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Abstract.  The alternating current (AC) conductivity in semiconductor crystals with an open-core screw 
dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective 
potential field which affects the electronic transport properties of the system. Therefore, from a technologi-
cal view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. 
To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals us-
ing the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the am-
plitude of the AC conductivity was large enough to be measured in experiments. The measurable conduc-
tivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply 
different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic 
flux tube, despite the apparent similarity in their electronic eigenstates. 
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1. Introduction 

 

The void associated with a screw dislocation core modulates electronic states. This open-core 

screw dislocation has been found in semiconductors such as silicon carbide (SiC) (Si et al. 1997, 

Vetter and Dudley 2002, Dudley et al. 2003, Ma 2006). In order to investigate the electronic struc-

ture of such systems, considerable attention has been focused on comparing the wave propagation 

phenomena in the single-screw dislocated, three-dimensional crystal system and in the Aharonov-

Bohm (AB) system (Carvalho et al. 2007, Turski et al. 2007, Netto and Furtado 2008, Turski and 

Mińkowski 2009). A quantum effect on electrons moving in the screw-dislocated system is mainly 

given by the phase shift of the wave functions (Kawamura 1978, Araki et al. 1981, Bausch and 

Schmitz 1998, Bausch et al. 1999, Look and Sizelove 1999, Furtado et al. 2001, Bakke and 

Moraes 2012). This phase shift occurs even if the electrons’ wave functions do not touch the screw 

dislocation. This phenomenon is reminiscent of the AB effect since electrons in the AB system also 

exhibit a quantum phase shift despite the fact that electrons do not touch the magnetic field (Ahar-

onov and Bohm 1959). These two observations indicate that the magnetic field mimics the screw 
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dislocation. Experimental measurements have shown these characteristics (Schafler et al. 2001, 

Dumiszewska et al. 2007, Gilbert et al. 2011); however, there have been very few efforts to devel-

op a comprehensive theoretical model to investigate the effect of the screw dislocation on physical 

quantities. Calculating the alternating current (AC) conductivity is a powerful tool to investigate 

the effect of the screw dislocation since it provides information on both the momentum and energy 

spectrum.  

   In this paper, we numerically calculate the AC conductivity of the screw-dislocated system. 

This same calculation has been performed in the AB system. The most important difference is that 

AC conductivity is measurable in the screw-dislocated system but is not measurable in the AB sys-

tem. This result provides evidence that the quantum phase shifts induced by the screw-dislocated 

system and the AB system contribute to the AC conductivity in different ways. Understanding the 

mechanisms of this difference sheds new light for further exploration of new phenomena based on 

screw-dislocated systems. 

 

 

2. Model and method 
 

2.1 Mathematical preliminary 
 

First, we derive the Schrödinger equation, which describes the electronic states of a crystal of 

simple cubic structure with a hollow screw dislocation (Kawamura 1978). We assume that the 

Burgers vector is given by 𝒃 = 𝑏𝒆𝑧, where 𝑏 is a constant, which determines the spatial distribu-

tion, amplitude and direction of the screw dislocations (Fig. 1).  

In the tight-binding scenario, the electronic wave function 𝐶(𝒏) at site 𝒏 satisfies the rela-

tion, 

𝐸𝐶(𝒏) − 𝑇∑𝐶(𝒏 + 𝒂𝑖)

6

𝑖=1

= 0,                                                      (1) 

 

Fig. 1 Schematic view of the three-dimensional system with a single hollow screw dislocation 
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where 𝐸 and 𝑇 are the on-site energy and transfer-matrix between two neighboring sites, respec-

tively, and 𝒏 + 𝒂𝑖  (𝑖 = 1,… ,6) are the nearest neighbor sites of 𝒏.  

In our model, the site-dependence of 𝑇 is ignored since we are focusing on the topological nature 

of the effect of screw dislocation on electronic structure, at this stage.  

