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Abstract.  This paper presents a comparative study on the double-K fracture parameters of concrete 
obtained using four existing analytical methods such as Gauss–Chebyshev integral method, simplified 
Green’s function method, weight function method and simplified equivalent cohesive force method. Two 
specimen geometries: three point bend test and compact tension specimen for sizes 100-500 mm at initial 
notch length to depth ratios 0.25 and 0.4 are used for the comparative study. The required input parameters 
for determining the double-K fracture parameters are derived from the developed fictitious crack model. It is 
found that the cohesive toughness and initial cracking toughness determined using weight function method 
and simplified equivalent cohesive force method agree well with those obtained using Gauss–Chebyshev 
integral method whereas these fracture parameters determined using simplified Green’s function method 
deviates more than by 11% and 20% respectively as compared with those obtained using Gauss–Chebyshev 
integral method. It is also shown that all the fracture parameters related with double-K model are size 
dependent. 
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1. Introduction 
 

The concept of linear elastic fracture mechanics (LEFM) was first applied by Kaplan (1961) to 

concrete notched beam in order to determine the critical stress intensity factor of concrete. Since 

1960s, extensive experimental and numerical investigations on concrete fracture behavior have 

been carried out by many researchers and it has been observed from past studies that when fracture 

toughness calculated using the measured values of the maximum load and the initial notch length 

depends on the dimensions of the test specimens. This size effect of the single parameter based on 

LEFM criterion can be attributed mainly to the nonlinear effects associated with crack 

propagation in concrete. It is well understood that before the development of unstable crack, due to 

the aggregate interlocking property, there exists a sizeable fracture process zone ahead of initial 
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crack tip, which is primarily responsible for the size effect behavior. In metallic structures, the 

non-linear behavior results from the strain hardening and plasticity characteristics of the material 

mainly due to the formation of dislocations whereas the major nonlinear behavior of quasibrittle 

materials like concrete is associated with the fracture process zone resulting from the formation 

and branching of micro-cracks. While the nonlinear fracture theories have been developed and 

successfully applied to metals, these theories have been modified for applications to concrete 

which includes the tension softening property of the material. The tension softening describes the 

relationships between traction carrying capacity of cracked concrete and crack opening 

displacement. The nonlinear fracture models applied to concrete structures are: cohesive crack 

model (CCM) or fictitious crack model (FCM) (Hillerborg et al. 1976, Petersson 1981, Carpinteri 

1989, Planas and Elices 1991, Zi and Bažant 2003, Roesler et al. 2007, Park et al. 2008, Zhao et al. 

2008, Kwon et al. 2008, Cusatis and Schaffert 2009, Elices et al. 2009, Kumar and Barai 2008b - 

2009c) and crack band model (CBM) (Bažant and Oh 1983), two parameter fracture model (TPFM) 

(Jenq and Shah 1985), size effect model (SEM) (Bažant et al. 1986), effective crack model (ECM) 

(Nallathambi and Karihaloo 1986), KR-curve method based on cohesive force distribution (Xu 

and Reinhardt 1998, 1999a), double-K fracture model (DKFM) (Xu and Reinhardt 1999a-c, 

Kumar and Barai 2008a, 2009a, 2010a) and double-G fracture model (DGFM) (Xu and Zhang 

2008). Among these models, fictitious crack model and crack band model are based on numerical 

approach in which fracture energy is required as one of the input parameters, while for the other 

models either the analytical or semi-empirical and semi-analytical formulae in the modified form 

of LEFM are used in the form of stress intensity factor or fracture energy to express the fracture 

toughness of concrete. 

The double-K fracture model can describe the three important stages of crack propagation in 

concrete viz.: crack initiation, stable crack propagation and unstable fracture in concrete. This 

method does not require closed loop testing system in the laboratory. The application of this 

method can be made to large size concrete structures like dam, nuclear reactor vessels, and liquid 

retaining structures where crack initiation may be one of design criterion including final failure 

condition. The DKFM is characterized by two material parameters: initial cracking toughness 

KICini and unstable fracture toughness KIC
un

. The initiation toughness is defined as the inherent 

toughness of the materials, which holds for loading at crack initiation when material behaves 

elastically and micro cracking is concentrated to a small-scale in the absence of main crack growth.  

