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Abstract.  This article is concerned with the free vibration problem for chiral double-walled carbon 

nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. 

According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, 

the analytical solution is derived and two branches of transverse wave propagating are obtained. The 

numerical results obtained provide better representations of the vibration behaviour of double-walled carbon 

nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient 

and chirality of double-walled carbon nanotube on the frequency ratio (χN) of the (DWCNTs) are significant. 

In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance 

for the forced vibration analyses of double -walled carbon nanotubes. 
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1. Introduction 
 

Since the multi-walled carbon nanotube (MWCNT) and single-walled carbon nanotube 

(SWCNT) are discovered by Iijima (1991),  Iijima et al. (1993). Carbon nanotubes are cylindrical 

macromolecules composed of carbon atoms which have received tremendous attention from 

various branches of science. Varieties of experimental, theoretical, and computer simulation 

approaches indicate that carbon nanotubes (CNTs) possess mechanical (Wong et al. 1997, Zidour 

et al. 2015) and physical properties leading to many potential applications (Qian et al. 2002, 

Baghdadi et al. 2015). In particular, CNTs hold substantial promise as superfibres for composite 

materials (Lau et al. 2002). Others studies have showed that they have good properties so they can 

be used for nanoelectronics, nanodevices, nanocomposites and nanostructures (Gafour et al. 2013, 

Besseghier et al. 2015, Tagrara et al. 2015). Bounouara et al. (2016) have studied A nonlocal 

zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates 
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resting on elastic foundation. Ould Youcef et al. (2015) studied the bending and stability of 

nanowire using various HSDTs. 

Since CNTs are extremely small, the experiments methods to predict the responses of 

nanostructures under different loading conditions are quite difficult. Therefore, computational 

simulations have been regarded as a powerful tool for the study of the properties of CNTs. There 

are two major categories for simulating the mechanical properties of CNTs: molecular dynamics 

(MD) simulation and continuum mechanics. 

The molecular dynamics (MD) simulations are used. This approach represents the dynamics of 

atoms or molecules of the materials by a discrete solution of Newton’s classical equations of 

motion. But the computational problem here is that the time steps involved in the (MD) 

simulations are limited by the vibration modes of the atoms to be of the order of femto-seconds 

(10-15 s) (Ranjbartoreh et al. 2007). Cornwell and Wille (1997) used the (MD) to obtain the 

Young’s modulus of (SWCNTs) about 0.8 TPa. Jin and Yuan (2003) used (MD) and force-

constant approach and reported the Young’s modulus of (SWCNTs) to be about 1236±7 GPa. In 

this study the Young’s modulus of (SWCNTs) using (MD) simulation obtained by Bao Wen Xing 

et al. (2004) is used in the formulations, when the Young’s moduli of (SWCNTs) are in the range 

of 929.87±11.5 GPa. These results are in good agreement with the existing experimental results.  

The continuum mechanics methods have been effectively used to study mechanical behaviors 

of not only single-walled carbon nanotubes (SWCNTs) but also MWCNTs (Tounsi et al. 2013a, 

Bouazza et al. 2014a). Recently, the continuum mechanics approach has been widely and 

successfully used to study the responses of micro and nanostructures, such as the static (Bourada et 

al. 2015, Hebali et al. 2014, Belabed et al. 2014), the buckling (Ait Amar Meziane et al. 2014, 

Berrabah et al. 2013, Amara et al. 2010, Chemi et al. 2015), free vibration (Bousahla et al. 2014, 

Maachou et al. 2011, Benzair et al. 2008), wave propagation (Ait Yahia et al. 2014, Naceri et al. 

2011, Zidour et al. 2012) and thermo-mechanical analysis of (CNTs) (Bouderba et al. 2013, 

Tounsi et al. 2013b). More recently, utilize a continuum shell model to predict the mechanical 

behavior of single and multi-walled carbon nanotubes embedded in a polymer or metal matrix and 

their results are compared with molecular dynamics simulations. Yoon et al. (2003) have studied 

the vibration of multi-walled carbon nanotubes embedded in an elastic medium by using Euler 

beam theory. Fu et al. (2006) have studied the nonlinear vibration analysis of embedded carbon 

nanotubes.  
The vast majority of structural theories are derived using the nonlocal elasticity theory, based 

