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Abstract.  In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams 
embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without 
using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation 
effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free 
boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic 
foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam 
in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are 
supposed to vary gradually along the thickness and are estimated through the power-law and Mori–Tanaka 
models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. 
Nonlocal equations of motion are derived through Hamilton’s principle and they are solved applying 
analytical solution. Comparison between results of the present work and those available in literature shows 
the accuracy of this method. The obtained results are presented for the buckling analysis of the FG 
nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness 
ratio in detail. 
 

Keywords:  buckling; third-order shear deformation beam theory; embedded functionally graded 

nanobeam; nonlocal elasticity theory 

 
 
1. Introduction 
 

Developments in materials engineering led to microscopically inhomogeneous spatial 

composite materials named Functionally graded materials (FGMs) which provide huge potential 

applications for various systems and devices, such as aerospace, aircraft, automobile and defense 

structures and most recently the electronic devices. According to the fact that FG materials have 

been placed in the category of composite materials, the volume fractions of two or more material 

constituents such as a pair of ceramic–metal are supposed to change smoothly and continuously 

throughout the gradient directions. The FGM materials are made to take advantage of desirable 

features of its constituent phases, for example, in a thermal protection system, the ceramic 
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constituents are capable to withstand extreme temperature environments due to their better thermal 

resistance characteristics, while the metal constituents provide stronger mechanical performance 

and diminishes the possibility of catastrophic fracture (Kettaf et al. 2013, Kocaturk and Akbas 

2013). Hence, presenting novel mechanical properties, FGMs have gained its applicability in 

several engineering fields, such as biomedical engineering, nuclear engineering and mechanical 

engineering (Bouremana et al. 2013).  

In addition, fast growing progress in the application of structural elements such as beams and 

plates with micro or nanolength scale in micro/nano electro-mechanical systems (MEMS/ NEMS), 

due to their outstanding chemical, mechanical, and electrical properties, led to a provocation in 

modelling of micro/nano scale structures. In such applications, it is observed that the size effect 

has a major role on dynamic behavior of material. After the invention of carbon nanotubes (CNTs) 

by Iijima (1991), nanoscale engineering materials have exposed to considerable attention in 

modern science and technology. These structures possess extraordinary mechanical, thermal, 

electrical and chemical performances that are superior to the conventional structural materials. 

Therefore nanostructures attract great interest by researchers based on molecular dynamics and 

continuum mechanics. The problem in using the classical theory is that the classical continuum 

mechanics theory does not take into account the size effects in micro/nano scale structures. The 

classical continuum mechanics over predicts the responses of micro/nano structures. Another way 

to capture the size effects is to rely on molecular dynamic simulations (MD) which is considered 

as a powerful and accurate implement to study of structural components at nanoscale. But even the 

molecular dynamic simulation at nano scale is computationally exorbitant for modeling the 

nanostructures with large numbers of atoms. So a conventional form of continuum mechanics that 

can capture the small scale effect is required. Eringen’s nonlocal elasticity theory is the most 

commonly used continuum mechanics theory that includes small scale effects with good accuracy 

to model micro/nano scale devices and systems. The nonlocal elasticity theory assumes that the 

stress state at a reference point is a function of the strain at all neighbor points of the body. Hence, 

this theory could take into consideration the effects of small scales. For proper design of 

nanostructures, it is very important to take all essential characteristics of their mechanical 

behaviors at this submicron size. To achieve this goal, based on the nonlocal constitutive relation 

of Eringen, a number of studies have been conducted attempting to develop nonlocal beam models 

for predicting the mechanical responses of nanobeams. The potential of application of nonlocal 

Euler–Bernoulli beam theory to materials in micro and nano scale proposed by Peddieson et al 

(2003) as the first researchers to propose nonlocal elasticity theory to nano structures. Then, the 

nonlocal elasticity theory gained considerable attention among the nanotechnology society and 

utilization of this theory extended in various mechanical analyses. Reddy (2007) formulated 

various available beam theories, including the Euler–Bernoulli, Timoshenko, Reddy, and Levinson 

beam theories through nonlocal differential relations of Eringen. In other scientific work, Wang 

and Liew (2007) carried out the static analysis of micro and nano scale structures based on 

nonlocal continuum mechanics using Euler–Bernoulli and Timoshenko beam theory. Aydogdu 

(2009) presented a general nonlocal beam model for analysis bending, buckling, and vibration of 

nanobeams using different beam theories. Pradhan and Murmu (2010) investigated the flapwise 

bending–vibration of rotating nanocantilevers by using Differential quadrature method (DQM). 

They noticed that size effects have a main role in the vibration behavior of rotating nanostructures. 

Civalek et al. (2010) proposed formulation of the governing equations of nonlocal Euler–Bernoulli 

beams to investigate bending of cantilever microtubules via the differential quadrature method. 

Thai (2012) suggested a nonlocal higher order beam theory to study mechanical responses of 
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nanobeams. Simsek (2014) proposed a non-classical beam model based on the Eringen’s nonlocal 

elasticity theory for nonlinear vibration of nanobeams with various boundary conditions. Size-

dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko 

nanobeams based upon the nonlocal elasticity theory is studied by Ansari et al. (2015). 