It is directly calculated by knowing the initial cracking load and initial notch length using LEFM 

formula. The total toughness at the critical condition is known as unstable toughness KIC
un

 which is 

regarded as one of the material fracture parameters at the onset of the unstable crack propagation. 

This parameter can be obtained by knowing peak load and corresponding effective crack length 

using the same LEFM formula. In double-K fracture criterion, the crack tip stress intensity factor 

KI is compared with two material characteristics to describe the different stages of failure 

conditions. According to this fracture criterion: no crack development will take place if, KI ˂ KIC
ini

; 

the onset of crack propagation will occur if, KI = KIC
ini

; stable crack development will take place if, 

KIC
ini

 ˂ KI ˂ KIC
un

; critical unstable crack development will occur if, KI = KIC
un

 and there will be 

unstable crack development if, KI ˃ KIC
un

. Extensive numerical and experimental studies (Xu and 

Reinhardt 1999a-c, Xu and Reinhardt  2000, Zhao and Xu 2002, Zhang et al. 2007, Xu and Zhu 

2009, Kumar and Barai 2008a, 2009a-b, 2010a-b; Zhang and Xu 2011, Kumar and Pandey 2012, 

Hu and Lu 2012, Murthy et al. 2012, Hu et al. 2012) have been carried out in the past for the study 

of double-K fracture parameters of concrete using different tests specimens with wide range of 

parameters.  
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Xu and Reinhardt (1999b) developed Gauss–Chebyshev integral method (GCIM) to calculate 

the double-K fracture parameters for three-point bending test (TPBT) geometry of notched 

concrete beam. This method requires specialized numerical integration because of singularity 

problem at the integral boundary for determining the value of cohesive toughness KIC
C
. The same 

method was extended to determine the double-K fracture parameters for compact tension (CT) and 

wedge splitting tests (WST) specimens (Xu and Reinhardt 1999c). Later, simplified equivalent 

cohesive force method (SECFM) (Xu and Reinhardt 2000) was proposed using two empirical 

formulae to obtain the double-K fracture parameters for TPBT configuration. Kumar and Barai 

(2008a, 2009a, 2010a) introduced the weight function method (WFM) which facilitated a closed 

form accurate solution for calculating the cohesive toughness of material. Zhang and Xu (2011) 

presented a simplified Green’s function method (SGFM) for determining cohesive toughness of 

concrete in terms of a closed form solution. Based on fracture tests, the authors (Zhang and Xu 

2011) presented a comprehensive comparison of double-K fracture toughness parameters of 

concrete obtained using experimental method and the four existing analytical methods such as: 

Gauss–Chebyshev integral method (GCIM), simplified Green’s function method (SGFM), weight 

function method (WFM) and simplified equivalent cohesive force method (SECFM). From the 

study it was presented that the four available analytical methods yield almost the same values of 

double-K fracture toughness parameters and agree well with those obtained from the experimental 

method. 

The main difference between the Gauss–Chebyshev integral method and the simplified 

equivalent cohesive force method is with respect to the evaluation effective crack extension and 

cohesive toughness. In the Gauss–Chebyshev integral method, the critical value of effective crack 

extension is determined using LEFM compliance calibration formula whereas in simplified 

equivalent cohesive force method it is determined using an empirical expression. In addition, an 

empirical relation is also used to obtain the value of cohesive toughness in simplified equivalent 

cohesive force method while a special numerical technique is applied in Gauss–Chebyshev 

integral method. This numerical integration technique requires more skills because of existence of 

singularity problem at the integral boundary. In those circumstances, the use of weight function 

method and simplified Green’s function method will provide a closed form expression in 

determining the value of cohesive toughness. 

