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Abstract.  The buckling response of a single-layered graphene sheet (SLGS) embedded in visco-
Pasternak’s medium is presented. The nonlocal first-order shear deformation elasticity theory is used for this 
purpose. The visco-Pasternak’s medium is considered by adding the damping effect to the usual foundation 
model which characterized by the linear Winkler’s modulus and Pasternak’s (shear) foundation modulus. 
The SLGS be subjected to distributive compressive in-plane edge forces per unit length. The governing 
equilibrium equations are obtained and solved for getting the critical buckling loads of simply-supported 
SLGSs. The effects of many parameters like nonlocal parameter, aspect ratio, Winkler-Pasternak’s 
foundation, damping coefficient, and mode numbers on the buckling analysis of the SLGSs are investigated 
in detail. The present results are compared with the corresponding available in the literature. Additional 
results are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-
Pasternak’s parameters for future comparisons. 
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1. Introduction 
 

Ever since the graphene was discovered by Geim and Novoselov (Novoselov, Geim et al. 

2004), many investigations have been published in the literature about vibration, buckling and 

wave propagation of nano graphene sheets. Graphene is a monolayer arranged in a honeycomb 

lattice with a unique series of unprecedented structural, mechanical and electrical properties 

(Basua and Bhattacharyya 2012). Nano structural elements include nanotubes, nanobeams, 

nanoplates, nanosheets and nanocones. Nano structure components have widely applications in 

micro/nano electromechanical systems (MEMS/NEMS), nano sensors, electrical batteries, 

biomedical, bioelectrical, reinforcement role at composites, etc. (Lim, Li et al. 2010, Ghorbanpour 

Arani, Amir et al. 2014, Sakhaee-Pour, Ahmadian et al. 2008, Wang, Li et al. 2012, Li, Li et al. 

2011, Pantelic, Meyer et al. 2012). Due to its potential, nano graphene sheets are used in nano 

technology, particularly in recent years utilized in buckling of graphene sheets with/without 

conveying viscosity. 

In order to study the mechanical behavior of nanostructures, it has been reported that the small 
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scale effect must play an important role in the nanoscale structures, but this small scale effect has 

been ignored when classical local continuum theory was adopted (Xu, Shen et al. 2013). In recent 

years, various size-dependent continuum theories such as couple stress theory (Reddy 2011), strain 

gradient elasticity theory (Akgöz and Civalek 2013a, b, Lam, Yang et al. 2003), modified couple 

stress theory (Ke, Wang et al. 2012, Akgöz and Civalek 2011, Akgö and Civalek 2013c, Yang, 

Chong et al. 2002, Akgöz and Civalek 2012) and nonlocal elasticity theory (Eringen and Edelen 

1972, Eringen 1983, 2002, 2006) are proposed. These theories are comprised of information about 

the interatomic forces and internal lengths that is introduced as small scale effect in nonlocal 

elasticity theory (Eringen 2006). 

In this regard, Pradhan and Murmu (2009) have studied the small scale effect on the buckling 

analysis of biaxially compressed single-layered graphene sheets (SLGSs) using nonlocal 

continuum mechanics. Sakhaee-Pour (2009) has investigated the elastic buckling behavior of 

defect-free SLGS using an atomistic modeling approach. Farajpour, Solghar et al. (2013a) have 

investigated the nonlinear buckling characteristics of MLGSs subjected to non-uniformly 

distributed in-plane load through the thickness. Farajpour, Solghar et al. (2013b) have studied the 

axisymmetric buckling analysis of circular SLGSs by decoupling the basic constitutive equations 

based on the nonlocal theory of Eringen. Ansari and Sahmani (2013) have studied the biaxial 

buckling behavior of SLGSs. They have incorporated Eringen’s nonlocal elasticity equations into 

different plate theories to consider the size-effects in the analysis. Mohammadi, Farajpour et al. 

(2014) have studied the buckling behavior of orthotropic rectangular nanoplate. They have 

implemented the nonlocal elasticity theory to investigate the shear buckling of orthotropic SLGSs 

in thermal environment. 

Literature shows that research on SLGSs or MLGSs embedded in elastic medium are becoming 

increasing common for more accurate design and analysis of micro and nanostructures. Pradhan 

and Murmu (2010) have investigated the buckling behavior of SLGS embedded in an elastic 

medium by implementing the nonlocal elasticity theory based on the classical plate theory. Samaei, 

Abbasion et al. (2011) have discussed the effect of length scale on buckling behavior of a SLGS 

embedded in a Pasternak elastic medium using the nonlocal Mindlin plate theory. Radić, Jeremić 

et al. (2014) have presented the buckling of double-orthotropic nanoplates based on nonlocal 

elasticity theory. They have assumed that two nanoplates are bonded by an internal elastic medium 

and surrounded by external elastic foundation. Anjomshoa, Shahidi et al. (2104) have developed a 

finite element approach based on the size dependent nonlocal elasticity theory for buckling 

analysis of nano-scaled MLGSs embedded in polymer matrix. Golmakani and Rezatalab (2015) 

have investigated the non-uniform biaxial buckling analysis of orthotropic SLGS embedded in a 

Pasternak elastic medium. They have used the nonlocal Mindlin plate theory to derive the 

nanoplate equilibrium equations in terms of generalized displacements. Karličić, Cajić et al. 

(2015) have presented the thermal vibration and stability analysis of the multi-layered graphene 

sheets (MLGSs) modeled as multi-nanoplate system (MNPS) embedded in an elastic medium. 

They used the nonlocal Kirchhoff-Love plate theory to derive the governing equations and to 

obtain their exact closed-form solutions for nonlocal frequencies, critical buckling loads and 

critical buckling temperature by using the Navier’s and trigonometric methods. Zhang, Zhang et 

al. (2016) have presented the critical buckling loads of SLGSs by solving the governing 

differential equations derived from the principle of minimum potential energy using the element-

free kp-Ritz method. 