Since FG nanostructures are extensively used in MEMS and NEMS due to the rapid 

developments in nanotechnology. To applying accurately these kinds of novel materials in 

micro/nano electromechanical systems (MEMS/NEMS), their dynamic behaviors should be 

examined. Recently, Eltaher et al. (2012, 2013a) presented a finite element analysis for free 

vibration of FG nanobeams using nonlocal EBT. They also exploited the static and stability 

responses of FG nanobeams based on nonlocal continuum theory (Eltaher et al. 2013b). Thickness 

stretching effect on static and stability behavior of functionally graded material (FGM) nanoscale 

beams is studied by Mahmoud et al. (2015). Also, Ebrahimi and Salari (2015a, b, c) presented a 

semi-analytical method for vibrational and buckling analysis of FG nanobeams considering the 

physical neutral axis position. Niknam and Aghdam (2015) presented a closed form solution for 

both natural frequency and buckling load of nonlocal FG beams resting on nonlinear elastic 

foundation. Ebrahimi and Barati (2016 a-g) presented static and dynamic modeling of a thermo–

piezo-electrically actuated nanosize beam subjected to a magnetic field. Also, Ebrahimi and Barati 

(2016h) investigated small scale effects on hygro-thermo-mechanical vibration of temperature 

dependent nonhomogeneous nanoscale beams. Ebrahimi et al. (2016) presented a nonlocal strain 

gradient theory for wave propagation analysis in temperature-dependent FG nanoplates.  

Therefore, a survey in literature reveals that buckling analysis of FG nanobeams, especially for 

those on elastic foundations are very limited. Various kinds of elastic foundation models for the 

sake of describing the interactions of the beam and foundation have proposed via scientists 

(Tebboune et al. 2015). Winkler or one-parameter elastic foundation is known as the simplest 

model which regards the foundation as a series of separated linear elastic springs without coupling 

effects between each other. The defect of Winkler’s formulation is the behavioral inconsistency 

associated to the discontinuous deflections on the interacted surface area of the beam 

(Khoshnevisrad et al. 2014). Pasternak (1954) later introduced an incompressible vertical element 

as a shear layer which is physically realistic representation of the elastic medium and can take into 

account the transverse shear stresses due to interaction of shear deformation of the surrounding 

elastic medium. Thus, a more realistic and generalized representation of the elastic foundation is 

expected through a two-parameter foundation model. 

Also, it is understood that most of the previous studies on mechanical analysis of FG 

nanobeams have been carried out based on Euler-Bernoulli or classical beam theory and 

Timoshenko beam theoy. It should be noted that the classical theories fail to consider the 

influences of shear deformation and thickness stretching (Neves et al. 2012). Classical theory is 

only applicable for slender beams and should not be applied for thick beams, and also it suppose 

that the transverse perpendicular to the neutral surface stays normal during and after bending, 

which indicates that the transversal shear strain is equal to zero Hence, the buckling loads and 

natural frequencies of thick beams are overestimated in which shear deformation effects are 

prominent. Timoshenko Beam Theory can enumerate the influences of shear deformations for thick 

beams with presumption of a constant shear strain state in the direction of beam thickness. So, as a 

disadvantage of this theory, a shear correction factor is required to properly demonstration of the 

deformation strain energy. To prevent using the shear correction factors, many higher-order shear 

deformation theories have been developed such as the third-order shear deformation theory 

proposed by Reddy (2007), the generalized beam theory proposed by Aydogdu (2009) and 
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sinusoidal shear deformation theory of Touratier (1991). Reddy's third order beam theory (RBT) 

can be used with supposing the higher order longitudinal displacement variations of beam along 

the thickness. By verifying zero transverse shear stresses at the upper and lower surfaces of the 

beam, this theory captures both the microstructural and shear deformation effects. Therefore, The 

Reddy beam theory is more exact and provides better representation of the physics of the problem, 

which does not need any shear correction factors. This theory relaxes the limitation on the warping 

of the cross sections and allows cubic variations in the longitudinal direction of the beam, so it can 

produce adequate accuracy when applying for beam analysis. 

Therefore, a few studies have been performed to investigate the mechanical responses of FG 

micro/nano beams by using higher shear deformation beam theories. Rahmani and Jandaghian 

(2015) presented Buckling analysis of functionally graded nanobeams based on a nonlocal third-

order shear deformation theory. Sahmani et al. (2014) investigated the free vibration response of 

third-order shear deformable nanobeams made of functionally graded materials (FGMs) around the 

postbuckling domain incorporating the effects of surface free energy Based on the modified couple 

stress theory (MCST), a unified higher order beam theory which contains various beam theories as 

special cases for buckling of a functionally graded (FG) microbeam embedded in elastic Pasternak 

medium is proposed by Simsek and Reddy (2013). Zhang et al. (2014) developed a size-dependent 

FG beam model resting on Winkler-Pasternak elastic foundation based on an improved third-order 

shear deformation theory and provided the analytical solutions for the bending, buckling and free 

vibration problems. Ebrahimi and Barati (2016i) proposed a nonlocal higher-order shear 

deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. 

