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Abstract. In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of
rotating functionally graded nanobeam based on Eringen’s nonlocal theory and Euler—Bernoulli beam model is
investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the
functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law
model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the
rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions
are derived through the Hamilton’s principle and generalized differential quadrature method (GDQM) is utilized to
solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index),
porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating
nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons
about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simply-
clamped, clamped-clamped boundary conditions are carried out.

Keywords: vibration; functionally graded nanobeam; porosity; rotation; Eringen’s nonlocal elasticity;
GDQ method

1. Introduction

Nanotechnology is capable to create new materials with immense range of applications such as,
medicine, electro mechanical systems and energy production. Lately, carbon nanotubes and
nanobeams have received a special consideration from scholars in nanotechnology community. In
order to analysis of the mechanical features of structures, continuum and semi-continuum models
and atomistic models were provided. Semi-continuum and atomistic models are not qualified for
analyzing large scale systems and need heavy computations. On the other hand, the classical
continuum theories are not suitable for analysis of nanostructures. Therefore, nonlocal elasticity
theory of Eringen which considers the size effect is utilized for nanostructures analysis.

The nonlocal elasticity theory presents an excellent tool for prediction of the nanostructures
behavior and is a modified form of classical elasticity theory. Actually the stress at a reference
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point is a function of strains at all points in the body. Eringen and Edelen (1972) presented the
nonlocal continuum theory to take the size-dependent effect into account. Afterwards, multitude of
literatures has appeared with considering the application of this theory in nanostructures
oscillations.

Peddieson et al. (2003) utilized this theory to study the static deformations of beams. Sudak
(2003) investigated the buckling behavior of multiwalled carbon nanotubes using the Eringen’s
nonlocal theory and understood that the small-scale effect contribute to the reduction of critical
axial buckling. Zhang et al. (2004b) reported a multiple shell model for the analysis of the axial
buckling of multiwalled carbon nanotubes under axial compression using the nonlocal continuum
mechanics and the influence of the small-scale effect on the axial buckling strain was discussed.
Murmu and Adhikari (2010a) utilized the nonlocal elasticity theory to study the free vibration
analysis of a nonlocal double-elastic beam. Thai (2012), Thai and Vo (2012) investigated the
buckling and vibration characteristics of nanobeam using the Eringen’s nonlocal theory. Kiani
(2010) utilized this theory to study free transverse vibration analysis of embedded single-walled
carbon nanotubes (SWCNTSs) with various boundary conditions via meshless model. Zhang et al.
(2007) reported the transverse vibration of double-walled carbon nanotubes including the thermal
effects with utilization of nonlocal elasticity theory. Kiani and Mehri (2010) utilized the nonlocal
elasticity theory to study vibration characteristics of a nanotube subjected to a moving nanoparticle.
Ansari and Sahmani (2012) used this theory to study the small scale effect on vibration behavior of
SWCNTSs with arbitrary boundary conditions.

Space planes require high-performance heat-resistant materials which can withstand ultrahigh
temperatures and extremely large temperature gradients. To meet these needs, functionally
gradient materials (FGMs) were proposed in 1985, Koizumi and Niino (1995).

Commonly, FGMs are made of a combination of ceramics and a mixture of various metals,
Zhao et al. (2012) and Ebrahimi (2013). Zenkour and Abouelregal (2015) considered thermoelastic
interaction in functionally graded nanobeams subjected to time-dependent heat flux. Ebrahimi and
Barati (2016) presented an exact solution for buckling analysis of embedded piezo- electro-
magnetically actuated nanoscale beams. Sankar (2001) reported an elasticity solution for
functionally graded Euler-Bernoulli beam subjected to static transverse loads. In recent years,
FGMs have received a special attention from researchers in industrial community. Such as, optics,
chemical, nuclear, mechanical, electronics, Ebrahimi (2013). Literatures show that increasing
attentions exists for dynamic and static analysis of FG beams, Larbi et al. (2013), Chakraborty and
Gopalakrishnan (2003), Aydogdu and Taskin (2007), Ying et al. (2008), Kapuria et al. (2008),
Yang and Chen (2008), Li (2008), Yang et al. (2008), Akgtz and Civalek (2014) and Barretta et al.
(2015b). Pradhan and Chakraverty (2013) investigated the vibration characteristics of functionally
graded beams based on the classical and first-order shear deformation beam theories by using the
Rayleigh—Ritz method.

Barretta et al. (2015a) used a nonlocal thermodynamic method and new nonlocal elastic model
to study bending of functionally graded Bernoulli-Euler nanobeams. They utilized the nonlocal
expressions of the free energy and reported that the nonlocal behavior for new nonlocal model is
based on a participation factor and a small length-scale parameter, it should be noted that suitable
choices of the participation factors can make the functionally graded Bernoulli-Euler nanobeam
stiffer or more flexible. Barretta et al. (2016a) reported a modified gradient nonlocal elasticity
model for functionally graded Timoshenko nanobeams via a nonlocal thermodynamic method by
considering the first derivatives of the shear and axial strains. They investigated the influence of
the gradient components which are usually disregarded in the unmodified Eringen model on the
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bending treatment of functionally graded Timoshenko nanobeams. Ghadiri et al. (2016a) utilized
the nonlocal elasticity theory and examined free vibration behavior of Euler-Bernoulli FG
nanobeam accompanied by rotation and surface effects through differential quadrature method.