In spite of many researches about buckling responses of SLGSs using nonlocal elasticity 

theory, there are limited studies that consider nonlocal visco-elastic systems. However, to date, no  
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Fig. 1 A continuum plate model of a single-layered graphene sheet embedded in a viscoelastic medium 

 

 

report has been found in the literature on the nonuniform buckling analyses of graphene sheets 

embedded in visco-elastic medium via a nonlocal theory. Motivated by these considerations, in 

order to improve design of nano coupled system we aim to study the buckling analysis of visco-

SLGSs system based on the first-order shear deformation theory. SLGSs are conveying viscous 

fluid and coupled by visco-Pasternak’s medium. The closed-form solutions are obtained to indicate 

the characteristic parameters of coupled visco-SLGSs. The results of this study is hoped to be use 

to design this kind of nano devices. 

 

 

2. Basic equations of single-layered graphene sheet (SLGS) 
 

Let us consider a single-layered graphene sheet (SLGS) of length 𝑎, width 𝑏 and uniform 

thickness ℎ as shown in Fig. 1. The SLGS is made of a homogeneous isotropic and linearly 

elastic material with Young’s modulus 𝐸, Poisson’s ratio ν, shear modulus 𝐺 = 𝐸/2(1 + 𝜈) and 

material density 𝜌. Suppose that the upper surface of the SLGS (𝑧 = ℎ/2) be subjected to a 

transverse distribution mechanical load 𝑞(𝑥, 𝑦). In addition, there are distributive compressive in-

plane edge forces 𝑆1 and 𝑆2 per unit length (applied in the directions 𝑥 and 𝑦, respectively, and 

considered positive in tension). 

 
2.1 Nonlocal first-order plate theory 
 

The most general form of the constitutive relation in nonlocal elasticity theory involves an 

integral over the entire region of interest. The integral contains a nonlocal kernel function, which 

describes the relative influence of the strains at various locations of the body on the stress at the 

material point under consideration. Specifically, the constitutive equations of nonlocal elasticity 

for homogenous and isotropic elastic solids read 

𝑥 

𝑏 

 

𝑦 
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𝑧 

𝑥 
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𝐾2 
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 𝜍𝑘𝑙(𝑥) = ∫ 𝜗(|𝑥 − 𝑥′|)𝜏𝑘𝑙(𝑥
′)d𝑉(𝑥′)

𝑉
, (1) 

where 𝜍𝑖𝑗 is the nonlocal stress tensor, 𝑉 is the volume occupied by the elastic body, |𝑥 − 𝑥′| 

denotes distance in Euclidean space, and the nonlocal kernel 𝜗(|𝑥 − 𝑥′|) accounts for the effect 

of the strain at the point 𝑥′ on the stress at the point 𝑥 in the elastic body. 

The quantities 𝜏𝑘𝑙(𝑥
′) denote the components of local stress tensor for which the standard 

local constitutive equations are adopted, i.e. 

 𝜏𝑘𝑙(𝑥
′) =

𝐸

1+𝜈
0𝜀𝑘𝑙(𝑥

′) +
𝜈

1−𝜈
𝜀𝑚𝑚(𝑥

′)𝛿𝑘𝑙1, (2) 

where 𝜀𝑘𝑙(𝑥
′) are the components of classical local strain tensor at 𝑥′. The dynamic equations 

and small strain-displacement relations for a linear homogenous elastic body using nonlocal 

elasticity theory are given by the usual relations 

 𝜍𝑘𝑙,𝑙 + 𝑓𝑘 = 𝜌
𝜕2𝑢𝑘

𝜕𝑡2
,     𝜀𝑘𝑙(𝑥

′) = 1

2
[
𝜕𝑢𝑘(𝑥

′)

𝜕𝑥𝑙
′ +

𝜕𝑢𝑙(𝑥
′)

𝜕𝑥𝑘
′ ],     𝛾𝑘𝑙 = 2𝜀𝑘𝑙, (3) 

where 𝑢𝑘(𝑥
′) are the components of displacement vector at the reference point 𝑥′ in the body 

and 𝑓𝑘 are the body forces. For an appropriate form of the nonlocal kernel (Eringen and Edelen 

1972, Eringen 1983, 2002, 2006), it turns out that the nonlocal internal constitutive relation given 

by Eq. (1) can be inverted to yield the following pseudo-local constitutive equation of gradient 

type 

 ,1 − (𝑙𝑒0)
2𝛻2-𝜍𝑘𝑙 = 𝜏𝑘𝑙 . (4) 

The parameter 𝑙 is an internal characteristic length (e.g., lattice parameter, granular distance), 

and 𝑒0 is a material constant determined by experiment or by matching dispersion curves of plane 

waves with those of atomic lattice dynamics. One may see that when the internal characteristic 

length 𝑙  is neglected, i.e., the particles of the medium are considered to be continuously 

distributed and interacting without long-range forces, 𝑙𝑒0 is zero, and Eq. (4) reduces to the 

constitutive equations of classical local elasticity theory. 

The first-order shear deformation theory is used for the present SLGS. The displacement field 

can be written as 

 

𝑢1(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + 𝑧 𝜓(𝑥, 𝑦),

𝑢2(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) + 𝑧 𝜑(𝑥, 𝑦),

𝑢3(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦),

 (5) 

where 𝑢1, 𝑢2, and 𝑢3 are the displacements in the 𝑥, 𝑦, and 𝑧 directions, 𝑢, 𝑣, and 𝑤 are 

the mid-plane displacements. Here 𝑢 and 𝑣  are the in-plane displacements while 𝑤  is the 

transverse displacement (deflection), and 𝜓 and 𝜑 are the rotational displacement about 𝑦 and 

𝑥  axes, respectively. The displacements of the classical plate theory are given by setting 

𝜓 = −
𝜕𝑤

𝜕𝑥
 and 𝜑 = −

𝜕𝑤

𝜕𝑦
. 