By searching the literature, it is found that a work analyzing the buckling of embedded Mori-

Tanaka based FG nanobeams using the third order shear deformation beam theory hasn’t been yet 

published. 

In the present study the non-classical beam model within the framework of third order shear 

deformation beam theory is developed for analysis of buckling of FG nanobeam embedded on 

elastic foundations. Material properties of FG nanobeam are assumed to change continuously 

along the thickness according to two kinds of micromechanics models, namely, power-law model 

and Mori–Tanaka model. By using the Hamilton’s principle the governing equations of motion are 

derived and Navier type solution method is used to solve the equations. The obtained results based 

on third order shear deformation beam theory are compared with those predicted by the previously 

published works to verify the accuracy of the present solution. Numerical results are presented to 

show the effects of the gradient index, nonlocality and foundation parameters on the buckling 

behavior of FG nanobeams. 

 

 

2. Theory and formulation 
 

2.1 Power-law (PL) and Mori-Tanaka (MT) FGM beam models 
 
One of the most favorable models for FGMs is the power-law model, in which material 

properties of FGMs are supposed to change according to a power law about spatial coordinates.  

The coordinate system for FG nano beam is shown in Fig. 1. The FG nanobeam is assumed to be 

combination of ceramic and metal and effective material properties (Pf) of the FG beam such as 

Young’s modulus Ef is supposed to change continuously in the direction of  z-axis (thickness 

direction) according to an power function of the volume fractions of the material constituents. So,  
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Fig. 1 Geometry and coordinates of functionally graded nanobeam embedded on elastic foundation 

 

 

the effective material properties, Pf can be stated as 

             f c c m mV VP P P 
 

(1) 

where subscripts m and c denote metal and ceramic, respectively and the volume fraction of the 

ceramic is associated to that of the metal in the following relation 

       1c mV V   (2a) 

The volume fraction of the ceramic constituent of the beam is assumed to be given by 

        

1
( )

2

P

c

z
V

h
   (2b) 

Here p is the power-law exponent which determines the material distribution through the 

thickness of the beam. Therefore, from Eqs. (1)-(2), the effective material properties of the FG 

nanobeam can be expressed as follows 

         

 
1

( )
2

p

c m m
E E E

z

h
Ez    

 
 
 

 (3a)                                                                            

         

 
1

( )
2

p

c m m

z
z

h
      

 
 
 

 (3b)                                                                            

Additionally, in this study, Mori-Tanaka homogenization technique is also employed to model 

the effective material properties of the FG nanobeam. According to Mori-Tanaka homogenization 

technique the local effective material properties of the FG nanobeam such as effective local bulk 

modulus Ke and shear modulus μe 
can be calculated (Simsek and Reddy 2013) 

   
1 ( ) / ( 4 / 3)

e m c

c m m c m m m

K K V

K K V K K K 




   
 (4a)                                                                            

233



 

 

 

 

 

 

Farzad Ebrahimi and Mohammad Reza Barati 

        
1 ( ) / [( (9 8 ) / (6( 2 ))]
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Therefore from Eq. (4), the effective Young’s modulus (E), Poisson’s ratio (v) based on Mori-

Tanaka scheme can be expressed by 
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The shear modulus G(z) of FG nanobeam with respect to both classical rule of mixture and 

Mori–Tanaka homogenization is defined as 

         

( )
( )

2(1 ( ))
zG

E z

z



 (6) 

The material composition of FG nanobeam at the upper surface (z=+h/2) is supposed to be the 

pure ceramic and it changes continuously to the opposite side surface (z=-h/2) which is pure metal. 

 

2.2 Kinematic relations 
 
Based on the third order shear deformation (Reddy) beam theory, the displacement field at any 

point of the beam can be written as 

              
    3, ( ) ( )xu x z u x z x

w

x
z  





   (7) 

                ( , ) ( )zu x z w x  (8) 

where 
2

4

3h
   and u and w are the longitudinal and the transverse displacements, θ is the rotation 

of the cross section at each point of the neutral axis. Nonzero strains of the Reddy beam model are 

expressed as follows 

             xx xx x
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(9) 
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And 
2

4

h
  . 

By using the Hamilton’s principle, in which the motion of an elastic structure in the time 

interval t1<t<t2 is so that the integral with respect to time of the total potential energy is extremum 

              0
( ) 0

t

U V dt    
(13) 

Here U is strain energy, and  V is work done by external forces. The virtual strain energy can be 

calculated as 

             
( )ij ij xx xx xz xz

v v
U dV dV              (14) 

Substituting Eqs. (7)-(10) into Eq. (13) yields 

              

(0) (1) (3)
x

(0) (
x xx x

)

0
x

2( )
L

xz xzU N M P Q R dx             (15) 

In which the variables introduced in arriving at the last expression are defined as follows 
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The first variation of the work done by applied forces can be written in the form 
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Where M=M−αP, Q=Q−βR and N is the applied axial compressive load and q(x) and f(x) are 

the transverse and axial distributed loads and kw 
and kp are linear and shear coefficient of elastic 

foundation. 