To find the spatial dependence of 𝒂𝑖, we set 𝒂𝑖 as follows 

𝒂1 = 𝑎𝒆𝑥 + 𝑎𝑓(𝑟, 𝜃)𝒆𝑧 = −𝒂2,                                                   (2) 

𝒂3 = 𝑎𝒆𝑦 + 𝑎𝑔(𝑟, 𝜃)𝒆𝑧 = −𝒂4,                                                   (3) 

𝒂5 = 𝑎𝒆𝑧 = −𝒂6,                                                               (4) 

where 𝒆𝑗, (𝑗 = 𝑥, 𝑦, 𝑧) are unit vectors in the direction of the 𝑗-axis represented by Descartes co-

ordinates. 𝑎 is a lattice constant of the system and 𝑓(𝑟, 𝜃) and 𝑔(𝑟, 𝜃) are functions represent-

ed by polar coordinates which determine the lattice shape. By imposing the condition that a cubic 

structure of the system contains a single screw dislocation in the direction of the 𝑧 axis, 𝒆𝑧 satis-

fies the relation 

∫ 𝒆𝜃

2𝜋

0

𝑟𝑑𝜃 = 𝑏𝒆𝑧,                                                                   (5) 

where 

𝒆𝜃 = −sin𝜃 𝒂1 + cos 𝜃 𝒂3                                                           (6) 

is the tangential unit vector of a spiral curve (i.e., parallel to the 𝜃 direction), which lies on a sin-

gle lattice plane since the amplitude of the Burgers vector 𝑏 is much smaller compared to the size 

of the system. Eqs. (2), (3), and (5) lead to function forms of 𝑓(𝑟, 𝜃) and 𝑔(𝑟, 𝜃) 

𝑓(𝑟, 𝜃) = −
sin𝜃

2𝜋𝑟
,                                                                     (7) 

𝑔(𝑟, 𝜃) =
cos𝜃

2𝜋𝑟
.                                                                      (8) 

We have now derived the function forms of 𝒂𝑖. 
 

2.2 Schrödinger equation 
 

To derive the expression of continuum approximation of Eq. (1), we expand the function 

𝐶(𝒏 + 𝒂𝒊) in the Taylor series with respect to 𝒂𝒊 up to the second order 

𝐶(𝑥 + 𝑎𝑖𝑥 , 𝑦 + 𝑎𝑖𝑦, 𝑧 + 𝑎𝑖𝑧)~∑
1

𝑛!
(𝑎𝑖𝑥

𝜕

𝜕𝑥
+ 𝑎𝑖𝑦

𝜕

𝜕𝑦
+ 𝑎𝑖𝑧

𝜕

𝜕𝑧
)
𝑛2

𝑛=0

𝐶(𝑥, 𝑦, 𝑧)

=  𝐶(𝑥, 𝑦, 𝑧) + (𝑎𝑖𝑥
𝜕

𝜕𝑥
+ 𝑎𝑖𝑧

𝜕

𝜕𝑧
)𝐶(𝑥, 𝑦, 𝑧)

+
1

2!
(
𝜕2

𝜕𝑥2
+ 𝑎𝑖𝑧

2
𝜕2

𝜕𝑧2
+
𝜕𝑎𝑖𝑧
𝜕𝑥

𝜕

𝜕𝑧
+ 2𝑎𝑖𝑧

𝜕2

𝜕𝑥𝜕𝑧
)𝐶(𝑥, 𝑦, 𝑧),                                      (9) 

where 𝑎𝑖𝑗  are 𝑗 components of 𝒂𝑖 . The relations 𝒂1 = −𝒂2, 𝒂3 = −𝒂4, 𝒂5 = −𝒂6 in Eqs. 

(2), (3) and (4) lead to the explicit expression of the continuum limit of ∑ 𝐶(𝒏 + 𝒂𝒊)
6
𝑖=1  in Eq. (1) 
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∑𝐶(𝒏 + 𝒂𝒊)

6

𝑖=1

~6𝐶(𝒓) + *
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ (2𝑎1𝑧

2 + 1)
𝜕2

𝜕𝑧2
+ 2𝑎1𝑧

𝜕2

𝜕𝑥𝜕𝑧

+ 2𝑎2𝑧
𝜕2

𝜕𝑦𝜕𝑧
+ (

𝜕𝑎1𝑧
𝜕𝑥

+
𝜕𝑎2𝑧
𝜕𝑦

)
𝜕

𝜕𝑧
+ 𝐶(𝒓). 