By substituting the displacement relations given in Eq. (5) into the strain-displacement 

equations of elasticity, the normal and shear strain components are obtained as 

 {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦

} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦}
 
 

 
 

+ 𝑧

{
 
 

 
 

𝜕𝜓

𝜕𝑥
𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑥
+
𝜕𝜓

𝜕𝑦}
 
 

 
 

,    𝜀𝑧𝑧 = 0,      2
𝛾𝑦𝑧
𝛾𝑥𝑧
3 = {

𝜑 +
𝜕𝑤

𝜕𝑦

𝜓 +
𝜕𝑤

𝜕𝑥

}. (6) 
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The corresponding stress-strain relationships, accounting for the thermal effects, in the isotropic 

SLGS coordinates can be expressed as 

 {
𝜍𝑥𝑥 − 𝜉𝛻

2𝜍𝑥𝑥
𝜍𝑦𝑦 − 𝜉𝛻

2𝜍𝑦𝑦
} =

𝐸

1−𝜈2
0
1 𝜈
𝜈 1

1 2
𝜀𝑥𝑥
𝜀𝑦𝑦

3,     {

𝜍𝑦𝑧 − 𝜉𝛻
2𝜍𝑦𝑧

𝜍𝑥𝑧 − 𝜉𝛻
2𝜍𝑥𝑧

𝜍𝑥𝑦 − 𝜉𝛻
2𝜍𝑥𝑦

} = 𝐺 {

𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦

}, (7) 

where 𝜉 = (𝑙𝑒0)
2 represents the nonlocal parameter. 

 

2.2 The visco-Winkler-Pasternak foundations 
 

The two-parameter Pasternak’s model is the most natural extension to the one-parameter 

Winkler's model. It considers a shear interaction between the spring elements by connecting the 

ends of the springs to a plate of an incompressible shear layer. The present SLGS is embedded in a 

homogeneous three-parameter viscoelastic medium. The foundation model is characterized by the 

linear Winkler’s modulus 𝐾1, the Pasternak’s (shear) foundation modulus 𝐾2, and the damping 

coefficient 𝑐𝑡 of the viscoelastic medium. Taking into account the un-bonded contact between the 

SLGS and medium, the interaction follows the three-parameter visco-Pasternak’s-type foundation 

model as (Zenkour 2016 a, b) 

 𝑅𝑓 = .𝐾1 −𝐾2𝛻
2 + 𝑐𝑡

𝜕

𝜕𝑡
/𝑤, (8) 

where 𝑤 is the transverse displacement and ∇2 is the Laplacian (second-order spatial gradient). 

If the foundation is modelled as the visco-Winkler foundation, the coefficient 𝐾2 in Eq. (1) is 

zero. The viscosity term may be omitted by setting 𝑐𝑡 = 0 to get the analysis of the SLGS 

embedded in pure elastic medium. 

 

2.3 Governing equations 
 

The governing equations of motion can be obtained by using the principle of virtual 

displacements which yields 

 ∫ ∫ (𝜍𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜍𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜍𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜍𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜍𝑦𝑧𝛿𝛾𝑦𝑧)d𝛺𝛺
d𝑧

ℎ/2

−ℎ/2
  

 −∫ .𝑞 − 𝑆1
𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑥
− 𝑆2

𝜕𝑤

𝜕𝑦

𝜕

𝜕𝑦
− 𝑅𝑓/ 𝛿𝑤 d𝛺𝛺

= 0. (9) 

So, the governing equations can be derived from the above functional by integrating the 

displacement gradients in 𝜀𝑖𝑗 by parts. The extremum conditions of the obtained functional gives 

the following equilibrium equations 

 

𝜕𝑁𝑥𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0,     

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦𝑦

𝜕𝑦
= 0,

𝜕𝑄𝑥

𝜕𝑥
+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑞 − 𝑅𝑓 +

𝜕

𝜕𝑥
.𝑆1

𝜕𝑤

𝜕𝑥
/ +

𝜕

𝜕𝑦
.𝑆2

𝜕𝑤

𝜕𝑦
/ = 0,

𝜕𝑀𝑥𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 0,     

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦𝑦

𝜕𝑦
− 𝑄𝑦 = 0,

 (10) 

where 𝑁𝑥𝑥, 𝑁𝑥𝑦, and 𝑁𝑦𝑦 are the basic components of stress resultants; 𝑀𝑥𝑥, 𝑀𝑥𝑦, and 𝑀𝑦𝑦 

are the basic components of stress couples; and 𝑄𝑥 and 𝑄𝑦 are the shear stress resultants. They 
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can be obtained by integrating Eq. (7) over the thickness of the plate as 

 

{𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦} = ∫  {𝜍𝑥𝑥, 𝜍𝑦𝑦, 𝜍𝑥𝑦}d𝑧
ℎ/2

−ℎ/2
,

{𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦} = ∫  𝑧{𝜍𝑥𝑥, 𝜍𝑦𝑦, 𝜍𝑥𝑦}d𝑧
ℎ/2

−ℎ/2
,

{𝑄𝑥, 𝑄𝑦} = 𝑘 ∫  {𝜍𝑥𝑧, 𝜍𝑦𝑧}d𝑧
ℎ/2

−ℎ/2
,

 (11) 

where 𝑘 is the transverse shear correction factor. Using the stress-strain relationships, Eq. (7), and 

the stress resultants definition, Eq. (11), with the aid of Cauchy’s relations, Eq. (6), we can express 

the stress resultants in terms of the displacements as follows 

 {

𝑁𝑥𝑥 − 𝜉𝛻
2𝑁𝑥𝑥

𝑁𝑦𝑦 − 𝜉𝛻
2𝑁𝑦𝑦

𝑁𝑥𝑦 − 𝜉𝛻
2𝑁𝑥𝑦

} =
𝐸ℎ

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦}
 
 

 
 

, (12a) 

 {

𝑀𝑥𝑥 − 𝜉𝛻
2𝑀𝑥𝑥

𝑀𝑦𝑦 − 𝜉𝛻
2𝑀𝑦𝑦

𝑀𝑥𝑦 − 𝜉𝛻
2𝑀𝑥𝑦

} = 𝐷 [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]

{
 
 

 
 

𝜕𝜓

𝜕𝑥
𝜕𝜑

𝜕𝑦

𝜕𝜑

𝜕𝑥
+
𝜕𝜓

𝜕𝑦}
 
 

 
 

, (12b) 

 {
𝑄𝑦 − 𝜉𝛻

2𝑄𝑦

𝑄𝑥 − 𝜉𝛻
2𝑄𝑥

} = 𝑘𝐺ℎ{
𝜑 +

𝜕𝑤

𝜕𝑦

𝜓 +
𝜕𝑤

𝜕𝑥

}, (12c) 

where 𝐷 =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity of the SLGS. 