By Substituting Eqs. (15) and (17) into Eq. (13) and setting the coefficients of δu, δw and δθ to 

zero, the following Euler–Lagrange equation can be obtained 
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2.3 The nonlocal elasticity model for FG nanobeam 
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According to Eringen nonlocal elasticity model (Eringen and Edelen 1972), the stress state at a 

point inside a body is regarded to be function of strains of all points in the neighbor regions. For 

homogeneous elastic solids the nonlocal stress-tensor components ζij
 
at each point x in the solid 

can be defined as 

           

( ) ( , ) ( ) ( )ij ijx x x t x d x  


      (19) 

where tij (x′) are the components available in local stress tensor at point x which are associated to 

the strain tensor components εkl as 

                ij ijkl klt C   (20) 

The concept of Eq. (19) is that the nonlocal stress at any point is weighting average of local 

stress of all points in the near region that point, the size that is related to the nonlocal kernel 

),(  xx   . Also xx  is Euclidean distance and η is a constant as follows 

                     

0e a
l

   (21) 

which indicates the relation of a characteristic internal length, (for instance lattice parameter, C–C 

bond length and granular distance) and a characteristic external length, l (for instance crack length 

and wavelength) using a constant, e0, dependent on each material. The value of e0 is 

experimentally estimated by comparing the scattering curves of plane waves and atomistic 

dynamics. According to (Eringen and Edelen 1972) for a class of physically admissible kernel 

),(  xx  it is possible to represent the integral constitutive relations given by Eq. (19) in an 

equivalent differential form as 

                   0
2(1 ( ) ) kl kle a t    (22) 

where 2

 is the Laplacian operator. Thus, the scale length e0a considers the influences of small 

scale on the response of nano-structures. The magnitude of the small scale parameter relies on 

several parameters including mode shapes, boundary conditions, chirality and the essence of 

motion. The parameter e0=(π2−4)1/2/2π  0.39 was given by Eringen (1983). Also, Zhang et al. 

(2005) found the value of 0.82 nm for nonlocal parameter when they compared the vibrational 

results of simply supported single-walled carbon nanotubes with molecular dynamics simulations. 

The nonlocal parameter, μ, is experimentally obtained for various materials; for instance, a 

conservative estimate of μ<4 (nm)2

 for a single-walled carbon nanotube is proposed (Wang 2005). 

It is worth mentioning that this magnitude is dependent of size and chirality, because the properties 

of carbon nanotubes are extensively confirmed to be dependent of chirality. There is no serious 

study conducted to determining the value of small scale to simulate mechanical behavior of FG 

micro/nanobeams (Eltaher et al. 2012). Hence all researchers who worked on size-dependent 

mechanical behavior of functionally graded nanobeams on the basis the nonlocal elasticity method 

investigated the influence of small scale parameter on mechanical behavior of FG nanobeams by 

changing the value of the small scale parameter. So, for a material in the one-dimension case, the 

constitutive relations of nonlocal theory can be expressed as 
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where ζ and ε are the nonlocal stress and strain, respectively. E is the Young’s modulus, 

G(z)=E(z)/2(1+v(z)) is the shear modulus (where v is the poisson’s ratio). For a nonlocal FG beam, 

Eqs. (23) and (24) can be written as 
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where μ=(e0a)2. Integrating Eqs. (25) and (26) over the beam’s cross-section area, we obtain the 

force-strain and the moment-strain of the nonlocal Reddy FG beam theory can be obtained as 

follows 
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In which the cross-sectional rigidities are defined as follows 
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The explicit relation of the nonlocal normal force can be derived by substituting for the second 

derivative of N from Eq. (18a) into Eq. (27) as follows 
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2xx xx xx

u w f
N A K E

x x x x


 

   
   

   
 (34) 

Eliminating Q̂  from Eqs. (18b) and (18c), we obtain the following equation 

 

(35) 
2 2 2 2

2 2 2 2

ˆ

w p

M P w w
q N k w k

x x x x


   
     

   
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Also the explicit relation of the nonlocal bending moment can be derived by substituting for the 

second derivative of M from Eq. (18b) into Eq. (28) and using Eqs. (28) and (29) as follows 

  

2 2 2 2

2 2 2 2
ˆ ( ) ( )xx xx xx w p

u w P w w
M K I J q N k w k

x x x x x x x

 
  

      
         

      
 (36) 

where  

              xx xx xx, ,xx xx xx xx xxx xK B D F FE I J H        (37) 

By substituting for the second derivative of Q from Eq. (18c) into Eq. (30), and using Eqs. (30) 

and (31) the following expression for the nonlocal shear force is derived 

              )()(
3

3

3

3

3

3

x

w
k

x

w
k

x

q

x

P

x

w
N

x

w
AQ pwxz





























   (38) 

where 

           
* * *

xz xz

* , ,xz xzxz xz xz x xz zA A A AI I DD F        (39) 

Now we use M and Q from Eqs. (36) and (38) and the identity 

 

(40) 

The nonlocal governing equations of third order shear deformation FG nanobeam in terms of 

the displacement can be derived by substituting for N, M and Q from Eqs. (34), (36) and (38), 

respectively, into Eq. (18) as follows 

        

2 3 2

2 3

2

xx xx xx2 2
0

u
A K E

w f
f

x xx x





 


 
 








 (41) 