on the hypothesis that the stress at a point is a function of strains at all points in the continuum. 
Eringen (1972), Boumia et al. (2014), Zhang et al. (2005), Zidour et al. (2014), Benguediab et al. 
(2014), Lu et al. (2006), Heireche et al. (2008) have used the nonlocal elasticity constitutive 
equations to study vibration of CNTs. There are some studies for vibration of (CNTs), which 
assumes (CNT) as a cylindrical shell. The sound wave propagation in (CNTs) by means of a 
simplified shell is investigated by Natsuki et al. (2005). Murmu and Adhikari (2010) have 
analyzed the longitudinal vibration of double nanorod systems using the non-local elasticity. The 
nonlocal elasticity theory is applied in various types of nanostructures (nano FGM structures, 
nanotube.) such as the static (Zemri et al. 2015, Aissani et al 2015), the buckling (Larbi Chaht et 
al. 2015), free vibration (Belkorissat et al. 2015). 

The present study is concerned with the use of the non-local Euler Bernoulli elastic beam 
model to analyse the effects of chirality of double-walled carbon nanotubes (DWCNTs) on the 
wave propagation. The characteristic of transverse wave propagating in (CNTs) is investigated and 
the effects of chirality, the vibrational mode number and aspect ratio of the (DWCNTs) are studied 
and discussed. 
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Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory 

 

Fig. 1 single-walled carbon nanotube, (a) armchair, (b) zigzag, (c) chiral 

 

 

 

Fig. 2 double-walled carbon nanotube 

 

 

2. Single and double-walled carbon nanotube 
  

A single-walled carbon nanotube (SWCNT) is theoretically assumed to be made by rolling a 

graphene sheet. Therefore, the double-walled carbon nanotubes (DWCNTs) are considered as two 

nanotube shells coupled through the van der Waals interaction between them (Fig. 2). The 

fundamental structure of carbon nanotubes can be classified into three categories as zigzag, 

armchair and chiral shown in (Fig. 1).  

The diameter of (SWCNTs) and (DWCNTs) can be expressed in terms of integers (n, m) 

(Tokio 1995) 

             
,/)(3 22 nmmnadin 
 

(1) 

        
hddout 21 

 (2) 

where the integer pair (n, m) are the indices of translation and h, a are layer distance and length of 

the carbon-carbon bond which is (1.42A°). 

 

 

3. Nonlocal theory of double- walled carbon nanotube (DWCNTs) 
 

  Based on Eringen nonlocal elasticity model (Eringen 1983) the stress at a reference point is 

considered to be a functional of the strain field at every point in the body. In the limit when the 

effects of strains at points other than x are neglected, one obtains classical or local theory of 

elasticity.  
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The equations of motion for transversely vibrating Euler beam can be obtained as (Doyle 1997) 

              
 
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


  (3) 

where p(x) is the distributed transverse force along axis x, w is the transverse deflection, ρ is the 

density, A is the area of the cross section of the nanotube, and T is the resultant shear force on the 

cross section, which 

The weakness of this work is that the effects of the transverse shear deformations and 

stretching thickness are neglected. Recently, the Euler Bernoulli beam model has been widely and 

successfully used to study the vibration analysis of functionally graded plates using a simple shear 

deformation theory, such as the sandwich plates (Bennoun et al. 2016, Hamidi et al. 2015) and the 

concept of the neutral surface position (Bellifa et al. 2016, Al-Basyouni et al. 2015).   

The one-dimensional nonlocal constitutive relation for the nanotube can be approximated to  
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where ESWNT is the Young’s modulus of single-walled nanotubes, w is the transverse displacement. 

Thus, the scale coefficient (e0a) in the modelling will lead to small-scale effect on the response of 

structures at nano size. In addition, e0 is a constant appropriate to each material, and a is an 

internal characteristic length of the material (e.g., length of C-C bond, lattice spacing, granular 

distance).  

Tu and Ou-Yang (2002) indicated that the relation between Young’s modulus of multi-walled 

carbon nanotubes (MWCNTs) and the layer number N′ can be expressed as 

              
SWNTMWNT E

h

t

htN

N
E






1
 (18) 

where EMWNT, ESWNT, t, N′ and h are Young’s modulus of multi-walled nanotubes, Young’s 

modulus of single-walled nanotubes, effective wall thickness of single-walled nanotubes, number 

of layers and layer distance. In the case of single-walled carbon nanotubes, N′=1 and EMWNT= 

ESWNT. 