The substitution of Eqs. (12) into Eqs. (10) gives the following nonlocal governing partial 

differential equations in terms of displacements 𝑤, 𝜓, and 𝜑 only 

 𝜅𝐺ℎ .
𝜕𝜓

𝜕𝑥
+
𝜕𝜑

𝜕𝑦
+ 𝛻2𝑤/ − (1 − 𝜉𝛻2)𝑃 = 0, (13a) 

 𝐷 .
𝜕2𝜓

𝜕𝑥2
+
1+𝜈

2

𝜕2𝜑

𝜕𝑥𝜕𝑦
+
1−𝜈

2

𝜕2𝜓

𝜕𝑦2
/ − 𝑘𝐺ℎ .𝜓 +

𝜕𝑤

𝜕𝑥
/ = 0, (13b) 

 𝐷 .
1−𝜈

2

𝜕2𝜑

𝜕𝑥2
+
1+𝜈

2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+
𝜕2𝜑

𝜕𝑦2
/ − 𝑘𝐺ℎ .𝜑 +

𝜕𝑤

𝜕𝑦
/ = 0, (13c) 

where 

 𝑃(𝑥, 𝑦) = .𝐾1 − 𝐾2𝛻
2 + 𝐶𝑡

𝜕

𝜕𝑡
/𝑤 −

𝜕

𝜕𝑥
.𝑆1

𝜕𝑤

𝜕𝑥
/ −

𝜕

𝜕𝑦
.𝑆2

𝜕𝑤

𝜕𝑦
/. (14) 

 

 

3. Solution of nonlocal static buckling response 
 

The determination of critical buckling loads is of fundamental importance in the design of 

many nano-structures. The buckling formulation begins by assuming a solution of the 
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displacement field and the thermal field. For the simply-supported SLGS we have the following 

boundary conditions 

 
𝑤 = 𝜑 = 𝑀𝑥𝑥 = 0    at   𝑥 = 0, 𝑎,
𝑤 = 𝜓 = 𝑀𝑦𝑦 = 0    at   𝑦 = 0, 𝑏.

 (15) 

In particular, time harmonic waves are sought and it is assumed that the model is unbounded in 

𝑥  and 𝑦  directions. To solve the buckling problem, we assume the solution of governing 

equations with satisfaction of aforementioned boundary condition as 

 {

𝑤
𝜓
𝜑
} = {

𝑤∗ sin(𝜆𝑚𝑥) sin(𝜇𝑛𝑦)

𝜓∗ cos(𝜆𝑚𝑥) sin(𝜇𝑛𝑦)

𝜑∗ sin(𝜆𝑚𝑥) cos(𝜇𝑛𝑦)
} e𝜔𝑡, (16) 

where 𝑤∗, 𝜓∗ , and 𝜑∗  are arbitrary parameters, ω is a complex angular frequency, 𝜆𝑚 =
𝑚𝜋/𝑎 and 𝜇𝑛 = 𝑛𝜋/𝑏. By substituting Eqs. (16) into Eqs. (13) without the effect of external load 

(𝑞 = 0), one gets 

 𝜅𝐺ℎ,𝜆𝑚𝜓
∗ + 𝜇𝑛𝜑

∗ + (𝜆𝑚
2 + 𝜇𝑛

2)𝑤∗- + ,1 + 𝜉(𝜆𝑚
2 + 𝜇𝑛

2)-𝑃∗ = 0, (17a) 

 𝐷 0.𝜆𝑚
2 +

1−𝜈

2
𝜇𝑛
2/𝜓∗ +

1+𝜈

2
𝜆𝑚𝜇𝑛𝜑

∗1 + 𝜅𝐺ℎ(𝜓∗ + 𝜆𝑚𝑤
∗) = 0, (17b) 

 𝐷 0.
1−𝜈

2
𝜆𝑚
2 + 𝜇𝑛

2/𝜑∗ +
1+𝜈

2
𝜆𝑚𝜇𝑛𝜓

∗1 + 𝜅𝐺ℎ(𝜑∗ + 𝜇𝑛𝑤
∗) = 0, (17c) 

where 𝑃∗ is given, for uniform buckling load, by 

 𝑃∗ = ,1 + 𝜉(𝜆𝑚
2 + 𝜇𝑛

2)-,𝐾1 + 𝐾2(𝜆𝑚
2 + 𝜇𝑛

2) + 𝑐𝑡𝜔 + 𝑆1𝜆𝑚
2 + 𝑆2𝜇𝑛

2-𝑤∗. (18) 

The simplest case, to derive some results which concern with the buckling of rectangular SLGSs, 

is obtained when the forces 𝑆1 and 𝑆2 are constants throughout the SLGS. Assuming that there is 

a given ratio between these forces so that 𝑆𝑥 = −𝛽0 and 𝑆2 = −𝛼𝑆1. The above system of 

equations is written as 

 (,𝐶- − 𝛽0,𝐿-)*∆+ = *0+, (19) 

where *∆+ = *𝑤∗, 𝜓∗, 𝜑∗+𝑇 is the solution vector. The elements of the symmetric matrix ,𝐶- are 

expressed as: 

 𝐶11 = 𝑘𝐺ℎ(𝜆𝑚
2 + 𝜇𝑛

2) + ,1 + 𝜉(𝜆𝑚
2 + 𝜇𝑛

2)-,𝐾1 + 𝐾2(𝜆𝑚
2 + 𝜇𝑛

2) + 𝑐𝑡𝜔-,  

 𝐶12 = 𝑘𝐺ℎ𝜆𝑚,     𝐶13 = 𝑘𝐺ℎ𝜇𝑛,     𝐶22 = 𝐷 .𝜆𝑚
2 +

1−𝜈

2
𝜇𝑛
2/ + 𝑘𝐺ℎ,  

 𝐶23 =  𝐷
1+𝜈

2
𝜆𝑚𝜇𝑛,     𝐶33 = 𝐷 .

