7) into Eq. (10) and the subsequent 
results into Eq. (13), and are given as follows 

 
2 2 22

2 2 2 2
1b b s

b s

d M d w d w
M D D

dx x dx dx
 

  
        

(19a)

 
2 2 22

2 2 2 2
1s b s

s s s

d M d w d w
M D H

dx dx dx dx
 

  
      

  
(19b)

 
2 2

2 2
1 s

s

dwd Q
Q A

dx dx dx
 

       
  

(19c)

 

where 
 

    ,,,,, 22
A

ss EdAfzfzHDD
    


A

s GdAgA 2

(20)

 

The nonlocal strain gradient equations of motion of the present shear deformable nano beam 
resting on two-parameter elastic medium, can be written in terms of displacements (wb, ws) by 
substituting Eq. (19) into Eq. (18) as 

 
4 4 22 2 2

2 4 2 4 2 2

.. .. .. .. .. ..
2 2 4 2 4.. ..

0 2 22 2 4 2 4

1 1

( )
( )

b s e
s e

b s b b s s
b s

d w d w d fd q
D D q f

dx dx dx dx dx dx

d w w d w d w d w d w
I w w I J

dx dx dx dx dx

   

  

    
           

   
               
     
       

(21a)

 
4 4 22 2 2

2 4 2 4 2 2

.. .. .. .. .. ..
2 2 4 2 4.. ..

0 2 22 2 4 2 4

1 1 1

( )
( )

b s s
s s s

b s b b s s
b s

d w d w d w
D H A

dx dx dx dx dx dx

d w w d w d w d w d w
I w w J K

dx dx dx dx dx

  

  

       
          

     
                
     
      

(21b)
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By setting the scale parameter μ and η equal to zero the equations of motion of local beam 
theory can be derived from Eq. (21). 

 
 

3. Resolution method for S-S nanobeams 
 
This part is dedicated to give an analytical resolution to resolve the general nonlocal governing 

equations for free vibration of nanosized beam resting on two-parameter elastic medium with 
simply supported (S-S) boundary edges. 

To guarantee the boundary conditions and general governing equations of motion, the 
displacements fields are adopted to be of the type 

 

1

sin( )
,

sin( )

i t
b bn

i t
ns sn

w W x e

w W x e













       
    

 (22)

 
where Wn, and Wsn are arbitrary parameters to be determined, ω is the eigenfrequency associated 
with nth eigenmode, and α = nπ/L. The transverse applied load q is also expressed in the Fourier 
series as 

   





1

,sin
n

n xQxq 
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L

n dxxxq
L

Q
0

sin
2  (23)

 
The Fourier coefficients Qn related with some typical loads are given as follows 
 

1,0  nqQn    for sinusoidal load (24a)

 

....5,3,1,
4 0  n
n

q
Qn  for uniform load 

(24b)

 

....3,2,1,
2

sin
2 0  n

n

L

q
Qn


 for point load Q0 at the midspan (24c)

 
By inserting the expansions of wb, wb sand q from Eqs. (22) and (23) into Eq. (21), respectively, 

leads to 

    2 0n

n

W
K M 


 

  
   

 

In which [K] and [M] represent the stiffness, and mass matrixes for the nanobeam, respectively. 
 

 4 2
11 ,w ps D k k    

  
 4 2

12 ,s w ps D k k    
  

 4 2 2
22 ,s s w ps H A k k      

  
21    

,2
2011 IIm    ,2

2012 JIm   
2

2022 KIm 

(25)
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4. Numerical results and discussions 
 
In this section, dynamic behavior of nonlocal strain gradient nanobeams is investigated based 

on a newly higher order refined beam model resting on Pasternak foundation. The present model 
takes into account two scale parameters associated to nonlocal and strain gradient effects for more 
accurate modeling of nanobeams. Configuration of nanobeam on elastic substrate is shown in Fig. 
1. For all computations, the Poisson’s ratio v is taken as 0.3. The length of nanobeam is considered 
to be L = 10 nm. Calculations are executed considering the non-dimensional form of natural 
frequencies and foundation parameters as follows 

 

2 0I
L

EI
  

 
frequency parameter ;

 
4

w
w

k L
K

EI
 

 
Winkler parameter ;

 
4

p
p

k L
K

EI
 

 
Pasternak parameter.

 
 

To verify the correctness of the current developed nanobeam model, the obtained results are 
 
 

Table 1 Comparison of results of dimensionless frequency for S-S nanobeams (Kw = Kp = 0) 

μ L/h Aissani et al. (2015) Present 

0 

5 9.2854 9.2748 

10 9.7107 9.7076 

20 9.8289 9.8281 

100 9.8679 9.8679 

1 

5 8.8585 8.8484 

10 9.2643 9.2613 

20 9.3771 9.3763 

100 9.4143 9.4142 

2 

5 8.4856 8.4759 

10 8.87431 8.8714 

20 8.9823 8.9816 

100 9.0179 9.0179 

3 

5 8.1561 8.1468 

10 8.5297 8.5269 

20 8.6335 8.6328 

100 8.6678 8.6678 

4 

5 7.8622 7.8533 

10 8.2224 8.2197 

20 8.3225 8.3218 

100 8.3555 8.3555 
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compared with those obtained by Aissani et al. (2015), as tabulated in Table 1. It can be seen that 
the obtained results agree well with those presented by Aissani et al. (2015), for various values of 
nonlocal parameter μ. The strain gradient parameter has been neglected (η = 0) (Li et al. 2016a, b), 
for this case of comparison. We can see a rise in the values the nonlocal scale parameter yields to a 
decrement in the natural frequencies. 