 

Here, we use the symbol of position vector 𝒓 = (𝑟, 𝜃, 𝑧) instead of 𝒏 since we are using a con-

tinuum description. Coordinate transformation from the Descartes coordinate system to polar co-

ordinate system results in  

∑𝐶(𝒏 + 𝒂𝒊)

6

𝑖=1

~6𝐶(𝒓) + *
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
(
𝜕

𝜕𝜃
+

𝑏

2𝜋

𝜕

𝜕𝑧
)
2

+
𝜕2

𝜕𝑧2
+ 𝐶(𝒓),              (11)  

where we used Eqs. (7) and (8). The Schrödinger equation in the continuum approximation, in 

terms of cylindrical coordinates, is given by 

(𝐸 − 6𝑇)𝐶(𝒓) − 𝑇 *
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
(
𝜕

𝜕𝜃
+

𝑏

2𝜋

𝜕

𝜕𝑧
)
2

+
𝜕2

𝜕𝑧2
+ 𝐶(𝒓) = 0.               (12)  

The spatial dependence of the transfer energy 𝑇 = 𝑇(𝒓) results in (Bilby et al. 1955, Bausch et 

al. 1998, Bausch et al. 1999a, b) 

   −
ℏ2

2𝑚∗ {
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
(
𝜕

𝜕𝜃
+

𝑏

2𝜋

𝜕

𝜕𝑧
)
2
+

𝜕2

𝜕𝑧2
+

𝑏2

2𝜋2𝑎2𝑟2
[1 +

1

2
(𝑎

𝜕

𝜕𝑧
)
2
]} 𝐶(𝒓) = 𝐸𝐶(𝒓),   (13) 

where 𝑇 is interpreted as ℏ2 (2𝑚∗)⁄ . 

   It should be emphasized that the expression in Eq. (13) signifies the existence of the effective 

vector potential 𝑨eff whose definition is given by  

𝑨eff = 𝒆𝜃
ℏ𝑏

2𝜋𝑟

𝜕

𝜕𝑧
.                                                                (14) 

The mathematical properties of 𝑨eff are shown to be ∇ × 𝑨eff = 𝟎 and 𝑨eff ∝ 𝒆𝜃/r, and its 

properties mimic those of a vector, not effective, potential 𝑨. This analogy reminds us that the 

magnitude of the Burgers vector 𝑏 plays a similar role in the magnetic field. In fact, the electrons 

moving in the screw-dislocated system and the AB system have the same qualitative energy spec-

trum (Azevedo and Moraes 1998, Azevedo and Pereira 2000). Despite this similarity, 𝑨eff and 𝑨 

contribute to the pronounced differences in the behavior of the dynamic conductivity of these two 

systems, since 𝑨eff is a differential operator while 𝑨 is not. This difference will be expanded on 

in Section 3. 

 

2.3 The solution of the Schrödinger equation 
 

   In this subsection, we find the solution of the differential equation given in Eq. (13) by follow-

ing Furtado et al. (2001). We assume the solution of Eq. (13) in separation variables form 

𝐶(𝒓) = 𝑅(𝑟)𝑒𝑖𝑚𝜃𝑒𝑖𝑘𝑧𝑧,                                                            (15) 

where 𝑚 is the quantum number of the angular momentum of the electron, and 𝑘𝑧 is the wave 

(10) 
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number of the electron in the direction of 𝑧. Substituting Eq. (15) into Eq. (13), we obtain the one-

dimensional Schrödinger equation 

(
𝑑2

𝑑𝑟2
+
1

𝑟

𝑑

𝑑𝑟
+ 𝑘2 −

𝜈2

𝑟2
)𝑅(𝑟) = 𝐸𝑅(𝑟),                                          (16) 

where 

𝑘2 =
2𝑚∗𝐸

ℏ2
− 𝑘𝑧

2,                                                               (17) 

𝜈2 = (𝑚 +
𝑘𝑧𝑏

2𝜋
)
2

+
𝑏2

2𝜋2𝑎2
(1 −

𝑘𝑧
2𝑎2

2
).                                      (18) 

Since Eq. (16) is a Bessel differential equation, its general solution is given by 

𝑅(𝑟) = 𝐵1𝐽𝜈(𝑘𝑟) + 𝐵2𝑁𝜈(𝑘𝑟),                                                      (19) 

where 𝐵1 and 𝐵2 are constants of integration, which can be numerically determined by the nor-

malization condition of 𝐽𝜈(𝑘𝑟) and 𝑁𝜈(𝑘𝑟). Assigning the boundary condition of 

𝑅(𝑘𝑟𝑎) = 𝑅(𝑘𝑟𝑏) = 0,                                                              (20) 