1−𝜈

2
𝜆𝑚
2 + 𝜇𝑛

2/ + 𝑘𝐺ℎ, (20) 

and the elements 𝐿𝑖𝑗 = 𝐿𝑗𝑖 of matrix ,𝐿- are given by 

 𝐿11 = (𝜆𝑚
2 + 𝛼𝜇𝑛

2),1 + 𝜉(𝜆𝑚
2 + 𝜇𝑛

2)-,     𝐿12 = 𝐿13 = 𝐿22 = 𝐿23 = 𝐿33 = 0. (21) 

Thus, we get the buckling equation by setting the determinant of the matrix ,𝐶- − 𝛽,𝐿- equal to 

zero. Solving this equation, we shall find that the assumed buckling of the SLGS is possible only 

for definite values of 𝛽0. The smallest of these values determines the desired critical value. 

If the forces 𝑆1 and 𝑆2 are not constants, the problem becomes more involved, since Eq. (19) 

has in this case variable coefficients, but the general conclusion remains the same. Let, for 
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example (Timoshenko and Gere 1961, Zenkour 2001) 

 𝑆1 = −𝛽0 .1 − 𝑐
𝑦

𝑏
/,     𝑆2 = 0, (22) 

where 𝑐 is a buckling factor. Equation (20) is still the same while the element 𝐿11 only in Eq. 

(21) becomes 

 𝐿11 = 𝜆𝑚
2 (1 − 1

2
 𝑐),1 + 𝜉(𝜆𝑚

2 + 𝜇𝑛
2)-. (23) 

By changing the buckling factor 𝑐, we can obtain various particular cases. For example, 𝑐 = 0 

corresponds to the case of a uniformly distributed compressive force (𝑆1 = −𝛽0, 𝑆2 = 0), and for 

𝑐 = 2 we obtain the case of pure bending. All other values give a combination of bending and 

compression (𝑐 < 2) or tension (𝑐 > 2). 

 

 

4. Numerical results and discussions 
 

It is to be noted that, we get the buckling equation of the SLGSs using local theory of sheets by 

setting 𝜉 = 0 in Eq. (19). Correspondingly, the critical buckling loads of the local graphene are 

obtained. The buckling loads for the present SLGSs are obtained with and without the inclusion of 

nonlocal parameter 𝜉. In what follows we will use the following dimensionless variables 

 𝛽 =
𝑎2

𝐷
𝛽0,     𝜅1 =

𝑎4𝐾1

𝐷
,     𝜅2 =

𝑎2𝐾2

𝐷
,     𝑐𝑡̅ =

𝑎4𝑐𝑡

103𝐷
,     𝜂 = √

𝜉

𝑎
, (24) 

where 𝛽  is the dimensionless buckling load, 𝜅1  and 𝜅2  are the dimensionless foundation 

parameters, and 𝑐𝑡̅ is the dimensionless viscous damping coefficient, and 𝜂 is the dimensionless 

nonlocal parameter. First, in order to show the efficiency and accuracy of the present numerical 

analysis, the current results are compared with some simpler ones. After that, some applications 

are added for considering the effects of different parameters on the buckling behavior of the SLGS. 

 
4.1 Validation 
 

To the best of the author's knowledge no published literature is available for comparison the 

buckling of a SLGS embedded in visco-Pasternak’s medium. In this article, we restrict to 

investigate the effects of some parameters like nonlocal parameter, aspect ratio, Winkler-

Pasternak’s foundation, damping coefficient, and mode numbers on the buckling analysis of the 

SLGSs. However, the present results can be validated by the other published literatures in the 

buckling analysis of the SLGSs just embedded in an elastic medium (Samaei, Abbasion et al. 

2011, Golmakani and Rezatalab 2015) or without any elastic foundations (Pradhan and Murmu 

2009, Ansari and Sahmani 2003, Hosseini-Hashemi, Kermajani et al. 2015). In this regard, the 

simplified result of this paper for a SLGS embedded in Pasternak medium is compared with the 

work of Samaei, Abbasion et al. (2011). Neglecting the viscus damping coefficient and simplifying 

the expressions tends to the same results as those in Samaei, Abbasion et al. (2011). In fact, the 

plots presented in Samaei, Abbasion et al. (2011) are considered as special cases when compared 

with the present results. 

In the first step of validation, the present results for the uniform nonlocal biaxial buckling load 

𝛽0 (nN) of an isotropic square graphene sheet are compared with those of molecular dynamic  

316



 

 

 

 

 

 

Buckling of a single-layered graphene sheet embedded in visco-Pasternak’s medium... 

Table 1 Comparison of critical biaxial buckling load 𝛽0 of nonlocal square SLGSs with those of MD 

(Ansari and Sahmani, 2013) and of DQM (Golmakani and Rezatalab 2015) 

𝑎 (nm) 
MD (Ansari and 

Sahmani 2013) 

DQM (Golmakani 

and Rezatalab 2015) 
 

Present 

𝑘 =
5

6
 𝑘 =

3

4
 𝑘 =

𝜋2

12
 𝑘 = 1 

4.990 1.0837 1.0749  1.07103 1.06849 1.07072 1.07485 

8.080 0.6536 0.6523  0.65143 0.65083 0.65136 0.65232 

10.77 0.4331 0.4356  0.43529 0.43506 0.43526 0.43562 

14.65 0.2609 0.2645  0.26436 0.26429 0.26435 0.26447 

18.51 0.1714 0.1751  0.17509 0.17506 0.17509 0.17514 

22.35 0.1191 0.1239  0.12383 0.12381 0.12383 0.12385 

26.22 0.0889 0.0917  0.09167 0.09166 0.09167 0.09168 

30.04 0.0691 0.0707  0.07068 0.07068 0.07068 0.07069 

33.85 0.0554 0.0561  0.05613 0.05613 0.05613 0.05613 

37.81 0.0449 0.0453  0.04526 0.04526 0.04526 0.04527 

41.78 0.0372 0.0372  0.03724 0.03724 0.03724 0.03724 

45.66 0.0315 0.0313  0.03128 0.03128 0.03128 0.03128 

 

 

(MD) simulations as reported by Ansari and Sahmani (2013) and with those of differential 

quadrature method (DQM) as reported by Golmakani and Rezatalab (2015) in Table 1. It is notable 

that the material properties of SLGS are taken as 𝐸 = 1 TPa and 𝜈 = 0.16. Also, the thickness 

and the nonlocal effect are fixed as ℎ = 0.34 nm and 𝜉 = 1.81 nm2. The present theory needs a 

value of the shear correction factor 𝑘. Four commonly used values of the shear correction factor. 