           

2 2

2

2 3

2 2 3
( ) 0xzxx xxxx

u w w
K I A

x x
J

x x x


 


     
     

     
  (42) 

            

2 4 2 4 2

2 4 2 4 2

2 3 3 4

2

2

2

xx xx xx3 3 4

( )

( ) 0

w px

w

z

p

w w q w
A N q

w w
k k

x x

w
k w k

N
x x x x x

u w
E J H

x xx x





 

     
     

     

  


 
 

 

 
  


  

  

(43) 

 

 

3. Solution procedure 
 

Here, on the basis the Navier method, an analytical solution of the governing equations for 

buckling of a simply supported FG nanobeam is presented. To satisfy governing equations of 

motion and the simply supported boundary condition, the displacement variables are adopted to be 

of the form 

2 2 3 3 3 4

2 2 3 3 3 4
( ) ( ( ))xx xx xx

P u w
P E F H

x x x x x x

 
   

     
    

     
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          1

( ) cos ( )n

n

n
u x U x

L





  (44) 

         1

( ) sin ( )n

n

n
w x W x

L





  (45) 

        1

( ) cos ( )n

n

n
x x

L


 






 

(46) 

where (Un, Wn, θn) are the unknown Fourier coefficients to be determined for each n value. 

Boundary conditions for simply supported beam are as Eq. (46) 

              
(0) 0 , ( ) 0

u
u L

x


 


  

          
(0) ( ) 0 , (0) ( ) 0w w L L

x x

  
   

 
 (47) 

Substituting Eqs. (44) - (46) into Eqs. (41)-(43) respectively, leads to Eqs.(48)-(50) 

          
xx

2

xx

2

xx

3( (( ) ) ( ) ) ( ) ) 0(nn n

n n n
U W

l l
A K

l
E

  
     (48) 

       

2 2 2 3( ( ) ) ( ( ) ( ) ) ( ( )

( )) 0

n xx n xxxzxx xx
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U J J
l l

I A

A

l l
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l

   
  



  



 



 (49) 
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1 (1 (1
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n xz z
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l l l
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n n n n n
k k

l l l l l
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W

l

N

   
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  



 





   

    





  

  

(50) 

By setting the determinant of the coefficient matrix of the above equations, the analytical 

solutions can be obtained from the following equations 

     

  0

n

n

n

U

K W



 
 


 
  

 

(51) 

where [K]
 
is stiffness matrix. By setting this polynomial to zero, we can find buckling loads. 
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Table 1 Material properties of FGM constituents. 

Properties Steel Alumina (Al2O3) 

E 210 (GPa) 390 (GPa) 

ν 0.3 0.3 

 
Table 2 Comparison of the nondimensional buckling load for a S-S FG nanobeam with various gradient 

indexes without elastic foundation (L/h=20)  

 
 µ=1 

 
 µ=2 

 

p 
EBT (Eltaher 

et al. 2013b) 

RBT 

(Rahmani and 

Jandaghian 2015) 

Present 
EBT(Eltaher 

et al. 2013b) 

RBT 

(Rahmani and 

Jandaghian 2015) 

Present 

0 8.9843 8.9258 8.925759 8.2431 8.1900 8.190046 

0.1 10.1431 9.7778 9.777865 9.2356 8.9719 8.971916 

0.2 10.2614 10.3898 10.389845 9.7741 9.5334 9.533453 

0.5 11.6760 11.4944 11.494448 10.6585 10.5470 10.547009 

1 12.4581 12.3709 12.370918 12.0652 11.3512 11.351234 

2 13.1254 13.1748 13.174885 12.4757 12.0889 12.088934 

5 13.5711 14.2363 14.236343 13.2140 13.0629 13.062900 

  µ=3   µ=4  

p 
EBT(Eltaher et 

al. 2013b) 

RBT 

(Rahmani and 

Jandaghian 2015) 

Present 
EBT(Eltaher 

et al. 2013b) 

RBT 

(Rahmani and 

Jandaghian 2015) 

Present 

0 7.6149 7.5663 7.566381 7.0765 7.0309 7.030978 

0.1 8.5786 8.2887 8.288712 8.0416 7.7021 7.702196 

0.2 9.3545 8.8074 8.807489 8.3176 8.1842 8.184264 

0.5 9.8093 9.7438 9.743863 9.0585 9.0543 9.054379 

1 10.9776 10.4869 10.486847 9.9816 9.7447 9.744790 

2 11.7415 11.1683 11.168372 10.4649 10.3781 10.378089 

5 12.2786 12.0682 12.068171 11.5231 11.2142 11.214218 

 

 

4. Numerical results and discussions 
 

Through this section, the effects of FG distribution, nonlocality effect and mode number on the 

buckling loads of the FG nanobeam will be figured out. The FG nanobeam is a combination of 

Steel and Alumina (Al2O3) where their properties are given in Table 1. The following dimensions 

for the beam geometry is considered: L (length)=10000 nm, b (width)=1000 nm (Eltaher et al. 