Eq. (19) results in 

𝐽𝜈(𝑘𝑟𝑏)𝑁𝜈(𝑘𝑟𝑎) − 𝑁𝜈(𝑘𝑟𝑏)𝐽𝜈(𝑘𝑟𝑎) = 0.                                           (21) 

Explicit forms of eigenfunctions can be obtained if the conditions of 𝑘𝑟𝑎 ≫ 1 and 𝑘𝑟𝑏 ≫ 1 are 

satisfied. Under these approximations, asymptotic forms of 𝐽𝜈 and 𝑁𝜈 with fixed 𝜈 are given by 

(Furtado et al. 2001) 

𝐽𝜈(𝑘𝑟𝑎)~√
2

𝜋𝑘𝑟𝑎
*cos (𝑘𝑟𝑎 −

𝜋𝜈

2
−
𝜋

4
) −

4𝜈2 − 1

8𝑘𝑟𝑎
sin (𝑘𝑟𝑎 −

𝜋𝜈

2
−
𝜋

4
)+,                      (22) 

𝑁𝜈(𝑘𝑟𝑎)~√
2

𝜋𝑘𝑟𝑎
*sin (𝑘𝑟𝑎 −

𝜋𝜈

2
−
𝜋

4
) +

4𝜈2 − 1

8𝑘𝑟𝑎
cos (𝑘𝑟𝑎 −

𝜋𝜈

2
−
𝜋

4
)+,                      (23) 

𝐽𝜈(𝑘𝑟𝑏)~√
2

𝜋𝑘𝑟𝑏
*cos (𝑘𝑟𝑏 −

𝜋𝜈

2
−
𝜋

4
) −

4𝜈2 − 1

8𝑘𝑟𝑏
sin (𝑘𝑟𝑏 −

𝜋𝜈

2
−
𝜋

4
)+,                      (24) 

𝑁𝜈(𝑘𝑟𝑏)~√
2

𝜋𝑘𝑟𝑏
*sin (𝑘𝑟𝑏 −

𝜋𝜈

2
−
𝜋

4
) +

4𝜈2 − 1

8𝑘𝑟𝑏
cos (𝑘𝑟𝑏 −

𝜋𝜈

2
−
𝜋

4
)+.                      (25) 

Substituting Eqs. (22)-(25) into Eq. (21), the explicit form of 𝑘 is found to be 

𝑘2~(
𝑛𝜋

𝑟𝑏 − 𝑟𝑎
)
2

+
𝜈2

4𝑟𝑏𝑟𝑎
,                                                          (26) 

where 𝑛 = 1,2,3,⋯ is the quantum number that indicates the oscillating modes in the range of 
[𝑟𝑎 , 𝑟𝑏]. Then, the eigenenergy 𝐸 is given by  
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𝐸 =
ℏ2𝑘𝑧

2

2𝑚∗
+

ℏ2

2𝑚∗
*(

𝑛𝜋

𝑟𝑏 − 𝑟𝑎
)
2

+
𝜈2

4𝑟𝑏𝑟𝑎
+.                                          (27) 

It should be noted that even though electrons do not touch the screw dislocation, 𝜈 depends on 𝑏 

according to Eq. (18), indicating that 𝐸 depends on 𝑏. This is the analogue of the AB effect noted 

in the Introduction.  

 

 

3. Alternating current conductivity 
 

   The alternating current (AC) conductivity of the screw-dislocated system is derived in this sec-

tion. According to the Kubo formula (Kubo 1957), the real part of the AC conductivity is ex-

pressed by 

𝜎𝑗𝑗′(𝜔) =
𝜋

𝑉𝜔
∑⟨𝛼|𝐼𝑗|𝛼

′⟩⟨𝛼′|𝐼𝑗′|𝛼⟩𝛿(𝐸𝛼 − 𝐸𝛼′ − ℏ𝜔)

𝛼,𝛼′

,                           (28) 

where 𝑉 is the volume of the system, 𝜔 is the angular frequency of the external electric field, ℏ 

is the Planck constant, and 𝑗 and 𝑗′ are 𝑥, 𝑦, 𝑧-components. 𝛿(⋯ ) is the Dirac delta function, 