Eringen differential model provides vanishing size effects in nanobeams subjected to point
loads and is not appropriate for describing the treatment of a cantilever nanobeam under a
concentrated load at free-end, Barretta et al. (2016b). In recent paper Barretta et al. (2016b)
utilized the Eringen differential law together with an additional term involving the derivative of
the axial stress and presented a modified version of Eringen differential law. Jin and Wang (2015)
used the weak form quadrature element method and studied the free vibration analysis of
functionally graded beams based on the classical beam theory. Eltaher et al. (2012) used the finite
element method to study the free vibration analysis of functionally graded size-dependent for the
Euler-Bernoulli beam theory.

The porosity effect has significant role, and it should not be ignored in the vibrational study of
functionally graded beams, because the porosities occur inside functionally graded materials
during fabrication. Ebrahimi and Mokhtari (2015) used the differential transform method to
investigated the free vibration characteristics of rotating porous beam with functionally graded
microstructure based on Timoshenko beam theory. Then, Ebrahimi and Zia (2015) used the
multiple scales and Galerkin’s methods to study the nonlinear transverse vibration properties of
functionally graded porous Timoshenko beams. Simsek (2016) investigated the nonlinear free
vibration of a FG nanobeam using the nonlocal strain gradient and Euler-Bernoulli beam theories
and a novel Hamiltonian approach with considering the von- Karman’s geometric nonlinearity.

In recent years, the scholars found that many nanodevices have a rotating motion and therefore,
they edicate their researches to design the rotating nanomachines. As rotation effect is an important
design factor in the study of nanostructures, it is necessary to understand the vibration behavior of
the rotary nanodevices. Many researchers dedicate their studies to design of rotating nanomachines
that can generate controllable rotation. Such as, biological molecular motors, unprecedented
chemical synthesis, Chen et al. (2012), Tierney et al. (2011), Lubbe et al. (2011), Goel and Vogel
(2008), Bath and Turberfield (2007) and Van Delden et al. (2005), turnstiles, Bedard and Moore
(1995), ratchets, Serreli et al. (2007), artificial muscles, Liu et al. (2005), cars, Khatua et al. (2009)
and Kudernac et al. (2011). Zhang et al. (2004a) reported a model for analysis a double-walled
CNT as rotational bearings. Narendar (2011) presented an atomistic model for a rotating SWCNT
using the nonlocal elasticity theory. Aranda-Ruiz et al. (2012) investigated the bending vibration
characteristics of nonuniform rotating with clamp-free boundary conditions using the nonlocal
elasticity theory via differential quadrature method (DQM). Pradhan and Murmu (2010) utilized
the nonlocal elasticity theory and examined flapwise bending vibration characteristics of a rotating
nanobeam with clamp-free boundary conditions via differential quadrature method (DQM).
Narendar (2012) investigated flapwise bending vibration analysis of SWCNT with consideration
of rotation effect and rotary inertia and transverse shear deformation via differential quadrature
method (DQM). Guo et al. (2015) reported a model for micromotors made by a patterned
AU/Ni/Cr nanodisk as bearing and a nanowire as rotor and they investigated the rotation
characteristics of the micromotors (Fig. 1(a)).

Li et al. (2014) used the molecular dynamics simulations and reported a model for nano-
turbine was made by a CNT and graphene nanoplates (Fig. 1(b)). They used the gromacs software
package and studied the rotating motion of a nano-turbine and and grapheme nanoplates. They
comprehend that the thermal fluctuations at the nanoscopic length scale are very important.
llkhanin and Hosseini-Hashemi (2016) used the modified couple stress theory to study the size
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(a) (b)
Fig. 1 (a) One of the applications of nanomotors presented by Guo et al. (2015); (b) Schematic
of the nano-turbine presented by Li et al. (2014)

dependent free vibrations of rotating nanobeams with considering the effects of Coriolis force and
tangential load and understood that the influence of the scale parameter on natural frequency of the
rotating nano-tube was stronger than tangential load. Ghadiri and Shafiei (2016) used the nonlocal
elasticity theory to examine the flapwise bending vibrations of a nano-turbine blade. They
investigated vibration characteristic of a cantilever and propped cantilever rotary nanoplate by
DQM. Benvenuti and Simone (2013) investigated the equivalence between nonlocal and gradient
elasticity models of one-dimensional boundary value problem. The local/nonlocal and fully
nonlocal stress-strain laws was applied and corresponding equilibrium equations of a tensile rod
were obtained by Benvenuti and Simone (2013). Then, corresponding closed-form solutions were
obtained for the local/nonlocal and the fully nonlocal models. Romano et al. (2017) represented
paradoxes in solving nonlocal elastic problems of simple beams, such as the cantilever under end-
point loading. They found that the elastic beam problem relevant to Eringen’s nonlocal integral
law does not avouch existence being the paradoxes. For this purpose Romano et al. (2017)
considered the local/nonlocal constitutive mixture and it was found that the local elastic fraction of
the mixture impels well-posedness. Claim to find the exact solution for bending of Timoshenko
and Euler-Bernoulli beams using Eringen’s nonlocal integral model was presented by Tuna and
Kirca (2016). Then, comment on Tuna and Kirca (2016) work was reported by Romano and
Barretta (2016). Romano and Barretta (2016) showed that the claim to find the exact solution by
Tuna and Kirca (2016) is not valid. A comparison of the superiority of stress-driven nonlocal
integral model versus the strain-driven nonlocal integral model was presented by Romano and
Barretta (2017). It was found that the small-scale effects in Euler-Bernoulli nanobeams formulated
according to stress-driven nonlocal integral model can be efficiently simulated. Also, it was
understood that the stress-driven nonlocal integral model removes the indispensable difficulties
represented by the strain-driven nonlocal integral model.