2012, Rahmani and Pedram 2014). Also, for better presentation of the results the following 

dimensionless quantities are adopted (Simsek and Reddy 2013) 

(52) 

2 4 2

, ,cr w w p p

m m m

L L L
N N K k K k

E I E I E I
  

         

 

where I=bh3/12 is the moment inertia of the beam’s cross section. For the verification purpose, the  
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Table 3 The variation of the nondimensional buckling loads of S-S FG nanobeam with various gradient 

indexes and nonlocal parameters (Kp=0, L/h=20) 

   µ 

Gradient index (p) 

0 0.5 1 5 

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

0 

0 9.80670 9.8067 12.6289 12.3794 13.5919 13.3665 15.6414 15.4096 

1 8.92576 8.92576 11.4944 11.2673 12.3709 12.1657 14.2363 14.0254 

2 8.19005 8.19005 10.5470 10.3386 11.3512 11.1630 13.0629 12.8693 

3 7.56638 7.56638 9.74386 9.55132 10.4868 10.3129 12.0682 11.8894 

4 7.03098 7.03098 9.05438 8.87546 9.74479 9.58317 11.2142 11.0481 

25 

0 12.3397 12.3397 15.1619 14.9124 16.1249 15.8995 18.1744 17.9427 

1 11.4588 11.4588 14.0275 13.8003 14.9039 14.6988 16.7694 16.5584 

2 10.7231 10.7231 13.0800 12.8716 13.8843 13.6960 15.5959 15.4024 

3 10.0994 10.0994 12.2769 12.0844 13.0199 12.8460 14.6012 14.4224 

4 9.56401 9.56401 11.5874 11.4085 12.2778 12.1162 13.7472 13.5811 

50 

0 14.8728 14.8728 17.6950 17.4454 18.6579 18.4325 20.7075 20.4757 

1 13.9918 13.9918 16.5605 16.3334 17.4370 17.2318 19.3024 19.0915 

2 13.2561 13.2561 15.6131 15.4047 16.4173 16.2290 18.1290 17.9354 

3 12.6324 12.6324 14.8099 14.6174 15.5529 15.3790 17.1342 16.9554 

4 12.0970 12.0970 14.1204 13.9415 14.8108 14.6492 16.2803 16.1141 

100 

0 19.9388 19.9388 22.7610 22.5115 23.7240 23.4986 25.7735 25.5418 

1 19.0579 19.0579 21.6266 21.3994 22.5030 22.2979 24.3685 24.1575 

2 18.3222 18.3222 20.6791 20.4707 21.4834 21.2951 23.1950 23.0015 

3 17.6985 17.6985 19.8760 19.6834 20.6190 20.4450 22.2003 22.0215 

4 17.1631 17.1631 19.1865 19.0076 19.8769 19.7153 21.3463 21.1802 

 

 

non-dimensional buckling loads of simply supported FG nanobeam with various nonlocal 

parameters and gradient indexes are compared with the results presented by Eltaher et al. (2013) 

and Rahmani and Jandaghian (2015) for nonlocal Euler-Bernoulli and nonlocal Reddy beam 

theory, respectively. In these work, the variation of poisson ratio (v) along the thickness of beam is 

not considered and the value of it is constant equal to 0.3.The reliability of the presented method 

and procedure for FG nanobeam may be concluded from Table 2; where the results are in an 

excellent agreement as values of non-dimensional buckling load are consistent with presented 

analytical solution. It can be observed from Table 2 that the result of nonlocal Reddy beam theory 

are smaller than those of nonlocal Euler beam theory. This is attributed to the fact that Euler–

Bernoulli beam model is unable to capture the influence of shear deformation. 

The variation of the dimensionless buckling loads of FG nanobeam for both power-law and 

Mori–Tanaka models with different gradient indexes (p=0.0.5,1,5), nonlocal parameters, 

foundation parameters and slenderness ratios is presented in Tables 3-5. The present results for 

Mori–Tanaka model and power-law model are referred to as MT-FGM and PL-FGM, respectively. 

It can be noticed from the tables that the non-dimensional buckling loads predicted with respect to 

power-law model are larger than that of Mori–Tanaka homogenization scheme, related to the fact 
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that FG nanobeam becomes more flexible according to Mori–Tanaka homogenization scheme than 

with respect to power-law model for a constant gradient index. The obtained results using Mori–

Tanaka and power-law models are exactly same at p=0 since the nanobeam is full ceramic. From 

this point of view, the difference between the results of these two models is significant when the 

gradient index value is more than p=0. Considering aforementioned explanations and according to 

Tables 3-5, it must be noted that, as the gradient index increases the dimensionless buckling load 

increases (constant nonlocal parameter). In addition, at a fixed gradient index the dimensionless 

buckling load decreases as the nonlocal parameter increases. Furthermore, it should be stated that 

when the foundation parameters (Winkler and Pasternak parameter) increases the non-dimensional 

buckling load increases which indicates the stiffening effect of foundation parameters on the FG 

nanobeam. 