𝛼 and 𝛼′ denote the quantum number of electrons, and 𝐼𝑗 and 𝐼𝑗′  are current operators with 𝑗 

and 𝑗′ components, respectively. Given the Hamiltonian 𝐻 and eigenenergies 𝐸𝛼 and 𝐸𝛼′, |𝛼⟩ 
and |𝛼′⟩ represent the corresponding eigenstates, which satisfies the relations 𝐻|𝛼⟩ = 𝐸𝛼|𝛼⟩ and 

𝐻|𝛼′⟩ = 𝐸𝛼′|𝛼
′⟩, respectively. An explicit form of the current operator reads as  

𝐼𝑗 =
𝑒

𝑚∗
(−𝑖ℏ

𝜕

𝜕𝑗
− 𝐴𝑗

eff),                                                  (29) 

where 𝐴𝑗
eff is the 𝑗-component of 𝑨eff. 

   From the rotational symmetry around the 𝑧-axis, off-diagonal components vanish from the 

conductivity and 𝜎𝑥𝑥(𝜔) = 𝜎𝑦𝑦(𝜔) ≠ 𝜎𝑧𝑧(𝜔) is satisfied. Since 𝑨eff is parallel to the direction 

of 𝒆𝜃, 𝑨eff affects the 𝑥𝑥 and 𝑦𝑦 components of the AC conductivity. Then, we concentrate on 

calculating 𝜎𝑥𝑥(𝜔) = 𝜎𝑦𝑦(𝜔) ≡ 𝜎(𝜔). Since |𝛼⟩ corresponds to the eigenfunctions given in Eq. 

(15) in our system, 𝜎(𝜔) = 𝜎𝜈+(𝜔) + 𝜎𝜈−(𝜔) is obtained by substituting Eq. (15) and Eq. (29) 

into Eq. (28) 

𝜎𝜈±(𝜔) =
𝜋𝑒2

𝑉𝑚∗2𝜔
∑ |∫ 𝑟𝑑𝑟[𝐵1𝐽𝜈±(𝑘

′𝑟) + 𝐵2𝑁𝜈±(𝑘
′𝑟)] ,−𝐵1

𝜕𝐽𝜈(𝑘𝑟)

𝜕𝑟
− 𝐵2

𝜕𝑁𝜈(𝑘𝑟)

𝜕𝑟

𝑟𝑏

𝑟𝑎𝑛,𝑚,𝑘𝑧,𝑛
′

∓
𝑚

𝑟
[𝐵1𝐽𝜈(𝑘𝑟) + 𝐵2𝑁𝜈(𝑘𝑟)] ±

𝑏𝑘𝑧
2𝜋𝑟

[𝐵1𝐽𝜈(𝑘𝑟) + 𝐵2𝑁𝜈(𝑘𝑟)]-|

2

𝛿 (𝐸𝜈,𝑘,𝑘𝑧

− 𝐸𝜈±,𝑘′,𝑘𝑧 − ℏ𝜔) , 

 

where  

(30) 
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Fig. 2 Schematic view of the three-dimensional system with magnetic field 𝑩 = 𝐵𝒆𝑧 in 

the hollow region 

 

 

𝜈± = √(𝑚 ± 1 +
𝑘𝑧𝑏

2𝜋
)
2

+
𝑏2

2𝜋2𝑎2
(1 −

𝑘𝑧
2𝑎2

2
)                                       (31) 

has a double sign of the same order. Numerical integration is performed to calculate 𝜎(𝜔) in Eq. 

(30) whose results will be given in Section 4.  

   To extract the differences in AC conductivity between the screw-dislocated system and the AB 

system, we also calculate the AC conductivity of the AB system shown in Fig. 2. Electrons are 

restricted to moving in a region bounded by the cylindrical surfaces 𝑟 = 𝑟𝑎 and 𝑟 = 𝑟𝑏 with 

𝑟𝑏 > 𝑟𝑎. The magnetic field 𝑩 = 𝐵𝒆𝑧 penetrates the region of 𝑟 < 𝑟𝑎 in the 𝑧-direction and a 

magnetic flux 𝛷 is given by 𝛷 = 𝜋𝑟𝑎
2𝐵. A mathematical expression of the AC conductivity of 

the AB system is found by replacing ±𝑏𝑘𝑧/(2𝜋𝑟) in Eq. (30) by ±Φ/Φ0 and 𝜈± in Eq. (31) by 

𝑚 ± 1 + 𝛷/𝛷0, where 𝛷0 is a flux quantum 2𝜋ℏ/𝑒.  