 

 

 
Fig. 1 Three-point bending test and compact tension test Specimens 
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Based on numerical results, Kumar and Barai (2008a) put forward a similar comparative study 

on the double-K fracture parameters obtained using the then three existing methods such as Gauss–

Chebyshev integral method (GCIM), weight function method (WFM) and simplified equivalent 

cohesive force method (SECFM). Further, using fracture tests, the authors (Zhang and Xu 2011) 

presented a comparison of double-K fracture parameters of concrete obtained using experimental 

method and the four existing analytical methods i.e., Gauss–Chebyshev integral method (GCIM), 

simplified Green’s function method (SGFM), weight function method (WFM) and simplified 

equivalent cohesive force method (SECFM). A supplementary contribution on the comparative 

study of the double-K fracture parameters obtained using all the four existing analytical methods 

employing numerical results may be useful to the interested readers. In view of the above, this 

paper presents the application of existing four analytical methods to determine the cohesive 

toughness and hence the double-K fracture parameters for two specimen geometries i.e., three 

point bend test and compact tension test for characteristic dimension sizes 100-500 mm with initial 

crack length to depth ratios of 0.25 and 0.4. The input data required for obtaining the double-K 

fracture parameters are precisely derived from the developed fictitious crack model. Finally, a 

systemic numerical study for on comparison of fracture parameters obtained using these methods 

is carried out. To this end, a brief introduction of the four analytical methods for determination of 

double -K fracture parameters is presented in the subsequent sections. 

 
 
2. Specimen geometry 
 

Two types of specimen geometries: three-point bending test and compact tension test are 

considered in the present study for comparative study. RILEM Technical Committee 50-FMC 

(1985) has recommended the guidelines for determination of fracture energy of cementitous 

materials using standard three-point bend test on notched beam. The ASTM standard E399-06 

(2006) has specified the general proportion and standard configuration for compact tension test. 

The standard dimensions of the three-point bend test (TPBT) and compact tension (CT) test 

geometries are shown in Fig. 1. 

The symbols: B, D and S are the width, depth and span respectively for TPBT geometry with 

S/D = 4. The dimensions and configuration of standard CT specimen according to the ASTM 

standard E399-06 (2006) are: D1 = 1.25D, H = 0.6D and H1 = 0.275D. 

 
 
3. Introduction of double- K fracture parameters 
 

The double-K fracture parameters can be determined using experimental test results in which 

the primary requirement is to measure the initial cracking load Pini, initial crack length ao, peak 

load Pu and crack mouth opening displacement at peak load CMODc from the tests. Generally, two 

direct methods are employed to determine the value of Pini. In the first method, the Pini is directly 

obtained during test by means of strain gauges or with the help of acoustic emission or by laser 

speckle interferometry method at the tip of initial crack tip. In the second method, the starting 

point of non-linearity in P-CMOD curve obtained from the experiment is considered to be Pini. In 

this method, proper care should be taken to draw a straight line along the linear part of P-CMOD 

curve obtained from the test and to locate the distinct bifurcation point between linear and 

nonlinear parts of the P-CMOD curve. This bifurcation point which is regarded as the initial 
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cracking point yields the value of Pini. Therefore experimental determination of initial cracking 

load requires high degree of precision and special attention during test. Once, the Pini, ao, Pu and 

CMODc are recorded, the initial cracking toughness KIC
ini

 and unstable fracture toughness are 

determined using LEFM equations.  

In order to apply LEFM equations for calculating the double-K fracture parameters, Xu and 

Reinhardt (1999b) introduced linear asymptotic superposition assumption. The hypotheses of the 

assumption are given below 

1. the nonlinear characteristic of the load-crack mouth opening displacement (P-CMOD) curve 

is caused by fictitious crack extension in front of a stress-free crack, and 

2. an effective crack consists of an equivalent-elastic stress-free crack and equivalent-elastic 

fictitious crack extension. 

A detailed explanation of the hypotheses may be seen elsewhere (Xu and Reinhardt 1999b).  

 

3.1 Determination of stress intensity factor 

 

3.1.1 For standard TPBT geometry with S/D = 4 using Tada et al. (1985) formulae 

For this case, the stress intensity factor is expressed as 

 
( )I NK Dk 

                             
(1) 

2

3/ 2

1.99 (1 )(2.15 3.93 2.7 )
( )

(1 2 )(1 )
k

   
 

 

   


 
    (2) 

Where k() is a geometric factor,  = a/D and N is the nominal stress in the beam due to 

external load P and self weight of the structure which is given by 

2

3
[2 ]

4
N g

S
P w S

bD
                             (3) 

In Eq. (3), wg is the self weight per unit length of the structure.  