Fig. 2 presents the maximum magnitude of dimensionless frequency of NL-SG nanobeam 
against length-to-thickness ratio L/h for various nonlocal theories (NSGT, SGT, NET and CET) 

 
 

 
Fig. 2 Impact of slenderness ratio on nondimensional frequency of the nanobeam for various nonlocal 

theories (Kw = 0, Kp = 0) 
 
 

 
Fig. 3 Effect of nonlocal parameter on dimensionless frequency of nanobeam under various types 

of foundation (L/h = 10, η = 1) 
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when Kw = Kp = 0. It is observed that frequency is significantly influenced by slenderness ratio 
(L/h). But when to a certain value is exceeded, dimensionless frequency remains unchanged with 
increase of slenderness ratio. One we can observe that NET gives smaller frequencies than CET 
due to the integration of nonlocal parameter by mean that nanobeam deploy a stiffness-softening 
effect. In addition, NSGT provides larger frequencies compared NET by increasing the rigidity of 
nanobeam. This phenomenon shows that the FG nanobeam exerts a stiffness-hardening in the case 
where the length scale parameter is included in the model. 

 
 

 
Fig. 4 Effect of length scale parameter on dimensionless frequency of nanobeam under various types 

of foundation (L/h = 10, μ = 1) 

 

 
Fig. 5 Effect of Winkler modulus parameter on the dimensionless frequency of nanobeam for various 

nonlocal parameters (Kp = 5, L/h = 10) 

290



 
 
 
 
 
 

Dynamic analysis of higher order shear-deformable nanobeams resting on... 

Variation of nondimensional frequency in expressions of nonlocal parameter and length scale 
factor for various types of foundation at L/h = 10 are illustrated in Figs. 3 and 4. It is seen that a 
growth of the nonlocal parameter (μ) decreases the value of dimensionless frequency due to the 
lower stiffness of the nanobeam in this case. However, it is seen that a rise in length scale 
parameter (η) provides elevated frequencies values. The cause is that the nanobeam deploys 
stiffness-hardening impact as length scale parameter increases. It is also remarked that Winkler-
Pasternak layer has more significant effect on dimensionless frequency of NGST nanobeam 
compared to Winkler parameter. The reason is that the combination of the two layers at ends 
makes the nanobeam stiffer. 

 
 

 
Fig. 6 Effect of Pasternak modulus parameter on the dimensionless frequency of nanobeam for 

various nonlocal parameters (Kw = 100, L/h = 10) 
 
 

 
Fig. 7 Effect of mode numbers n on the dimensionless frequency of nanobeam for various values 

of nonlocal parameter (Kw = 100, Kp = 5, L/h = 10) 
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Fig. 8 Effect of mode numbers n on the dimensionless frequency of nanobeam for various values of 

length scale parameter (Kw = 100, Kp = 5, L/h = 10) 
 
 
Figs. 5 and 6 depict the change of maximum nondimensional frequency of nanobeam against 

Winkler (Kw) and Pasternak (Kp) parameters, respectively, for diverse nonlocal continuum theories 
at L/h = 10. It is observed that increasing in both (Kw) and (Kp) leads to larger frequencies. This is 
caused by an enhancement in the rigidity of nanobeam when it is rested on elastic foundation. In 
addition, one can notice that NET provides inferior frequencies compared to NSGT by neglecting 
the stiffness-hardening impact. 

Variation in the pick values of nondimensional frequency of NSGT nanosize beam lying on 
elastic foundation against mode number is showed in Figs. 7 and 8, for various values of length 
scale and nonlocal coefficients by L/h = 10, Kw = 50 and Kp = 10. It is observed from these graphs 
that a rise in the mode number gives larger natural frequency. Also, we can observe that the effect 
of both length scale and nonlocal parameters become more important from second, third, fourth 
and fifth frequencies. 

 
 

5. Conclusions 
 
In the present work, nonlocal strain gradient higher order refined beam model is employed to 

investigate dynamic response of nanobeams resting on Pasternak-type foundation. The model 
takes into account two parameters related to nonlocal stress field and the strain gradient stress field 
to capture the size dependency of nanobeam more reliably. The elastic medium was simulated by 
using both Winkler and Pasternak-type models. The governing equations of the NSGT nanobeam 
are derived by applying Hamilton’s principle, and then solved analytically with simply supported 
boundary conditions. It is shown that frequency of nanobeam decreases with the increment of 
nonlocal parameter. In contrast, frequency gets bigger with increase of length scale parameter 
which emphasizes the stiffness-hardening impact because of the strain gradients. However, effect 
of both nonlocal and length scale parameters on dynamic response of nanobeams are more 
significant at higher values of mode number. An improvement of the present model will be 
considered in the near future dealing on the thickness stretching effect (Bourada et al. 2015, 
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Tounsi et al. 2013d, Houari et al. 2018). 
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