The effect of presence of elastic foundation on the non-dimensional buckling load of FG 

nanobeam with varying of gradient index at L/h=20 is presented in Fig. 2 and the variation of the 

non-dimensional buckling load with and without elastic foundation based on both power-law and 

Mori–Tanaka models are compared with each other. It is seen from the results of the figure that the 

dimensionless buckling loads of FG nanobeam embedded in elastic medium are larger than that of 
 

 

Table 4 The variation of the nondimensional buckling loads of S-S FG nanobeam with various gradient 

indexes and nonlocal parameters (Kp=5, L/h=20) 

   µ 

Gradient index (p) 

0 0.5 1 5 

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

0 

0 14.8067 14.8067 17.6289 17.3794 18.5919 18.3665 20.6414 20.4096 

1 13.9258 13.9258 16.4944 16.2673 17.3709 17.1657 19.2363 19.0254 

2 13.1900 13.1900 15.5470 15.3386 16.3512 16.1630 18.0629 17.8693 

3 12.5664 12.5664 14.7439 14.5513 15.4868 15.3129 17.0682 16.8894 

4 12.0310 12.0310 14.0544 13.8755 14.7448 14.5832 16.2142 16.0481 

25 

0 17.3397 17.3397 20.1619 19.9124 21.1249 20.8995 23.1744 22.9427 

1 16.4588 16.4588 19.0275 18.8003 19.9039 19.6988 21.7694 21.5584 

2 15.7231 15.7231 18.0800 17.8716 18.8843 18.6960 20.5959 20.4024 

3 15.0994 15.0994 17.2769 17.0844 18.0199 17.8460 19.6012 19.4224 

4 14.5640 14.564 16.5874 16.4085 17.2778 17.1162 18.7472 18.5811 

50 

0 19.8728 19.8728 22.6950 22.4454 23.6579 23.4325 25.7075 25.4757 

1 18.9918 18.9918 21.5605 21.3334 22.4370 22.2318 24.3024 24.0915 

2 18.2561 18.2561 20.6131 20.4047 21.4173 21.2290 23.129 22.9354 

3 17.6324 17.6324 19.8099 19.6174 20.5529 20.3790 22.1342 21.9554 

4 17.0970 17.0970 19.1204 18.9415 19.8108 19.6492 21.2803 21.1141 

100 

0 24.9388 24.9388 27.7610 27.5115 28.7240 28.4986 30.7735 30.5418 

1 24.0579 24.0579 26.6266 26.3994 27.5030 27.2979 29.3685 29.1575 

2 23.3222 23.3222 25.6791 25.4707 26.4834 26.2951 28.1950 28.0015 

3 22.6985 22.6985 24.8760 24.6834 25.6190 25.4450 27.2003 27.0215 

4 22.1631 22.1631 24.1865 24.0076 24.8769 24.7153 26.3463 26.1802 
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Table 5 The variation of the nondimensional buckling loads of S-S FG nanobeam with various gradient 

indexes and nonlocal parameters (Kp=10, L/h=20) 

   µ 

Gradient index (p) 

0 0.5 1 5 

PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM PL-FGM MT-FGM 

0 

0 19.8067 19.8067 22.6289 22.3794 23.5919 23.3665 25.6414 25.4096 

1 18.9258 18.9258 21.4944 21.2673 22.3709 22.1657 24.2363 24.0254 

2 18.1900 18.1900 20.5470 20.3386 21.3512 21.1630 23.0629 22.8693 

3 17.5664 17.5664 19.7439 19.5513 20.4868 20.3129 22.0682 21.8894 

4 17.0310 17.0310 19.0544 18.8755 19.7448 19.5832 21.2142 21.0481 

25 

0 22.3397 22.3397 25.1619 24.9124 26.1249 25.8995 28.1744 27.9427 

1 21.4588 21.4588 24.0275 23.8003 24.9039 24.6988 26.7694 26.5584 

2 20.7231 20.7231 23.0800 22.8716 23.8843 23.6960 25.5959 25.4024 

3 20.0994 20.0994 22.2769 22.0844 23.0199 22.8460 24.6012 24.4224 

4 19.5640 19.5640 21.5874 21.4085 22.2778 22.1162 23.7472 23.5811 

50 

0 24.8728 24.8728 27.6950 27.4454 28.6579 28.4325 30.7075 30.4757 

1 23.9918 23.9918 26.5605 26.3334 27.4370 27.2318 29.3024 29.0915 

2 23.2561 23.2561 25.6131 25.4047 26.4173 26.2290 28.1290 27.9354 

3 22.6324 22.6324 24.8099 24.6174 25.5529 25.3790 27.1342 26.9554 

4 22.0970 22.0970 24.1204 23.9415 24.8108 24.6492 26.2803 26.1141 

100 

0 29.9388 29.9388 32.7610 32.5115 33.7240 33.4986 35.7735 35.5418 

1 29.0579 29.0579 31.6266 31.3994 32.5030 32.2979 34.3685 34.1575 

2 28.3222 28.3222 30.6791 30.4707 31.4834 31.2951 33.1950 33.0015 

3 27.6985 27.6985 29.8760 29.6834 30.6190 30.4450 32.2003 32.0215 

4 27.1631 27.1631 29.1865 29.0076 29.8769 29.7153 31.3463 31.1802 
 

  
(a) (b) 