 

3.1.2 For standard CT specimen using ASTM standard E399-06 (2006) formulae 

For CT specimen, the stress intensity factor is expressed as 

( )I NK D k                              (4) 

2 3 4

3/ 2

(2 ) 0.886 4.64 13.32 14.72 5.6
( )

(1 )
k

    




      


  (5) 

Where 
a

D
  , N

P

BD
   and Eq. (5) is valid for, 0.2   α   1 within 0.5% accuracy. 

Eqs. (1) and (4) can be used in calculation of initial cracking toughness KIC
ini

 at the tip of initial 

crack length ao and unstable fracture toughness KIC
un

 at the tip of effective crack length ac for 
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TPBT and CT test specimen geometries respectively. This means that the value of P = Pini and a = 

ao will be used for determining the initial cracking toughness whereas and P = Pu and a = ac will 

be used for evaluating the unstable fracture toughness of material in the above equations. Since it 

is difficult to detect the crack initiation load from experimental approach, an inverse analytical 

method is used to calculate the value of KIC
ini

. Either in experimental method where the value of 

Pini is obtained from the test or in the analytical method, the value of effective crack extension 

corresponding to peak load has to be determined using following procedure.  

 

3.2 Effective crack extension 

 

Using linear asymptotic superposition assumption, the equivalent-elastic crack length at 

maximum load can be determined by solving LEFM formulae for each type of specimen geometry 

as mentioned below.  

 

3.2.1 For TPBT geometry, S/D = 4 using Tada et al. (1985) formulae 

12

6
( )

PSa
CMOD V

BD E
                           (6) 

2 3

1 2

0.66
( ) 0.76 2.28 3.87 2.04

(1 )
V    


    


              (7) 

where 
( )

( )

o

o

a H

D H






; a = ac equivalent-elastic crack length at maximum load, P = Pu,  Ho = 

thickness of the clip gauge holder. The measured initial compliance Ci from the P-CMOD curve is 

used to calculate the Young’s modulus, E as per the RILEM formula (1990). 

12

6
( )o

o

i

Sa
E V

C bD
                             (8) 

In Eq. (8), ao = initial notch length and 
( )

( )

o o
o

o

a H

D H






. 

3.2.2 For standard CT specimen using Murakami (1987) equations 

Similar to Eq. (6), the crack opening displacement for CT specimen is expressed as 

1( )
P

COD V
BE

                               (9) 

2

2 3 4 5

1

1
( ) 2.163 12.219 20.065 0.9925 20.609 9.9314

1
V


     



 
           

 (10) 
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where, 
a

D
  , a = ac i.e., equivalent-elastic crack length at maximum load Pu. The empirical Eq. 

(10) is valid within 0.5% accuracy for, 0.2     0.975. The value E is calculated using the P-

COD curve as 

1( )o

i

V
E

C B




                              

 (11)  

Karihaloo and Nallathambi (1991) concluded that almost the same value of E might be 

obtained form P-CMOD curve, load-deflection curve and compressive cylinder test. Hence, in case 

initial compliance is not known the value of E determined using compressive cylinder tests may be 

used to obtain the critical crack length of the specimen. 

 

3.3 Analytical methods for evaluation of KIC
ini 

 

According to analytical method, the following relation can be employed to determine the initial 

cracking toughness of the material. 

ini un C

IC IC ICK K K                               (12) 