 

 

4. Results and discussion 
 

4.1 Setting parameters for numerical calculations 
 

From the viewpoint of experimental realization, we set parameters using SiC as a reference, 

snce it is a promising material for high temperature, high power, and/or high frequency applica-

tions (Nieberding 1983, Parsons et al. 1985, Segall et al. 1986, Agueev et al. 2000, Asada and Su-

zuki 2011). However, since screw dislocations observed in the SiC (Vetter and Dudley 2004) de-

press device performance, Berechman et al. (2010), Chung et al. (2011) and Sugawara et al. 

(2012) investigated the influences of screw dislocation on electronic states. Taking their results 

into consideration, the lattice constant and the effective mass are set to 𝑎 = 4.4 Å  and 𝑚∗ =
0.68𝑚0, respectively, where 𝑚0 is the mass of a free electron. The amplitude of the Burgers vec-
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tor and the inner and outer radii of the cylinder are set to 𝑏/𝑎 = 1, 𝑟𝑎 = 0.1 μm and 𝑟𝑏 = 0.2 

μm, respectively. 

 

4.2 Numerical results 
 

Fig. 3 shows a plot of the AC conductivity 𝜎(𝜔) as a function of the angular frequency 𝜔. 

𝐸𝐹 is set to (a) 5 meV and (b) 10 meV. 𝜎(𝜔) is numerically obtained by using Eq. (30), in which 

the wave functions given by Eqs. (22)-(25) are substituted. The most important observation is that 

the amplitude of 𝜎(𝜔) in the case of 𝑏/𝑎 = 1 (red line) is much larger than that of 𝑏/𝑎 = 0 

(not shown since it lies on 𝜎(𝜔) = 0) in both (a) 𝐸𝐹 = 5 meV and (b) 𝐸𝐹 = 10 meV. This re-

sult means that the screw dislocation enhances the amplitude of 𝜎(𝜔) over the whole frequency 

range in the THz order and its value of several μS/m is measurable experimentally (Kitao 1972, 

Mirsaneh et al. 2010, Asada and Suzuki 2011).  

The effects of screw dislocation can also be measured by the increase in the amplitude and the 

occurrence of an additional peak when the Fermi energy 𝐸𝐹 is changed. The amplitude of 𝜎(𝜔) 
in the case of 𝐸𝐹 = 10 meV is almost double compared to that of 𝐸𝐹 = 5 meV. This is because, 

generally, the double 𝐸𝐹 increases the number of degenerate energy levels, and thus, the number 

of electrons contributing to 𝜎(𝜔) increases (see Fig. 4). Therefore, doubling 𝐸𝐹 induces the  

amplitude of 𝜎(𝜔) to double. A qualitative difference in 𝜎(𝜔) between 𝐸𝐹 = 10 meV and 

𝐸𝐹 = 5 meV is seen in the additional peak that appears at about 𝜔 = 0.52 THz when 𝐸𝐹 = 10 

meV. This additional peak is originated by the excitation of electrons lying on the energy 𝛥𝐸 be-

tween 𝐸𝐹 = 10 meV and 𝐸𝐹 = 5 meV (see Fig. 5). The necessary condition of this pumping is 

that the AC field energy ℏ𝜔 = (1.06 × 10−34) × (0.52 × 1012)~0.1 meV matches the energy 

difference between 𝛥𝐸 and the energy higher than 𝐸𝐹 = 10 meV. This condition is satisfied in  

the case of 𝐸𝐹 = 10 meV, which is why the additional peak appears at 𝜔 = 0.52 THz. Whereas, 

in the case of 𝐸𝐹 = 5 meV, electrons do not absorb the energy of the AC field since ℏ𝜔 =
0.1 meV matches the electrons’ forbidden band and thus the peak at 𝜔 = 0.52 THz does not ap-

pear.  
 