It should be noted that, none of the previous articles have considered the porosity and axial
preload effects on a rotary functionally graded nanobeam based on the nonlocal elasticity theory
for various boundary conditions. This paper will be practical for engineers who are designing
nanoactuators, nanosensors, nano-turbines, molecular nano-motors and nano-electro-mechanical
machines.

2. Problem formulation

Consider a functionally graded nanobeam with the length L, uniform thickness h and cross
sectional area A. The coordinate system is shown in Fig. 2 and the nanobeam rotates about z-axis
with constant angular velocity Q and hub radius is R.
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Fig. 2 (a) Rotating functionally graded nanobeam; (b) Cross section area of the porosed functionally
graded nanobeam with even distribution of porosities

It is supposed that the material attributes of the functionally graded nanobeam, such as Young’s
modulus, mass density, vary continuously in the thickness direction according to the power law
which are expressed as follows

wi(2)=(£+3) )

VAz):l—(%+%} )

According to Egs. (1)-(2), it can be seen that the top and bottom surfaces of the nanobeam are
made by pure ceramic and pure metal, respectively. Using the rule of mixture, distribution of a
material feature p, in the thickness direction is defined as follows, Simsek and Yurtcu (2013)

p(Z) =pV,+ PV, (3)

Where V; and V; are the volume fractions at the upper and lower surfaces of the nanobeam and
these are related by the following equation

V, +V, =1 (4)

The material specifications at the upper surface of the nanobeam is p; and the material
specifications at the lower surface of the nanobeam is p,. According to Egs. (1)-(4) and
considering the even distribution of porosities, the effective material properties of the functionally
graded nanobeam can be acquired as below, Shafiei et al. (2016a)

p(z)=(p1—p2)(§+§j 0= (@l 2)(p,+ py) 6

where K is a positive number which determines the material distribution in the z direction and «
indicates the porosity volume fraction. For example density and Young’s modulus for functionally
graded nanobeam with considering the porosity effect can be defined as

P(Z)=(,01—,02)(%+%J +p,— (! 2)(p,+ p,) (6)
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E(z):(El—Ez)(%+%j +E, —(a/2)(E +E,) (6b)

Here, p; and p, are the mass density for upper and lower surfaces, respectively. Also, E; and E;
indicates the Young’s modulus for upper and lower surfaces of the nanobeam, respectively.
3. The Euler-Bernoulli beam theory

Displacement field (uy, Uy, u3) at any point of the Euler-Bernoulli beam (x, z) can be defined as
follows

ul(x,z,t):u(x,t)—zaw(g:’t) (7a)
u, (x2,t)=0 (7b)
Uy (x,2,t) =w(xt) (7¢)

Where t is time, u and w are displacement components. The nonzero strain—displacement
relations for the Euler-Bernoulli beam are acquired as follows

e _ au(x,t) ., o*w(x,t)

0 0
XX = gxx —IK (8)
X ox?

&

Here &2, and «° are the extensional strain and the bending strain respectively. On the other hand,
if the material of functionally graded beam obeys Hooke’s law, the normal stress can be
determined as follows

0, =E(2)e, ©9)
The strain energy can be obtained by

oU = J o, 06,4V (10)
Substituting Eq. (8) and Eqg. (9) into Eq. (10) yields
L
SU = (N5 )~ M (o) Jox (11)
0

Where, N and M are the axial force and the bending moment respectively and are defined as

N = J.O'XXdA (12)
A
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Also, the kinetic energy T and Variation of kinetic energy 6T for Euler-Bernoulli beam can be
determined as follows

L —

't ou 0du  ow 05w ou 8°6w  osu o*w o*w 8%5w
ST =[|m, -m| = + +m, (14b)
: Aottt ot otox ot otox otox otox

Here, mo, m; and m, are the mass moments of inertia and can be defined as follows
m, :Ip(z).z‘dz (15)
A

Also, the work is done by external forces W' and the first variation of the external forces SW™
for Euler-Bernoulli beam can be written as

1 2
wet =1 j [@j Ndx (16a)
25\ O
L
SWE = j(aw 85‘”) Ndx (16b)
oL OX OX
where N is
N — N rotation Paxial (160)

Here, N™@%" denotes the axial rotation force and P®@ is the initial axial force.
On the other hand, the Hamilton’s principle can be written as

j&(T ~U +W* )t =0 (17)

Substituting Egs. (8)-(16), into Eqg. (17), the following Euler—Lagrange equations can be
determined as follows