Where, KIC
C
 is known as cohesive toughness of the material. In Eq. (12), the value of KIC

un
 is 

obtained using experimental data (Pu and CMODc) as mentioned in the previous section. Once the 

value of KIC
C
 is determined, the KIC

ini
 can be obtained using Eq. (12). It is a well known 

phenomenon that in the fracture process zone, a nonlinear stress profile can develop before the 

peak load depending on type of cohesive laws.  Further, the linear stress distribution was 

considered for loading stage up to the peak load and the corresponding critical effective crack 

extension ac for the development of the double-K fracture model (Xu and Reinhardt 1999b). This 

assumption might lead to the simplification in numerical computations without affecting much on 

the final values of fracture parameters. Moreover, this assumption seems to be reasonable because 

up to the peak load, the process zone length is relatively small and mainly the initial portion of the 

softening branch is used. Based on experimental results and analysis, Zhang and Xu (2011) put 

forward that the linear cohesive stress distribution along fictitious crack is not applicable when the 

depth of the specimen is more than 600 mm. In the present study, the depth of specimen is limited 

to 500 mm and therefore linear cohesive stress distribution is adopted in the fictitious fracture zone. 

The cohesive stress acting in the fictitious fracture zone on three point bend test specimens is 

idealized as a series of pair normal forces subjected to single edge cracked specimen of finite 

width as shown in Fig. 2. The linearly varying distribution of cohesive stress in the fracture zone at 

peak load is presented in Fig. 3.  

The value of cohesion toughness KIC
C
 is negative because of closing stress in fictitious crack 

zone. However, the absolute value of KIC
C
 is taken as a contribution of the total fracture toughness. 

Four analytical methods: Gauss–Chebyshev integral method (Xu and Reinhardt 1999b,c), 

simplified equivalent cohesive force method (Xu and Reinhardt 2000), simplified Green’s function 

method (Zhang and Xu 2011) and weight function method (Kumar and Barai 2008a, 2009a, 2010a) 

can be used to determine the value of KIC
C
 and hence the KIC

ini
. During loading of specimen, the 

critical condition is achieved at maximum load value and the corresponding critical crack tip  
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Fig. 2 Single edge cracked specimen of finite width subjected to a pair of normal forces 

 

 
Fig. 3 Distribution of cohesive stress in the fictitious crack zone at critical load 

 

 

opening displacement (CTOD) is termed as CTODc. In Fig. 3, the s(CTODc) is cohesive stress 

corresponding to CTODc at the tip of initial notch, then (x) is expressed in the following 

expression. 

( ) ( ) [ ( )]o
s c t s c

o

x a
x CTOD f CTOD

a a
  


  


                (13) 

Eq. (13) is expressed in non-dimensional form of crack length, U = x/a, as 

/
( ) ( ) [ ( )]

1 /

o
s c t s c

o

U a a
U CTOD f CTOD

a a
  


  


               (14) 

Eq. (14) is valid for, ao/a   U   1 or 0   CTOD   CTODc
.
 The value of s(CTODc) is 

calculated  by using softening functions of concrete such as bilinear, quasi-exponential, nonlinear, 

etc. However, in the present work, the nonlinear softening function (Reinhardt et al. 1986) is used 

for all computations which can be expressed as 

   
3

31 2

1 2( ) 1 exp 1 expt

c c c

c w c w w
w f c c

w w w


      
         
         

        (15)
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The value of total fracture energy of concrete GF is expressed as 

 
 

3 3
231 1

1 22 3

2 2 2 22 2

exp 11 3 6 6
1 6 1 1 exp

2
F c t

cc c
G w f c c

c c c cc c

           
                
           

(16) 

In which, (w) is the cohesive stress at crack opening displacement w at the crack-tip and c1 

and c2 are the material constants. Also, w = wc for ft = 0, i.e., wc is the maximum crack opening 

displacement at the crack-tip at which the cohesive stress becomes to be zero. The value of wc is 

computed using Eq. (16) for a given set of values c1, c2 and GF. For normal concrete the values of 

c1 and c2 are taken as 3 and 7 respectively and also these values are used in the present work.  

 

3.4 Determination of CTODc 

 

It is difficult to measure the value of CTODc directly, therefore, for practical purposes the value 

of crack mouth opening displacement (CMOD) is monitored. At critical condition, the value of 

crack mouth opening displacement becomes to be critical value of CMODc and for the known 

value of CMOD the crack opening displacement within the crack length, COD(x) is computed 

using the following expression (Jenq and Shah 1985).  