The Young’s moduli used in this study of three types of double-walled carbon nanotubes 

(DWCNTs), armchair, zigzag and chiral tubules, are calculated by Xing et al. (2004) based on 

molecular dynamics (MD) simulation. They numeric results are in good agreement with the 

existing experimental ones (Liu et al. 2001, Tombler et al. 2000). 

The resultant bending moment M and shear force can be defined by 

          

A

xdAzM 
   ,    dx

dM
T   (5) 

According to Eq. (5) and Eq. (4) thus can be expressed as 
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where ( 
A

dAzI 2

) is the moment of inertia. 

By substituting Eqs. (3) and (5) into Eq. (6), the bending moment M and the shear force T for 

the non-local model can be expressed as 
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Substituting Eq. (8) into Eq. (3) the following differential equation of a non-local Euler 

Bernoulli beam theory.  
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The double-walled carbon nanotubes are distinguished from traditional elastic beam by their 

hollow two-layer structures and associated intertube van der Waals forces. Assuming that the inner 

and outer tubes have the same thickness and effective material constants, the Eq. (9) can be used to 

each of the inner and outer tubes of the double-walled carbon  nanotubes. 
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where subscripts 1 and 2 are used to denote the inner and outer tubes, respectively, p12, p21 denotes 

the van der Waals pressure per unit axial length exerted on the inner tube by the outer tube and the 

outer tube by the inner tube respectively. The van der Waals pressure should be a linear function 

of the difference of the deflections of two adjacent layers at the point as follows 
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where c is the intertube interaction coefficient per unit length between two tubes, which can be 

estimated by Gafour et al. (2013) 
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where din is the radius of the inner tube. 

Let us consider a double-walled carbon nanotube of length L in which the two ends are simply 

supported, so vibrational modes of the (DWCNT) are of the form (Heireche et al. 2008) 

             xeWw ti  sin11  , xeWw ti  sin22  et ,
L

k
  ,......)2,1( k  (13)
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where 1W  and 2W  are the amplitudes of deflections of the inner and outer tubes. 

Substituting Eqs. (11)-(13) into Eq. (10), one can easily obtain the homogeneous system 
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Where  
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Solving Eq. (16) the lower and higher natural frequency, of the DWCNT in which the effects of 

different parameters are shown. 
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Where α and β in equations yields are defined as 
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4. Results and discussions 

 

Based on the formulations obtained above with the nonlocal Euler-Bernoulli beam theory, the 

effect of aspect ratio of (DWCNTs), vibrational mode number, small-scale coefficient and chirality 

of double-walled carbon nanotube on vibration properties of double-walled nanotubes are 

discussed here. The parameters used in calculations for the zigzag DWCNTs are given as follows: 

the effective thickness of (CNTs) taken to be 0.258 nm, the mass density ρ=2.3 g/cm
3
, layer 

distance h=0.34 nm and poisson ratio υ=0.19. (Naceri et al. 2011, Boumia et al. 2014). 

The Young’s modulus of (SWCNTs) and (DWCNTs) employed in this study (Table 1), are 

calculated by Xing et al. (2004), Tu and Ou-Yang (2002) respectively. The results show the 

decreasing of Young’s modulus (DWCNTs) for some chirality nanotube. The reason for this 

phenomenon is attributed to the weak van der Waals forces between the inner and outer tube.    

To investigate the effect of scale parameter on vibrations of double-walled nanotubes, the 

results including and excluding the nonlocal parameter are compared. It follows that the ratios of 

the results are respectively given by 

       LE

NE




   (18)
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Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory 

Table 1 Lists the values of Young’s modulus of single and double carbon nanotube for different chirality’s 

(n, m) 
Young’s modulus (SWNT) (GPa) 

Xing et al. (2004) 

Young’s modulus (DWNT) (GPa) 

Tu and Ou-Yang (2002) 

Armchair 

(8,8) (12,12) 934.960 806.755 

(10,10) (15,15) 935.470 807.195 

(12,12) (17,17) 935.462 807.188 

(14,14) (19,19) 935.454 807.181 

(16,16) (21,21) 939.515 810.685 

(18,18) (23,23) 934.727 806.554 

(20,20) (25,25) 935.048 806.831 

Zigzag 

(14,0) (23,0) 939.032 810.268 

(17,0) (26,0) 938.553 809.855 

(21,0) (30,0) 936.936 808.460 

(24,0) (33,0) 934.201 806.100 

(28,0) (37,0) 932.626 804.741 

(31,0) (40,0) 932.598 804.717 

(35,0) (44,0) 933.061 805.116 

Chiral 

(12,6) (18,10) 927.671 800.465 

(14,6) (20,10) 921.616 795.241 

(16,8) (22,12) 928.013 800.760 

(18,9) (24,13) 927.113 799.984 

(20,12) (26,16) 904.353 780.345 

(24,11) (30,15) 910.605 785.739 

(30,8) (36,12) 908.792 784.175 
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 armchair(14,14)(19,19)

 armchair(20,20)(25,25)