They are in good agreement with the results of other investigators. The present theory provides 

more reliable results in the case of 𝑘 = 1 and 𝑘 = 5/6. As indicated in Table 1, it is obvious that 

𝛽0 decreases as the dimension of the SLGS increases. In addition, the present results are in good 

agreement with those of the reported solutions, especially with those of DQM reported by 

Golmakani and Rezatalab (2015). 

For the sake of comparison, we will discuss the effect of nonlocal parameter. For this purpose, 

the buckling load ratio is defined as 𝛽𝑁𝐿/ 𝛽𝐿 where 𝛽𝑁𝐿 represents the buckling load calculated 

using nonlocal theory and 𝛽𝐿 represents the buckling load calculated using local theory. In Tables 

1 and 2, we are setting 𝜅1 = 𝜅2 = 𝑐𝑡̅ = 0. The values of Young’s modulus 𝐸 = 30 × 106 Pa and 

Poisson’s ratio 𝜈 = 0.3 are used to obtain the numerical values. It is found that, the value of 

𝑘 = 5/6 is the appropriate one for the shear correction factor. 

In the second step of validation, Table 2 represents a comparison of the critical buckling load 

ratios obtained by the current analytical solution (𝛼 = 1) and the DQM solutions of Pradhan and 

Murmu (2009) for a square SLGS with various side lengths and nonlocal parameters (𝑎/ℎ = 10). 

The results presented by Hosseini-Hashemi, Kermajani et al. (2015) using higher-order shear 

deformation theory (HSDT) are also used. An excellent agreement can be found between the 

present results and the corresponding ones. It is also observed that the present analytical results are 

the same as those presented by Hosseini-Hashemi, Kermajani et al. (2015) using HSDT. They are 

slightly lower than those of DQM (Pradhan and Murmu 2009) for most cases. The difference 

between the present analytical solution and DQM increases with an increase in the value of side 

length or nonlocal parameter. The dimensionless critical buckling load 𝛽 (nN) is also presented  
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Table 2 Comparison of dimensionless critical buckling load 𝛽 and critical buckling load ratio 𝛽NL/𝛽L of 

nonlocal square SLGSs (ℎ/𝑎 = 0.1) 

𝑎 √𝜉 𝛽  

𝛽NL/𝛽L 

Present 
Pradhan and 

Murmu (2009) 

Hosseini-Hashemi, Kermajani 

et al. (2015) 

5 

0.5 

1.0 

1.5 

2.0 

15.6051 

10.4413 

6.7298 

4.4935 

 

0.8352 

0.5588 

0.3602 

0.2405 

0.835 

0.560 

0.361 

0.242 

0.835 

0.559 

0.360 

0.241 

10 

0.5 

1.0 

1.5 

2.0 

17.8067 

15.6051 

12.9388 

10.4413 

 

0.9530 

0.8351 

0.6925 

0.5588 

0.954 

0.836 

0.693 

0.560 

0.953 

0.835 

0.692 

0.559 

25 

0.5 

1.0 

1.5 

2.0 

18.5390 

18.1133 

17.4457 

16.5896 

 

0.9922 

0.9694 

0.9337 

0.8878 

0.993 

0.970 

0.935 

0.889 

0.992 

0.969 

0.931 

0.888 

 
Table 3 Critical buckling load 𝛽 and critical buckling load ratio 𝛽NL/𝛽L of nonlocal rectangular SLGSs for 

various non-dimensional nonlocal parameter 𝜂 = √𝜉/𝑎 

𝑎/𝑏 ℎ/𝑎 𝜂  
𝛽 (𝛽NL/𝛽L) 

Present Hosseini-Hashemi, Kermajani et al. (2015) 

1.0 

0.10 

0.0 

0.1 

0.2 

0.3 

0.4 

 

18.6854 (1.000) 

15.6051 (0.835) 

10.4413 (0.559) 

6.7298 (0.360) 

4.4935 (0.241) 

18.6861 (1.000) 

15.6057 (0.835) 

10.4408 (0.559) 

6.7200 (0.360) 

4.4937 (0.241) 

0.01 

0.0 

0.1 

0.2 

0.3 

0.4 

 

19.7281 (1.000) 

16.4759 (0.835) 

11.0239 (0.558) 

7.1053 (0.360) 

4.7443 (0.241) 

19.7281 (1.000) 

16.4916 (0.835) 

11.0136 (0.559) 

7.1030 (0.360) 

4.7506 (0.241) 

0.5 

0.10 

0.0 

0.1 

0.2 

0.3 

0.4 

 

11.9169 (1.000) 

10.6082 (0.890) 

7.9793 (0.670) 

5.6470 (0.474) 

4.1478 (0.336) 

11.9171 (1.000) 

10.6084 (0.890) 

7.9794 (0.670) 

6.7289 (0.576) 
4.0072 (0.336) 

0.01 

0.0 

0.1 

0.2 

0.3 

0.4 

 

12.3327 (1.000) 

10.9782 (0.890) 

8.2577 (0.670) 

5.8439 (0.474) 

4.1478 (0.336) 

12.3327 (1.000) 

10.9782 (0.890) 

8.2577 (0.670) 

7.1052 (0.576) 
4.1478 (0.336) 

 

 

in Table 2. It is observed that 𝛽 increases as the side length increases and the nonlocal parameter 

√𝜉 decreases. 