 
1/ 2

2 2( ) (1 / ) (1.081 1.149 / )[ / ( / ) ]cCOD x CMOD x a a D x a x a          (17) 

In Eq. (17), the CTODc = COD (x) for x = ao and a = ac.  

 

3.5 Analytical methods for computation of cohesive toughness 

 

3.5.1 Gauss–Chebyshev integral method 

In this method, the stress intensity factor for the case of an edge crack subjected to a pair of 

normal point forces P acting at a distance x as shown in Fig. 2 is expressed (Tada et al. 1985) as 

2
( / , / )I

P
K F x a a D

a


                         

 (18) 

where, ( / , / )F x a a D  is Green’s function and given as 

3/ 2 1/ 2

3/ 2

2

3.52(1 / ) 4.35 5.28 /
( / , / )

(1 / ) (1 / )

1.30 0.30( / )
0.83 1.76 / [1 (1 / ) / ]

[1 ( / ) ]

x a x a
F x a a D

a D a D

x a
x a x a a D

x a

 
 

 

  
      

  

    (19) 

Putting U = x/a and  = a/D in Eqs. (18) and (19), the final form of integral equation for 

cohesive toughness due to cohesive stress distribution is expressed as 
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1

/

2 ( ) ( , )

o

C

IC

a a

a
K U F U d  


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 (20) 

where 

3/ 2 1/ 2

3/ 2

2

3.52(1 ) 4.35 5.28
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(1 ) (1 )

1.30 0.30
0.83 1.76 [1 (1 ) ]

[1 ]

U U
F U

U
U U

U


 



 
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 

  
    

  

           (21) 

At critical condition the value of a is taken to be ac. The integration of the Eq. (20) is done 

using Gauss-Chebyshev quadrature method because of existence of singularity at the integral 

boundary. 

 

3.5.2 Simplified equivalent cohesive force method 

According to the simplified equivalent cohesive force method, the evaluation of KIC
C
 is done 

using a calibration function Z(xe/a, ao/a) with Eq. (18). The distributed cohesive force (x) is 

converted into a single equivalent force Pe per unit thickness as shown in Fig. 3. The absolute 

value of the KIC
C
 is then expressed as 

2
, ( / , / )C e o e

IC e

x a P
K Z F x a a D

a a a

 
  

 
                    (22) 

Putting, Ue = xe/a, o = ao/D and  = a/D in Eq. (22), the non-dimensional value of 

C

IC

t

K

f D
 is 

expressed as 

2
, ( , )

C

IC o e
e e

t t

K P
Z U F U

f D f aD




 

 
  

 
                   (23) 

For trapezoidal cohesive stress distribution, using a non-dimensional factor  as 

( )s c

t

CTOD

f


                               (24) 

Then, Eq. (14) can be represented in non-dimensional form as 

( / )( )
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t o
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                       (25) 

From Fig. 3, the value of resultant force Pe can be written as 

(1 )( )
2

t
e o

f
P a a    for a  ac                        (26) 

In non-dimensional form, Eq. (23) is expressed as 
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2
(1 )(1 / ) /e

o

t

P

f aD
    


                        (27) 

It is shown in Fig. 3 that d is the centroid of the resultant cohesive force Pe measured from the 

extending crack tip. Hence d is calculated as 

(1 2 )
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3(1 )
od a a






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
                           (28) 

and  
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   (29) 

Also,   

1
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e o
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                  (30) 

 

Finally, the calibration function can be empirically determined in the following form. 

0.26(1.025 0.1 )
( , / )

1 1.83( 0.2)

p

o
e o e

o

Z U U
 

 
  

  
  

   
 for 0.2  o  0.8  (31) 

where,  

p = 1.5(o - 0.2) + 0.8, for 0.2  o  0.6; p = 3(o - 0.6)+1.4, for 0.6  o  0.7 and p = 6(o – 

0.7)+1.7, for 0.7  o  0.8. 

The value of F(Ue, ) in Eq. (23) is computed using Eq. (21), and then the value of KIC
C
 is 

obtained using Eqs. (23) and (31).  