ON o°u o°w

x Moo Maer (18)
M 0 ( - ow o*w ou o*w
X _&(Ng)_ v "M ok (19)
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4. Nonlocal theory

Nonlocal theory states that the stress at a reference point is a function of strains at all points in
the body. Accordingly, for a homogeneous, isotropic, nonlocal elastic solid, g;j(x) at any point is

defined as
0j (x):jvd(|x—x’|,r)cijk,gkl (X)av (x) (20)

Here, o, Ciju and u; are the stress tensor, elastic modulus tensor and the displacement vector,
respectively. In addition, a(]x—x'|,z) is the nonlocal kernel and |x — x’| and « are the euclidean
distance and nonlocal modulus, respectively. The strain tensor, g, can be written as

& :%(UU +ui,i) (21)

Here, 7= is a constant which represents external specification length | and internal

(60-2)
|

specification length a and constant e, which depends on each material. It should be noted that the
-4
27
(2005) found e, = 0.82 by matching the nonlocal theoretical results of SWCNTSs given by Zhang et
al. (2004) with molecular dynamics simulations results given by Sears and Batra (2004).
Eqg. (21) is arduous to solve. Therefore, according to nonlocal theory, the spatial integrals given
by Eg. (21) can be converted to equal differential constitutive equations under certain conditions.
The constitutive relation was obtained by modified bessel function is as follows

length scale coefficient e, = =~ 0.39 was given by Eringen (1983). Also, Zhang et al.

(1-(qa)' V?)o=C:e 22)

Here V2 denotes the Laplacian operator and C is fourth order elasticity tensor.

The small-scale parameter (ep.a) depends on the boundary conditions, nature of motion,
chirality, geometric sizes, number of walls and mode shapes. A conservative estimation of the
small-scale coefficient is smaller than 2.1 nm for SWCNTSs if the value of frequency is assessed to
be greater than 10 THz, Wang (2005). Also, Wang et al. (2007) showed that the non-dimensional

(&-2)
I

nonlocal parameter is smaller than 0.6126 and 0.6138 for Euler—Bernoulli and

Timoshenko cantilever nanobeams, respectively. Hereunto, there is no meticulous study made on
predicting the magnitude of the length scale coefficient to simulate vibration behavior of
functionally graded nanobeams, Eltaher et al. (2012), Ebrahimi and Salari (2015). Therefore,
researchers investigated the mechanical behaviours of functionally graded nanobeams based on the
nonlocal theory of Eringen by changing the value of the small scale parameter. In this study, the
non-dimensional nonlocal parameter is considered to be in the range of 0-0.5.
For nonlocal FG beams, the nonlocal stress-strain relation may be simplified as follows,
Ebrahimi and Salari (2015)
2
o, -2 _EQ)e, (23)
OX
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Where (1 = (e0.a)%)
Pursuant the nonlocal elasticity theory of Eringen, the force-strain and the moment-strain
relations for the Euler-Bernoulli beam theory can be written as

62 o*w

N - ,U Axx xx W (24)

2 2
oM _g M ¢ oW (25)

M_
o~ ok

In relations above, (Ax, Bx, Cxx) are the axial, coupling and bending stiffnesses, respectively
and are defined as follows

(A B,.C,) = [E(@)(1.2,2°)dA (26)

Substituting Eqgs. (24)-(25), into Egs. (18)-(19), axial normal force N and bending moment M,
can be obtained as below

o°w ) ou o'w
Ba y+(e.a) M X ot T oxit? 27)

ou
N=A ——
A, ax

82w+ olu m o*'w
ko T okt

ou o*w 2
M=B,—-C_—+(ea)|m
XX GX XX axz ( ) ( 0

_ P
+ (N rotation PaX|aI ) X‘Q’j (28)

Finally, by substituting Egs. (27)-(28) and Egs. (18)-(19), the governing equations of motion
for Euler-Bernoulli FG nanobeam including rotation effects and axial initial preload and porosity
effect can be stated as

u o*w 2 o‘u o°w o o*w
Auag Bage HEA) | Mo M s | M e T M o O (29)
ou o'w o OPwW o*w o’u o*w
vy C —(N rotation Pa)qal -m -m “m +
% ot ( )ax2 a2 totox  Cotox?
4 5 6 4 (30)
2 a W a u a W rotation axial 8 w
(ea)| m o T M arae  Mearge TN PTG |70

According to Fig. 2, the uniform beam rotates about an axis parallel to the z direction with a
constant counter clockwise rotational speed, Q. The rotation force is created as follows, Aranda-
Ruiz et al. (2012) and Pradhan and Murmu (2010)

N — [ [] pdAQ? (24 R)de 31)
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The boundary conditions for the Euler-Bernoulli functionally graded nanobeam can be obtained
by following relations, Ebrahimi and Salari (2015)

N=0 or u=0 at x=0and x=I (32)

oM o%u o*w

—-m—+m,——=0 or w=0 at x=0 and x=I 33
x T xer (39
M=0 or Z_W:O at x=0 and x=I (34)

X

5. Solution procedure

Bellman and Casti (1971), Bellman et al. (1972) and Ansari et al. (2010) presented the
differential quadrature (DQ) method. Then, Shu (2000) and Shu and Richards (1992) modified the
computation of weighting coefficients in this method. This method has high possiblity in solving
equilibrium equations and has good accuracy to solve the partial differential equations.