In the third step of validation, Table 3 represents a comparison of the dimensionless critical 
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buckling load 𝛽 (nN) and critical buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 obtained by the current analytical 

solution (𝛼 = 1) and the Lévy-type solution of Hosseini-Hashemi, Kermajani et al. (2015) for a 

rectangular SLGS. The effects of various values of dimensionless nonlocal parameter (𝜂 = 0.0, 

0.1, 0.2, 0.3, 0.4), aspect ratios (𝑎/𝑏 = 0.5, 1.0) and thickness-to-length ratios (ℎ/𝑎 = 0.01, 0.10) 

on the dimensionless buckling loads and buckling load ratios are investigated. The present results 

are the same as those presented in Hosseini-Hashemi, Kermajani et al. (2015). In fact, some typo 

errors are reported in Hosseini-Hashemi, Kermajani et al. (2015) for the case of 𝜂 = 0.3 and 

𝑎/𝑏 = 0.5. The corrected buckling load and buckling load ratio are given in this table. 

 

4.2 Applications 
 

After verifying the merit and high accuracy of the present analytical solution, the following 

new results for the buckling analysis of SLGSs can be used as a benchmark for future research 

studies. In Tables 4 and Figs. 2-9 based on the present analytical closed-form solution, buckling 

loads have been performed. The results presented here (except otherwise stated) for 𝜅1 = 10 nN, 

𝜅2 = 5 nN, 𝜉 = 0.1 nm2, and 𝑐𝑡̅ = 0.1 nN. The suitable values of other parameters are fixed as 

ℎ = 0.34 nm and 𝑏 = 10 nm. Also, the complex angular frequency 𝜔 is fixed as 𝜔 = 0.5 +
0.1 i . Different values are given to visco-Pasternak’s parameters 𝑐𝑡̅ , 𝜅1 , and 𝜅2 , and the 

dimensionless nonlocal parameter 𝜂 as well as the buckling factor c appeared in Eq. (22). 

Benchmark results are presented in Table 3 for future comparisons with other investigators. 

Additional graphical results are plotted in Figs. 2-9. The values of Young’s modulus 𝐸 = 1 GPa 
and Poisson’s ratio 𝜈 = 0.3 are used to obtain the numerical buckling loads. 

Table 4 presents critical buckling load 𝛽 and critical buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 of nonlocal 

rectangular SLGSs embedded in viscoelastic medium for various dimensionless nonlocal 

parameter 𝜂. Different values of the viscoelastic medium 𝜅1, 𝜅2 and 𝑐𝑡̅  are taken under 

consideration. The critical buckling loads of the SLGS are very sensitive to the inclusion of the 

viscoelastic medium. The critical buckling loads are increasing with the increase of the parameters 

 

 
Table 4 Dimensionless critical buckling load 𝛽  and critical buckling load ratio 𝛽NL/𝛽L  of nonlocal 

rectangular SLGSs for various non-dimensional nonlocal parameter 𝜂 = √𝜉/𝑎 

𝑐𝑡̅ 𝜅1 𝜅2  
𝛽 (𝛽NL/𝛽L) 

𝜂 = 0 𝜂 = 0.1 𝜂 = 0.2 𝜂 = 0.3 𝜂 = 0.4 

0.0 0 0  12.1392 (1.000) 10.8060 (0.890) 8.1281 (0.670) 5.7522 (0.474) 4.0819 (0.336) 

0.1 10 

0 

2 

5 

10 

 

17.0026 (1.000) 

19.0026 (1.000) 

22.0026 (1.000) 

27.0026 (1.000) 

15.6694 (0.922) 

17.6694 (0.930) 

20.6694 (0.939) 

25.6694 (0.951) 

12.9915 (0.765) 

14.9915 (0.789) 

17.9915 (0.818) 

22.9915 (0.852) 

10.6156 (0.625) 

12.6157 (0.665) 

15.6157 (0.710) 

20.6157 (0.764) 

8.9453 (0.527) 

10.9453 (0.577) 

13.9453 (0.634) 

18.9453 (0.702) 

0.2 10 

0 

2 

5 

10 

 

21.0554 (1.000) 

23.0554 (1.000) 

26.0554 (1.000) 

31.0554 (1.000) 

19.7223 (0.937) 

21.7223 (0.942) 

24.7223 (0.949) 

29.7223 (0.957) 

17.0444 (0.811) 

19.0444 (0.827) 

22.0444 (0.847) 

27.0444 (0.871) 

14.6685 (0.698) 

16.6685 (0.724) 

19.6685 (0.756) 

24.6685 (0.795) 

12.9981 (0.620) 

14.9981 (0.652) 

17.9981 (0.692) 

22.9981 (0.741) 

0.5 10 

0 

2 

5 

10 

 

33.2140 (1.000) 

35.2140 (1.000) 

38.2140 (1.000) 

43.2140 (1.000) 

31.8808 (0.960) 

33.8808 (0.965) 

36.8808 (0.966) 

41.8808 (0.969) 

29.2029 (0.881) 

31.2029 (0.888) 

34.2029 (0.896) 

39.2029 (0.908) 

26.8271 (0.811) 

28.8271 (0.821) 

31.8271 (0.835) 

36.8271 (0.853) 

25.1567 (0.761) 

27.1567 (0.774) 

30.1567 (0.791) 

35.1567 (0.815) 
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Fig. 2 Critical buckling load 𝛽 and critical buckling load ratio 𝛽NL/𝛽L vs the length 𝑎 of the SLGS for 

different nonlocal parameters 𝜂 

 

  

Fig. 3 Critical buckling load 𝛽 and critical buckling load ratio 𝛽NL/𝛽L vs the length 𝑎 of the SLGS for 

different damping coefficients 𝑐𝑡̅ 

 

 

𝜅1, 𝜅2 and 𝑐𝑡̅. In other hand, the buckling loads are decreasing as the dimensionless nonlocal 

parameter increases. In fact, the largest critical buckling load occurs for higher values of 𝜂 and 

without the inclusion of supported viscoelastic medium. 