 

3.5.3 Simplified Green’s function method 

In this method, the Green’s function F(x/a, a/D) of Eq. (21) can be simplified in the following 

form 

' '

2

1
( , )

1
F U AU B
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                      (32) 

where
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2 2
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As compared to the Green’s function, Eq. (32) yields maximum error of 1% in the entire range 

of investigation (Zhang and Xu 2011). Hence for linear cohesive stress distribution, the cohesive 

toughness of the material can be obtained after integrating Eq. (20) in which the value F(U, α) is 
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replaced by Eq. (32). Thus, the value of KIC
C
 is obtained as 
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where, 
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The values of A’ and B’ in Eq. (33) can be obtained by putting α = αc in Eq. (32). After 

integration, Eq. (33) yields closed form solution for KIC
C
 as given below. 
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(34)

 

3.5.4 Weight function method 

The weight function method was presented by Kumar and Barai (2008a, 2009a, 2010a). 

According to this method universal form of weight function having four terms or five terms can be 

used to express the Green’s function. For more accuracy the universal form of weight function 

with five terms is used in the present study. The universal form of weight function having five 

terms is expressed as 

1/ 2 3/ 2 2

1 2 3 4

2
( , ) 1 (1 / ) (1 / ) (1 / ) (1 / )

2 ( )
m x a M x a M x a M x a M x a

a x
          


(35) 

In Eq. (35), first of all three parameters M1, M2, M3 and M4 of five-term universal weight 

function is determined in which the values of M1, M2 M3 and M4 can be represented as a function 

of a/D ratio in the following form. 

2 3 4 5

3/ 2

1
/ ( / ) ( / ) ( / ) ( / )

(1 / )
i i i i i i iM a b a D c a D d a D e a D f a D

a D
       

  (36) 

for, i = 1 and 3 and 

 /i i iM a b a D   for i = 2 and 4.                     (37) 

The values of coefficients ai, bi, ci, . . ., fi are given in Table 1.  

From comparison between the Tada Green’s function and five terms weight function it has been 

found that the maximum absolute difference in result is less than 1% for 0.2 < a/D  0.95 and it is 

less than 1.5 % for 0 a/D  0.2 in the range of crack length of 0  x/a  0.98. Then the stress 

intensity factor using weight function method can be expressed as 

0

( ). ( , ) 
a

K x m x a dx                           (38) 
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Table 1 Coefficients of five terms weight function parameters M1, M2, M3 and M4 

i ai bi ci di ei fi 

1 -0.000824975 0.6878602 0.4942668 -3.25418434 3.4426983 -1.3689673 

2 0.782308 -3.0488836     

3 -0.3049218 13.4186519 -23.31662697 35.51066606 -34.440981408 14.10339412 

4 0.28347699 -7.378355423     

 

 
Fig. 4 Finite element discretization of TPBT and CT specimens 

 

 

The value of (x) in Eq. (38) is replaced by Eq. (13), hence a closed form expression for KIC
C
 

can be obtained as 
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where, 1 2

( )
( ), t s c

s c

o

f CTOD
A CTOD A

a a





 


 and (1 / )os a a  . At the critical effective 

crack extension, a is equal to ac in Eq. (39).  After determining the value of KIC
C
 using any of the 

above mentioned methods, the value of KIC
ini

 can be evaluated using Eq. (12). 

 

 

4. Fictitious crack model 
 
The cohesive crack model (CCM) or fictitious crack model (FCM) has been developed and 

used by many researchers (Petersson 1981, Carpinteri 1989, Planas and Elices 1991, Zi and Bažant 

2003, Roesler et al. 2007, Park et al. 2008, Zhao et al. 2008, Kwon et al. 2008, Cusatis and 

Schaffert 2009, Elices et al. 2009, Kumar and Barai 2008b, 2009c) in the past for characterizing 

the softening functions and predicting the nonlinear fracture characteristics of concrete using 

various test configurations. Three material properties such as modulus of elasticity E, uniaxial 

tensile strength ft, and fracture energy GF are required to model FCM or CCM. The concrete mix 
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with material properties: ν = 0.18, ft = 3.21MPa, E = 30 GPa, and GF = 103N/m along with 

nonlinear stress-displacement softening relation with constants c1 = 3 and c2 = 7 are used as the 

input parameters in the present study.  