Because of easy formulation and good accuracy of this method some scholars preferred to work
on the analysis of nanostructures through differential quadrature method (DQM), Aranda-Ruiz et
al. (2012), Pradhan and Murmu (2010), Shafiei et al. (2016a), Murmu and Pradhan (2009), Wang
and Wang (2014), Pourasghar et al. (2015), Vosoughi et al. (2012) and Ghadiri et al. (2016a, b).
The most notable stage in this method is detecting the weight coefficients. In this way the partial
derivatives are calculated using these coefficients. The rth order derivative of f(x;) is approximated
as a weighted linear summation as follows, Shu (2012)

o"f (x)
axl’

X=X = iclﬂr) f (Xi ) (35)

And M(x), C{" is expressed as

M= TT (x=x) =] (36)

co__ M(x) =120 and %] (37)
i y yreny
(%= )M (x)
cW=-3 cl i=j (38)

j=Liz]

The weighing coefficients along x direction can be written as

Ci(if)=_ZC.(.r) i,j=12,.,n and 1<r<n-1 (39)
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ij ij ij (Xi _ Xj )

In the equations above, superscript r is the order of the derivative and n is the number of grid
points. By implementation of generalized differential quadrature method into governing equation
Egs. (29)-(30), the following equation is expressed as

n n 2 n 2 n
Ay Z Ci(’i)ui ~By Y, Ci(’i)wi +(ea)’ {mo % ZCi(’i)ui -m % ZCi(?k)wi J

C(rl)
c<f>{c<”>c(l)— U } i,j=12..ni=j and 2<r<n-1 (40)

2 kr:l k=1 k=1 )
0 uI a 1)
—Mo — W =0
atz 2 kZ:: i
n 3 1
BXXZCi('k) XXZC| N )[(N rotation Pwlal)zcl(k ]
k=1 kel =
62 n 2 82 n 3 82 n A
Mo _chi(,k)ui + WH—ZZCi(Yk)ui -m, _chi(yk)wi n
2| MTha i i}
+(ea)”| ] )
2 1
Zci(,k)lzcu ((N rotation Paxnal ZC() H
k=1 k=1 k=1
82 62 n (1) 62 n (2)
—My ——m_ cYu —m, 2 c@w =0
ot? a2 kzz‘i T2 52 kzz‘i ik Wi

In the present analysis, in order to obtain a better convergence, Gauss—Chebyshev technique is
used and stated as follows

g :%il—co{%ﬂ}] =123, ...,n (43)

Substituting w = We'" into Egs. (41)-(42) and Egs. (32)-(34) into Eqs. (41)-(42), the problem
will be transformed into the eigen value problem and Eq. (44) will be solved, Shafiei et al. (2016b).

[K ] (W} = {w} (44)

It should be noted that the way to apply the boundary conditions by the GDQM is mentioned in
Appendix A.

6. Numerical results

In this paper, the numerical results are studied for vibration analysis of the rotating Euler-
Bernoulli FG nanobeam, accompanied by porosity and axial preload effects for simply-simply,
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simply-clamped, clamped-clamped boundary conditions. In order to the generalize and simplify
the solution of the governing equation, non-dimensional parameters are defined as bellow

vlE L ®
o (5 @
p =eLL"°‘ (47)
5= { (48)
=+ (49)

Here, ¥ and @ are the non-dimensional parameters for frequency and angular velocity,
respectively. Also, u and J are the non-dimensional nonlocal parameter and non-dimensional hub
radius, respectively. In Appendix B, variation of the non-dimensional fundamental frequency with
respect to the sufficient number of grid points for rotating nanobeam related to simply-simply,
simply-clamped and clamped-clamped boundary conditions are presented. It shows that, to get
converged to exact results for GDQ method, 11 grid points are necessary. It should be noted that,
for exact evaluating the second, third and the fourth modes of non-dimensional frequency, 19 grid
points are enough.

6.1 Results and discussion

In this section, we have examined the vibration behavior of rotating Euler-Bernoulli FG
nanobeam accompanied by porosity and axial preload effects for simply-simply, simply-clamped,
clamped-clamped boundary conditions.

Table 1 presents the first and second non-dimensional natural frequencies of rotating Euler-
Bernoulli nanobeam corresponding to simply-simply, simply-clamped, clamped-clamped boundary
conditions (with L/d = 10, without porosity) for various values of x, in comparison with results
presented by Wang et al. (2007).

Figs. 3-5 demonstrate the variation of non-dimensional fundamental frequencies with respect to
the non-dimensional angular velocity (varying from 0 to 5) for pure ceramic material, pure metal
material and functionally graded material (with k = 1,5) for different values of the nonlocal
parameters regarding to simply-simply, simply-clamped, clamped-clamped boundary conditions,
respectively. Here, nonlocal parameter can be considered 0, 0.2, 0.4.