 

Fig. 3 Relationship between the lower frequency ratio of DWCNT, chirality of armchair carbon 

nanotube and the mode number; The values of (L/d) is 30 and (e0a=2 nm) 
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Where (ωLE, ωNE) are the frequency based on the local and  nonlocal Euler Bernoulli beam 

respectively.  

In the present study, the (Figs. 3-5) illustrate the dependence of the lower frequency ratio on the 

chirality of three double-walled carbon nanotubes (DWCNTs), armchair, zigzag and chiral for 

different values of mode numbers. The ratio of the length to the diameter, L/d, is 30 and small 

scale coefficient e0a=2 nm. The frequency ratio (χ) serves as an index to assess quantitatively the 

scale effect on CNT vibration solution. This means that the application of the local Euler Bernoulli 

beam model for CNT analysis would lead to an overprediction of the frequency if the scale effect 

between the individual carbon atoms in CNTs is neglected. 
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Fig. 4 Relationship between the lower frequency ratio of DWCNT, chirality of chiral carbon 

nanotube and the mode number; The values of (L/d) is 30 and (e0a=2 nm) 
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Fig. 5 Relationship between the lower frequency ratio of DWCNT, chirality of zigzag carbon 

nanotube and the mode number; The values of (L/d) is 30 and (e0a=2 nm) 
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It is clearly seen from (Fig. 3) that the ranges of frequency ratio for these chirality of double-

walled carbon nanotubes (DWCNTs) are quite different, the range is the away then unity for 

armchair (8,8) (12,12), but the range is the near for armchair (20,20) (25,25). Same variation of 

frequency ratio is clearly seen from (Figs. 4 and 5) for chiral and zigzag nanotubes. The scale 

effect diminishes with increasing the index of translation (n, m) and becomes more significant with 

the increase of the vibrational mode N.  

The reason for this difference perhaps is attributed to the increasing or decreasing of carbon 

nanotube diameter.  

The effect of mode number (N) on the frequency ratios (χ) for various chirality of double-

carbon nanotube is demonstrated in (Fig. 6) with aspect ratio (L/d=30) and small-scale coefficient 

(e0a=2 nm). In this figure, it is observed that as the mode number increase, the scale effect on the 

frequency ratios (χN) increase and decrease with increasing the index of translation (n, m). It is 

clearly that the ranges of the frequency ratios (χ) are quite different, the range is the smallest for 

armchair (20,20) (25,25), but the range is the largest for zigzag (14,0) (23,0). The reason for this 

difference perhaps is attributed to the increasing or decreasing of carbon nanotube diameter. 

The scale effect is becomes obvious for the higher vibration mode number. This significance in 

higher modes is attributed to the diameter and the influence of small wavelength. For smaller 

wavelengths, the interactions between atoms are increasing and these loads to an increase in the 

nonlocal effects. 

The (Fig. 7) show the effect of aspect ratio (L/d) on the frequency ratios (χ) for various chirality 

of double-carbon nanotube (DWCNTs), armchair, zigzag and chiral with small-scale coefficient 

(e0a=2 nm) and N=2. In these figure, we present the effect of long and diameter of double-walled 

carbon nanotubes (DWCNTs) on the frequency ratios (χ). The scale effect increase as one transit 

from the armchair (20,20) to the chiral (16,8) and then, zigzag (14,0) chirality, when the diameter 

of nanotube is decreasing. This increases in the scale effect is most pronounced when the nanotube 

is short. However, it is observed, that the frequency ratios (χ) is more affected by the long of  
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Fig. 6 Relationship between the lower frequency ratio of DWCNT and the mode number for 

differences chirality of carbon nanotube; The values of (L/d) is 30 and (e0a=2 nm) 
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Fig. 7 Effect of aspect ratio and chirality of double carbon nanotube on the lower frequency 

ratio of DWCNT with (e0a=2 nm, N=2). 