 

 
Fig. 3 Alternating current conductivity 𝜎(𝜔) as a function of the angular frequency 𝜔. The ampli-

tude of the Burgers vector and the Femi energy are set to 𝑏/𝑎 =  1 and (a) 𝐸𝐹 = 5 meV, (b) 

𝐸𝐹 = 10 meV, respectively 
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Fig. 4 An example of the energy level of electrons. In this example, the energy does not degener-

ate in the case of 𝐸𝐹 = 5 meV, but doubly degenerate in the case of 𝐸𝐹 = 10 meV 

 

 

Fig. 5 Schematic illustration of the band structure of electrons. Black and white areas show occupied 

and unoccupied energy levels, respectively. Electrons do not absorb the energy ℏ𝜔 of the alternating 

current field in the case of 𝐸𝐹 = 5 meV. In the case of 𝐸𝐹 = 10 meV, electrons lying on the energy 

𝛥𝐸 are excited by absorbing the energy ℏ𝜔 

 

 

In order to promote a deeper understanding of the characteristics of 𝜎(𝜔) enhanced by the 

Burgers vector, we plotted 𝜎(𝜔) in the AB system. Figure 6 shows the same plot as Fig. 3 but 

𝑏/𝑎 is replaced by Φ/Φ0. The amplitude of the flux is set to Φ/Φ0 = 0.01 since this value is 

comparable to 𝑏𝑘𝑧/(2𝜋𝑎) = 1. It can be seen that 𝜎(𝜔) in both the screw-dislocated system and 

the AB system exhibit the same function form. This means that we cannot recognize the qualitative  
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Fig. 6 Same as Fig. 3, but 𝑏/𝑎 is replaced by Φ/Φ0. The amplitude of the flux is set to Φ/Φ0 = 0.01 

 

 

difference between them. However, the main feature is that the quantitative difference is remarka-

ble, that is, the amplitude of 𝜎(𝜔) in the screw-dislocated system is 104 times larger than in the 

AB system. Furthermore, several nS/m of 𝜎(𝜔) in the case of the AB system are not measurable 

experimentally. Therefore, it should be noted again that 𝜎(𝜔) in the screw-dislocated system is 

large enough to measure, but is too small to measure in the AB system. This difference in behav-

iour originates from the different contribution of the effective vector potential 𝑨eff and the vector 

potential 𝑨. That is, the difference between 𝑨eff and 𝑨 is the effective vector potential part of 

the current operator given in Eq. (29). This part is expressed by 𝑚 − 𝑏𝑘𝑧/(2𝜋) for the screw-

dislocated system and 𝑚 −Φ/Φ0 for the AB system. Thus, 𝜎(𝜔), in the case of the screw- dis-

located system, becomes large since the 𝑏𝑘𝑧/(2𝜋) part contributes to the sum of 𝑘𝑧 in Eq. (30) 

and its contribution makes 𝜎(𝜔) increase owing to the absolute value on the right side of the 

equation. 

 

4.2 Discussion 
 
   Our calculations are based on Eq. (30) with the wave functions given in Eqs. (22)-(25), which 

are obtained by the approximation of short wave length 𝑘𝑟𝑎 ≫ 1 and 𝑘𝑟𝑏 ≫ 1. Therefore, the 

sum of 𝑛 in Eq. (30) is also taken only large value. This indicates that our current evaluations are 

not sufficient to accurately predict the function form of 𝜎(𝜔). To improve on this, the exact solu-

tion would be used to calculate 𝜎(𝜔) in Eq. (30). The exact solution is derived by solving the 

secular equation given in Eq. (21). Since exact wave functions take all wave numbers, the sum of 

𝑛 in Eq. (30) also takes on a large value. Therefore, a more accurate function form of 𝜎(𝜔) will 

be able to be found in future studies.  

 

 

5. Conclusions 
 

We numerically calculated the alternating current (AC) conductivity of a simple cubic crystal 
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with a single hollow screw dislocation and of the AB system for comparison. The amplitude of the 

conductivity in the case of the screw-dislocated system shows a sufficiently large value for exper-

imental measurements, whereas that of the AB system is not measurable due to its small value, 

despite both systems having similar electronic eigenstates. The difference in AC conductivity is 

caused by the current operator in the Kubo formula. The current operator depends on 𝑘𝑧 for the 

screw-dislocated system but does not depend on 𝑘𝑧 for the AB system, thus, the AC conductivity 

behaves in a different manner in each system since the sum of 𝑘𝑧 has to be taken. 
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