According to Figs. 3-5, it is found that when FG index power of the rotating nanobeam
increases, the influence of nonlocal parameter on the non-dimensional fundamental frequences
decreases (specially for simply-clamped, clamped-clamped boundary conditions). This means that,
for pure ceramic and functionally graded materials with low FG-index, the nonlocal parameter has
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Table 1 Comparison of non-dimensional fundamental frequencies and non-dimensional second frequencies
for simply-simply (S-S), simply-clamped (S-C), clamped-clamped (C-C) boundary conditions
(with L/h = 10) for various values of x with respect to results presented by Wang et al. (2007)

u=0 ©=0.1 ©=03 ©=05
B.C. Frequency Wang Wang Wang Wang
Present etal. Present etal. Present etal. Present et al.
(2007) (2007) (2007) (2007)
Fundamental 5 1 /15900 31416 3.0685301 3.0685 2.6799956 2.68 23022302 2.3022
S5 frequency
fsecond 6.2831801 6.2832 5.7816627 5.7817 4.3013395 4.3013 3.4603981 3.4604
requency
F‘]ﬂ”dame”ta' 3.9266013 3.9266 3.820890 3.8209 3.2828384 3.2828 2.7899265 2.7899
e requency
second 5 sec764 7.0686 6.4648773 6.4649 4.7667505 4.7668 3.8324967 3.8325
frequency
F‘fmdame”ta' 47300395 4.73 45944554 45945 3.9183654 3.9184 3.3153208 3.3153
cc requency
fsecond 7.853197 7.8532 7.1402411 7.1402 5.1963037 5.1963 4.1560694 4.1561
requency

Table 2 Comparison of non-dimensional fundamental frequencies with various values of nonlocal
parameters and porosity volume fraction parameters for simply-simply, simply-clamped,
clamped-clamped boundary conditions. (FG_Index = 0.5, angular velocity = 3, axial preload = 10)

Fundamental frequency a=0 a=0.1 a=0.2 a=0.3 a=04 a=05
(=0 1224254 12.34991 1248741 12.66989 12.92384  13.3019
£=01 1201192 1211663 1225075 1242874 12.67649  13.04538
Simply ©£=02 1149955 1150832 1172486 11.89283 12.12669  12.47503
supported 4 =03 1097922 11.07188 1119061 11.34826 11.56782  11.89501
©=04 1056802 10.65578 10.76825 10.91761 111257  11.4359
©£=05 1027032 10.35448 1046234 10.60562 10.80528  11.10302
©=0 1568866 1583332 16.01784 1626149 165985  17.09632
©=01 155097 156505 1583017 16.06755 16.39611  16.88189
Clamped - -g5 1508639 1521021 1538885 1561323 1592425 16.38494

Soapored  #=03 1463395 1475033 1491963 1513187 1542647 1586362
©=04 1427038 1439027 1454365 1474691 1502935 1544903
©=05 1400789 1412308 1427257 1446962 14.74364 1515123
£=0 2050038 20.78791 2102761 2134286 21.77682 2241402
©=01 2047686 2066067 2080454 2120244 2162678 2225086
©=02 2019383 2036789 2058974 20.88243 2128687 2188368
Clamped

©=03 19.90291  20.06799  20.27874  20.55735 20.94335 21.51482
n=04 19.67755  19.83608  20.03875 20.30711 20.67964  21.23258
u=05 19.51915 19.67323 19.87039  20.13176 20.4951 21.03539
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g. 3 Variation of the non-dimensional fundamental frequency parameter with respect to the non-
dimensional angular velocity parameter for pure ceramic, pure metal and functionally
graded materials with k = 1 and 5 for various values of the nonlocal parameter regarding to
simply-simply boundary condition

a remarkable role, and in the vibrational behavior of nanobeams and it should not be ignored. Also,
for porous FG nanobeam with simply-clamped, clamped-clamped boundary conditions, when the
angular velocity of the rotating nanobeam increases, the influence of nonlocal parameter on the
non-dimensional fundamental frequences decreases.

Figs. 6-8 show the non-dimensional fundamental frequency with respect to the axial preload
(varying from 0 to 30) for pure ceramic material, pure metal material and functionally graded
material (with k = 0.1 and 5) for different values of the porosity volume fraction parameters «,
regarding to simply-simply, simply-clamped, clamped-clamped boundary conditions.

Here, the angular velocity and nonlocal parameter are 1 and 0.1, respectively. Also, porosity
volume fraction parameter can be considered 0, 0.25 and 0.5. According to Figs. 6-8, for pure
ceramic and functionally graded materials with low FG-index ( for example k = 0.1), when the
porosity parameter is increased, the non-dimensional frequencies increase too, as were reported by
Ebrahimi and Hashemi (2016) for tapered FG rotating Euler-Bernoulli nanobeam considering even
distribution of porosity effect. The reason for this issue is due to this fact that by increasing the
porosity parameter, the stiffness of the nanobeam decreases, Shafiei et al. (2016a). But, for pure
metal and functionally graded materials with high FG-index (for example k = 5), smaller amount
of porosity parameter, causes greater non-dimensional frequencies and the influence of porosity
parameter on the frequeny increases. Similarly, this result has been reported by Ebrahimi and
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Hashemi (2016) for tapered FG rotating Euler-Bernoulli nanobeam considering even distribution
of porosity effect. Also, with the increase in axial tensile preload parameter, the stiffness of the
rotating porose FG nanobeam increases and so the non-dimensional frequencies have greater
values, as were reported by Murmu and Adhikari (2010b) for rotating Euler-Bernoulli nanobeam
without porosity effect.