Fig. 2 The effect of presence of elastic foundation on the dimensionless buckling load of S-S FG nanobeam 

based on power-law and Mori-Tanaka models with gradient index when L/h=20; (a)  μ=0, (b)  μ=2 
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FG nanobeam without elastic foundation. This is due to the fact that when the both foundation 

parameters increase the nanobeam becomes stiffer. Also, the Mori–Tanaka scheme estimates lower 

values for the non-dimensional buckling loads with comparing to the power-law model. The 

reason is that, Mori–Tanaka model provides smaller values for Young’s modulus than the power-

law model, and that gives rise to a more flexible structure. Also, it is noticed from the figures that, 

the dimensionless buckling load increases with high rate where the gradient index changes from 0 

to 2 than that where gradient index changes from 2 to 10. Also it can be seen that increasing 

nonlocal parameter shows a decreasing effect on the dimensionless buckling load. So, as a general 

  
(a) (b) 

Fig. 3 The comparison of the dimensionless buckling load versus slenderness ratio for different gradient 

indexes when      ,      ;  (a) classical beam theory μ=0. (b) Nonlocal beam theory μ=2 

  
(a) (b) 

Fig. 4 The variation of the dimensionless buckling load of S-S FG nanobeam with nonlocal parameter and 

gradient index at L/h=20; (a)        . (b)            
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consequence, the presence of nonlocality and elastic foundation softens and stiffens the structure, 

respectively.  

Fig. 3, demonstrates the variation of the dimensionless buckling load of S-S FG nanobeam with 

respect to slenderness ratio (at Kp=5, Kw=25) for various values of gradient indexes used in Mori–

Tanaka model as well as power-law model. It is seen from the figure that, the dimensionless 

buckling load increases with increase in slenderness ratio. But this observation is accurate when 

slenderness ratio is in the range L/h<20. Therefore, it can be deduced that the effect of slenderness 

ratio on dimensionless buckling load is approximately diminishes for the values greater than 

L/h>20. 
The softening effect of nonlocal parameter on the dimensionless buckling load of S-S FG 

nanobeams for various gradient index at L/h=20 with and without elastic foundation is shown in 

Fig. 4, so what as the nonlocal parameter growths, the dimensionless buckling load reduces for all  

 

 

 

  
(a) μ=0 (b) μ=1 

  
(c) μ=2 (d)  μ=3 

Fig. 5  The variation of the dimensionless buckling load of S-S FG nanobeam with Winkler parameter and 

gradient index for different nonlocal parameters at L/h=20 and Kp=5 
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gradient indexes. 

The variation of the dimensionless buckling load of S-S FG nanobeam with Winkler parameter 

for different nonlocal parameters and gradient indexes is presented in Fig. 5. In this figure, the 

Mori–Tanaka model is adopted. It is seen that with increase of the Winkler parameter the 

dimensionless buckling load increases linearly for all values of gradient index. Also, it is observed 

that increasing the gradient index yields the increment in dimensionless buckling load at constant 

Winkler and nonlocal parameters.  

The variation of the dimensionless buckling load of S-S FG nanobeam with respect to 

Pasternak parameter Kp and different gradient indexes and nonlocal parameters is presented in Fig. 

6. It is observed that with increase of the Pasternak parameter the dimensionless buckling load 

increases with a linear manner for all values of gradient index and nonlocal parameter. Also, it is 

  

(a)  μ=0 (b)  μ=1 

  

(c)  μ=2 (d)  μ=3 

Fig. 6 The variation of the dimensionless buckling load of S-S FG nanobeam with Pasternak parameter and 

gradient index for different nonlocal parameters at L/h=20 and       
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seen that increasing the gradient index results in increase of dimensionless buckling load at 

constant Pasternak parameter. Comparing this figure with Fig. 5 specifies that the influence of the 

Pasternak parameter (Kp) on the non-dimensional buckling load is more significant than that of the 

Winkler parameter (Kw). 

 

 

5. Conclusions 
 

In the present work, buckling analysis of size-dependent FG nanobeams embedded in two-

parameter elastic foundation is performed based on nonlocal third order shear deformation beam 

theory in conjunction with Navier analytical method. Two kinds of mathematical models, namely, 

power law and Mori-Tanaka models are considered. The nonlocal governing differential equations 

in elastic medium are derived by implementing Hamilton’s principle and using nonlocal 

constitutive equations of Eringen. Accuracy of the results is examined using available date in the 

literature.  The effects of small scale parameter, material graduation, foundation parameters and 

slenderness ratio on buckling behavior of FG nanobeams are investigated. 

It is observed that, with an increase of Winkler or Pasternak parameter, the beam becomes 

more rigid and the dimensionless buckling load of FG nanobeams increases. Also, it is found that 

presence of nonlocality has a notable decreasing effect on the dimensionless buckling load of FG 

nanobeams, which shows the prominence of the nonlocal effect. So, it should be noted that 

reasonable selection of the value of the nonlocal parameter is also vital to ensure the accuracy of 

the nonlocal beam models. It must be pointed out that the power-law and Mori-Tanaka indexes 

have a remarkable effect on the buckling responses of FG nanobeam. Moreover, often the 

differences of the buckling loads between PL and MT models is very small, specifically at the 

range of lower gradient indexes. Thus, considering both material models, it is deduced that with 

the increase of gradient index the buckling loads increase. 
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