 
Table 2 Lists the values of the lower frequency ratio for different armchair chirality’s, mode number (N) and 

aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Armchair 
L/d=0 L/d=15 

N=1 N=2 N=1 N=2 

(8,8) (12,12) 0.94101 0.80002 0.97275 0.90018 

(10,10) (15,15) 0.95472 0.83938 0.97932 0.92228 

(12,12) (17,17) 0.96421 0.86877 0.98378 0.93796 

(14,14) (19,19) 0.97104 0.89113 0.98695 0.94943 

(16,16) (21,21) 0.97610 0.90840 0.98928 0.95804 

(18,18) (23,23) 0.97996 0.92205 0.99104 0.96466 

(20,20) (25,25) 0.98296 0.93292 0.99239 0.96985 

 
Table 3 Lists the values of the lower frequency ratio for different Chiral chirality’s, mode number (N) and 

aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Chiral 
L/d=10 L/d=15 

N=1 N=2 N=1 N=2 

(12,6) (18,10) 0.94964 0.82448 0.97690 0.91403 

(14,6) (20,10) 0.95618 0.84391 0.98000 0.92469 

(16,8) (22,12) 0.96508 0.87161 0.98419 0.93942 

(18,9) (24,13) 0.97029 0.88869 0.98661 0.94818 

(20,12) (26,16) 0.97648 0.90990 0.98945 0.95870 

(24,11) (30,15) 0.97979 0.92157 0.99096 0.96439 

(30,8) (36,12) 0.98301 0.93321 0.99242 0.96995 

 

 

nanotube. The reason for this phenomenon is that a carbon nanotube with larger long or smaller 

diameter has a larger curvature, which results in a more significant distortion of (C-C) bonds. 
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Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory 

Table 4 Lists the values of the lower frequency ratio for different Zigzag chirality’s, mode number (N) and 

aspect ratios (L/d) of carbon nanotube, when the value of scale coefficients (e0a) is 2 nm 

Zigzag 
L/d=10 L/d=15 

N=1 N=2 N=1 N=2 

(14,0) (23,0) 0.94169 0.80184 0.97308 0.90126 

(17,0) (26,0) 0.95365 0.83617 0.97882 0.92054 

(21,0) (30,0) 0.96470 0.87033 0.98401 0.93878 

(24,0) (33,0) 0.97062 0.88972 0.98676 0.94872 

(28,0) (37,0) 0.97647 0.90970 0.98944 0.95866 

(31,0) (40,0) 0.97979 0.92144 0.99096 0.96436 

(35,0) (44,0) 0.98323 0.93393 0.99252 0.97032 

 

 

The effects of chirality, mode number and aspect ratio presented in previous figures are 

detailed in the Tables 2-4.  For various chirality nanotube armchair, chiral and zigzag for the first 

and second modes with different length-to-diameter ratios based on the non-local Euler Bernoulli 

beam model are listed in (Tables 2-4). The results show the dependence of the different chirality’s 

of carbon nanotube, Aspect Ratio and, vibrational mode number on the frequency ratios (χ). 

 

 

5. Conclusions 
 

This paper studies the vibration of double-carbon nanotube (DWCNTs) based on Eringen’s 

nonlocal elasticity theory and the Euler-Bernoulli beam theory. Influence of the small-scale 

coefficient, the vibrational mode number, the aspect ratio and the chirality on the lower frequency 

of the armchair, zigzag and chiral CNTs is shown. According to the study, the results showed the 

dependence of the vibration characteristics on the chirality of DWCNTs and the nonlocal 

parameter. With the results, the dynamic properties of the DWCNT beam have been discussed in 

detail; they are shown to be very different from those predicted by classic elasticity when nonlocal 

effects become considerable.  

According to the study, it is observed that as the mode number increase, small-scale effects 

increases. The reason of these increases is attributed to the influence of small wavelength when the 

interactions between atoms are increasing. In addition, the lower frequency also is affected by the 

increasing or decreasing of long or diameter of (DWCNTs). This affection is most pronounced for 

short nanotube. The reason for this phenomenon is that a carbon nanotube with higher long has a 

larger curvature, which results in a more significant distortion of (C-C) bonds. 

The investigation presented may be helpful in the application of DWCNTs, such as ultrahigh-

frequency resonators, electron emission devices, high-frequency oscillators and mechanical 

sensors. 
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