From Figs. 6-8, it is observed that, when the FG-index of the rotating nanobeam increases, the
influence of porosity parameter on the non-dimensional frequences decreases for simply-simply,
simply-clamped, clamped-clamped boundary conditions. In this case, an opposite dynamical
response was reported by Ebrahimi and Hashemi (2016) for tapered FG rotating Euler-Bernoulli
nanobeam considering even distribution of porosity effect. Ebrahimi and Hashemi (2016) revealed
the influence of porosity parameter on the fundamental frequencies of tapered FG rotating
nanobeam increases with the increase in the FG-index. Also, for the rotating nanobeam with pure
ceramic material, the influence of porosity on the frequences is greater than the rotating nanobeam
with pure metal material. Figs. 9-11, show the variation of the non-dimensional fundamental
frequency W with respect to the axial preload (varying from 0 to 70) and angular velocity (® =0, 2,
4, 8) for various values of the nonlocal parameter u regarding to simply-simply, simply-clamped,
clamped-clamped boundary conditions, respectively.

Here, the FG-Index and porosity parameters are 0.1 and 0.25, respectively. Also, the nonlocal
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Fig. 4 Variation of the non-dimensional fundamental frequency parameter with respect to the non-
dimensional angular velocity parameter for pure ceramic, pure metal and functionally
graded materials with k = 1 and 5 for different values of the nonlocal parameter regarding to
simply-clamped boundary condition
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parameter can be considered 0, 0.15 and 0.4. Table 2 shows the non-dimension fundamental
frequencies for various values of nonlocal parameters and porosity volume fraction parameters
corresponding to simply-simply, simply-clamped, clamped-clamped boundary conditions,
respectively.

Here, the FG-Index and angular velocity and axial preload are 0.5, 3 and 10, respectively.

According to Figs. 3-5 and Figs. 9-11 and Tables 1 and 2, when the nonlocal parameter
increases, non-dimensional fundamental frequencies decrease for simply-simply, simply-clamped,
clamped-clamped boundary conditions. The substantial reason for this issue is due to this fact that
by increasing the nonlocal parameter, the stiffness of the nanobeam decreases and so the value of
non-dimensional fundamental frequency reduces, Ebrahimi and Salari (2015) and Ghadiri et al.
(2016b).

In this case, a reverse behavior of nonlocal parameter was reported by Shafiei et al. (2016b).
According to their work the non-dimensional fundamental frequencies of rotating tapered axially
FG nanobeam increases with the increase in nonlocal parameter.

From Table 2, it is observed that the influence of nonlocal parameter on the frequencies of
simply supported nanobeam is greater than simply-clamped and clamped-clamped nanobeam. It
should be noted that, according to Table 2, the influence of porosity parameter on the fundamental
frequencies of clamped-clamped nanobeam is greater than simply-clamped and simply supported
nanobeam.
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boundary condition

Figs. 3-5 and Figs. 9-11 show that when the angular velocity of the rotating porose FG
nanobeam is increased, the non-dimensional frequences increase for all given nonlocal parameters,
as were reported by Murmu and Adhikari (2010b) for rotating Euler-Bernoulli nanobeam without
porosity effect. The reason is that as the nanobeam rotates, the stiffness of the nanobeam increases
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and hence non-dimensional frequencies increase.

According to Figs. 3-11, order of non-dimensional fundamental frequencies for pure ceramic,
pure metal and functionally graded materials can be obtained as:

pure ceramic material> functionally graded material (k = 1) > functionally graded material (k =
5) > pure metal material. The reason is that the FG-index tends to increase the weight and decrease
the stiffness of the microbeam and so decreases the values of natural frequency.

7. Conclusions

The nonlocal Euler-Bernoulli beam theory was employed to discuss about the free vibration of
rotating functionally graded nanobeams accompanied by the porosity and rotary effects and axial
preload. The governing equations of motion and the related boundary conditions were obtained
usind the Hamilton’s principle. Afterward, generalized differential quadrature method (GDQM)
was used to discretize the governing differential equations related to simply-simply, simply-
clamped, clamped-clamped boundary conditions. In this research, the influences of the various
parameters such as functionally graded power (FG-index), porosity parameter, nonlocal parameter,
axial preload and angular velocity on natural frequencies of rotating FG nanobeams are
investigated.
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Fig. 9 Variation of the non-dimensional fundamental frequency parameter with respect to the axial
preload and angular velocity for different values of the nonlocal parameter regarding to
simply-simply boundary condition
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preload and angular velocity for different values of the nonlocal parameter regarding to
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The following results could be highlighted from this research:

(1) In rotating FG nanobeams with considering the porosity effect and axial preload, the
influence of porosity parameter over the fundamental frequencies of clamped-clamped
nanobeam is more than the simply-clamped and simply supported nanobeam.

(2) The influence of the nonlocal parameter over the fundamental frequencies of simply
supported nanobeam is more than the simply-clamped and clamped-clamped nanobeam
for rotating FG nanobeam with considering the porosity effect and axial preload.