Fig. 2 shows the dimensionless critical buckling load 𝛽 and critical buckling load ratio 
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Fig. 4 Critical buckling load 𝛽 and critical buckling load ratio 𝛽NL/𝛽L vs the length 𝑎 of the SLGS for 

different Pasternak’s parameters 𝜅2 

 

 

 𝛽𝑁𝐿/𝛽𝐿 versus the variation of the length a of the rectangular SLGS at different nonlocal 

parameters 𝜂. It is observed that local solution for buckling load is greater than the nonlocal ones. 

This is charged to the effect of small length scale. In addition, increasing the nonlocal parameter 

decreases the buckling load and the buckling load ratio. This intimates that increasing the nonlocal 

parameter leads to a decline in stiffness of the SLGS because with decrease of length, the effect of 

nonlocal parameter reduces. 

Fig. 3 shows the dimensionless critical buckling load 𝛽 and critical buckling load ratio 

𝛽𝑁𝐿/𝛽𝐿 versus the variation of the length 𝑎 of the rectangular SLGS for different damping 

coefficients 𝑐𝑡̅. It is observed that nonlocal solutions for buckling load and buckling load ratio 

with the inclusion of damping coefficients are greater than those for SLGSs embedded in elastic 

medium only. Increasing the damping coefficient 𝑐𝑡̅ increases the buckling load and the buckling 

load ratio. With increase of length the buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 directly decreases. However, 

the critical buckling load 𝛽 is increasing as 𝑎 increases for 𝑐𝑡̅ = 0 and 0.2. In the case of 

𝑐𝑡̅ > 0.2, 𝛽 is no longer decreasing and has its minimum for different values of a. In these cases, 

the maximum buckling load occurs for the smallest and greatest values of the length 𝑎. 

Fig. 4 presents the critical buckling load 𝛽 and critical buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 versus the 

variation of the length 𝑎 of the rectangular SLGS for different Pasternak’s parameters 𝜅2. Once 

again, the buckling load and buckling load ratio are increasing with the increase of the Pasternak’s 

parameter. With increase of length the critical buckling load 𝛽 increases while the buckling load 

ratio 𝛽𝑁𝐿/𝛽𝐿 decreases. Fig. 5 shows the dimensionless buckling load 𝛽 and buckling load ratio 

𝛽𝑁𝐿/𝛽𝐿 versus the variation of the length a of the rectangular SLGS for different mode numbers 

𝑚 and 𝑛. It is interested to note that the critical buckling load 𝛽 (𝑚 = 𝑛 = 1) is the smallest 

one while the critical buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 is the greatest one. 

As the mode numbers increase the buckling load 𝛽 increases and the buckling load ratio 

𝛽𝑁𝐿/𝛽𝐿 decreases. In additions, as the length of the SLGS increases the buckling load 𝛽  
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Fig. 5 Buckling load 𝛽 and buckling load ratio 𝛽NL/𝛽L vs the length 𝑎 of the SLGS for different mode 

numbers 𝑚 and 𝑛 

 

  
Fig. 6 Nonuniform critical buckling load 𝛽 vs the nonlocal parameter 𝜂 of the SLGS for different 

values of 𝑐 

 

 

increases and the buckling load ratio 𝛽𝑁𝐿/𝛽𝐿 decreases. 

The effect of buckling factor 𝑐 on the dimensionless buckling load is investigated in Figs. 6-9. 

Values of 𝑐 < 2 represent compression buckling loads while values of 𝑐 > 2 represent tension 

buckling loads. The results presented here for ℎ = 0.34 nm, 𝑛 = 1 and 𝑎 = 10ℎ. Two values 

for the width 𝑏 = 5 nm and 𝑏 = 20 nm are considered. The dimensionless buckling loads are 
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Fig. 7 Nonuniform critical buckling load 𝛽 vs the damping coefficient 𝑐𝑡̅ of the SLGS for different 

values of 𝑐 

 

  
Fig. 8 Nonuniform critical buckling load 𝛽 vs the Pasternak’s parameter 𝜅2 of the SLGS for different 

values of 𝑐 

 

 

plotted versus the variation of the nonlocal parameter 𝜂, the visco-Pasternak’s parameters 𝑐𝑡̅ and 

𝜅2, and the mode number m. It is interesting to show that there is a symmetry between the 

compression buckling loads (𝑐 = 0, 1) and the corresponding tension buckling loads (𝑐 = 4, 3). 

Also the magnitudes of the dimensionless buckling loads of the SLGS with 𝑏 = 5 nm are greater 

than the corresponding ones with 𝑏 = 20 nm. In addition, as c increases the compression  
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Fig. 9 Nonuniform buckling load 𝛽 vs the mode number 𝑚 of the SLGS for different values of 𝑐 

 

 

buckling load increases while tension buckling load decreases. The compression buckling loads 

are decreasing (the tension buckling loads are increasing) with the increase of the nonlocal 

parameter 𝜂, the visco-Pasternak’s parameters 𝑐𝑡̅ and 𝜅2 as shown in Figs. 6-8. However, Fig. 9 

shows that absolute value of 𝛽 is no longer increasing with the variation of the mode number 𝑚 

and has its maximum at 𝑚 = 4. 

 

 

5. Conclusions 
 

The effect of length scale on uniform and nonuniform buckling behaviors of a single-layer 

graphene sheet embedded in a visco-Pasternak’s elastic medium is investigated using a nonlocal 

first-order shear deformation plate theory. An explicit solution is extracted for the buckling loads 

of graphene sheet and the influence of the nonlocal parameter and aspect ratio on dimensionless 

buckling loads is presented. It is found that the nonlocal assumptions exhibit smaller buckling 

loads in comparison to the local theory. However, the inclusion of the viscoelastic medium to the 

graphene sheets exhibits larger buckling loads in comparison to sheets without any viscoelastic 

medium. The buckling loads are very sensitive to the variation and inclusion of different 

parameters. It is also concluded that the critical nonuniform buckling load occurs not only at the 

first mode numbers but also at high values of one of the mode number. 
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