(3) In rotating porose FG nanobeams with axial preload, comparison of fundamental
frequencies for pure ceramic, pure metal and functionally graded materials is as follows:

(4) pure ceramic material > functionally graded material with volume fraction index (k = 1) >
functionally graded material with volume fraction index (k = 5) > pure metal material

(5) The influence of porosity on the frequencies for the rotating nanobeam with pure ceramic
material is more than the rotating nanobeam with pure metal material.

(6) The influence of porosity on the frequencies decreases with the increase in the FG-index
of the rotating nanobeam for simply-simply, simply-clamped, clamped-clamped boundary
conditions.

(7) In rotating porose FG nanobeams with high FG-index (materials with more amount of
metal), when porosity parameter increases, the non-dimensional frequencies decrease. But,
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clamped-clamped boundary condition

for nanobeams with low FG-index (materials with more amount of ceramic) with the
increase in porosity parameter, the non-dimensional frequencies increase.
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Appendix A

Using generalized differential quadrature method, Egs. (29)-(30) are simplified as follows
K, =ao’M,
[KA]nxnUi [KB]nan\/i :a)Z I:,\/IA]nxnui [,\/IB]noni eiai (50)
[KC] U, [KD] W. [MC] U, [MD] W.
nxn nxn 2nx2n

nxn ! nxn [

Here, d index denotes the domain and KA, KB, MA, MB, KC, KD, MC and MD are expressed as
k=1
[KB]=-B,>.C)
k=1
[KC]=B,>.C
k=1

[KD] — _Cxx Cl(i) _ ( N rotation _ Paxial )ic + ( N rotation Paxial ) C(i)

ik I
k=1 k=1 k=1

(51)

[MA]=m,[1]- OZC, 5
[MB]= —mlzn: Cl(lk) +(e0a)2 mlzn: Ci(’i)
k=1 k=1

[MC]= mlzn:Ci(fk) —(eoa)2 m, n Ci(’ak)
k=1

k=1
[MD]=m,[1]-m,> C? —(e,a)’ (mOZCﬁ) -m, ZC,@J
k=1 k=1 k=1

So, by employing the GDQM to the boundary conditions equations, the matrix of boundary
conditions can be derived similar to Eq. (50) as

K, =ao’M,

[KAb ]lxnUl [KBb]loni | _[MAb ]1><nUi [MBb ]1oni ]

[KCy ], Ui [KD, ], W, [MC, ], Ui [MD, ], W,

[KEL U, [KRLW, | I[MEJ U, [MELW || . )
[KG, ], Ui [KH, W, [MG, ..U [MH,] W,

[KloL Ui [K3, LW, ['V“ LU, (M3, W,

_[KKb]lxnUi [KLb]loni_ [ ] Ui [MLb]lon 6x2n
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Here, b index denotes the boundary and KA, KBy ... KKyand KL, are expressed as bellow (for

oM o%u o%u _
example N _O,E—mlermzw =0and M =0)
KA]=A,>.ClY
k=1
K8,]=[0],,
KC,]=[0l,,,

0.]-¢, 3 et~ (ea) e e wem e s

KFb = _Cxxznlcl(i) (eoa)z Cl(lk) (N rotatio n Paxial ) Cl(lk)
k=1 k=1 k=1 (53)
[KGb] - %ZCS&
k=1
[KHb] = [0]1><n
[K1,]=[0],,,
KJ. 1=—C y c® _(ea) . c : cW (N rotio | paxial C c®
b XX nk 0 1k n,k n,k
k=1 k=1 k=1 k=1
[KK,]=[0],,
KL, ]=-C, y Cl(i)_ ea 2\ Cr(]li  rotatio , paial C C(l)
Lb , 0 , n,k
k=1 k=1 k=1
Moreover, MA,, MB,, ... MK, and ML, are calculated as bellow
[M'%] = (eoa)2 mozcl(,lk)
k=1
[MB,]=[0],,,
[Mcb] = [0]1><n
(M0, ] (e)" [ m 3ty -m 3 9
k=1 k=1
[MEb] = [O]lxn

[MF,]=(e,a)° (mo - mzznlcl(yzk)j
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[MG,]=(e,a)° m,>.CL)

[MHb] = [0]1><n

[Mlb] = [O]un

(M1 [ m3 et -m St | ©
[MKb] = [O]lxn

[MLb] = (eoa)2 [mo - ngq,zk)j

In order to solve the governing equations coupled with boundary conditions, the following
matrix equation can be evaluated, Shu (2012).

(K [{a} =0’ M" {4} (55)

Here, 4 and w are the mode shape and the natural frequency. Also, K" and M" are expressed as
Ky KT
T
K, [O]
<1 My M
M-
M, [0]

Eventually, with solving the eigenvalue problem, the eigenvector and natural frequencies will
be obtained.

(56)
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Appendix B
05 1 Clamped Clamped - Simply Supported
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Fig. 12 Variation of the non-dimensional fundamental frequency with respect to the sufficient number
of grid points for rotating nanobeam related to simply-simply, simply-clamped and clamped-
clamped boundary conditions. (® =1, £ =0, 6 =1, a = 0.25 and P** = 1)