The following assumptions are considered in the development of cohesive crack model 

(Petersson 1981, Carpenteri 1989, Kumar and Barai 2009c): (i) the bulk of material behaves in a 

linear elastic and isotropic manner, (ii) the fracture process zone begins to develop when the 

maximum principal stress becomes equal to the tensile strength and (iii) the material is in partial 

damaged condition and is still able to transfer the stress known as cohesive stress which depends 

on the crack opening displacement. Also two material lengths (i) the fracture process zone and (ii) 

the width of the FPZ have always been considered as a matter of research in the fracture modelling 

of concrete. Petersson (1981) showed experimentally that the size of FPZ is significant and 

comparable but its width is normally small (in the order of maximum aggregate size) with respect 

to the characteristic dimension of a structure. In the fictitious crack model, the FPZ is assumed to 

have collapsed into a line or a surface in two or three-dimensional analysis, respectively. In the 

pure mode I loading if a single macroscopic crack opens in a fixed direction, the cohesive crack 

can be modelled easily by adopting procedures proposed by Petersson (1981), Carpinteri (1989) 

and Planas and Elices (1991). In this method the number of fracture nodes along the potential 

crack line is kept as fixed in the FEM and only a standard linear finite element analysis is needed 

to determine the required influence coefficients along the potential crack line. Since away from the 

potential crack line i.e., the bulk of material behaves in linear elastic manner, even after 

considering the coarser meshing in this region it will not affect the influence coefficients along the 

potential crack line. This is the reason why the finer mesh is considered along the potential crack 

line and coarser mesh is considered in the bulk of specimen. With this background, the present 

FEM meshing is done which requires relatively less memory in the computer while running the 

programme.  In this method, the governing equation of crack opening displacement (COD) along 

the potential fracture line is written. The influence coefficients of the COD equation are 

determined using linear elastic finite element method. Four noded isoparametric plane elements 

are used in finite element calculation. The COD vector is partitioned according to the enhanced 

algorithm introduced by Planas and Elices (1991). Finally, the system of nonlinear simultaneous 

equation is developed and solved using Newton-Raphson method. For standard three point bend 

test and compact tension test specimens with B = 100 mm having size range D = 100-500 mm, the 

finite element analysis is carried out for which the half of the specimens are discretized due to 

symmetry considering 80 numbers of equal isoparametric plane elements along the dimension D.  

The descritization of both the test geometries is shown in Fig. 4 

Due to symmetry, half of the three point bend test and compact tension test specimens are 

descritized. 
 

 
5. Results and discussion 
 

The various numerical results as obtained in the present study are plotted in Figs. 5-14. Fig. 5 

shows the variation of Pu with specimen size (D) in which it can be seen that the peak load 

increases with the specimen depth. For given value of D and ao/D ratio, the peak load capacity of 

compact tension specimen is more than those of three point bend test specimen.  

The value of CMODc versus specimen size is plotted in Fig. 6, in which, it is found that the 

value of CMODc increases with the specimen size. Also, for given value of D and ao/D ratio, the 
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Fig. 5 Variation of peak load with specimen size 

 

 
Fig. 6 Variation of CMODc with specimen size 

 

 
Fig. 7 Variation of critical effective crack extension with specimen size 
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Fig. 8 Variation of critical FPZ with specimen size in non-dimension form 

 

 
Fig. 9 Variation of CTODc with specimen size 

 

 
 

Fig. 10 Variation of unstable fracture toughness with specimen size 
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value CMODc of compact tension specimen is more than those of three point bend test specimen. 

Fig. 7 shows the variation of critical value of effective crack length ac with specimen size. 

From the figure it is seen that this relationship is linear and it is interesting to observe that the 

value of effective crack length for both the specimen geometries is almost same and it increases 

with the specimen size. However, the value of ac is dependent on the ao/D ratio. From 

experimental test results, Zhang and Xu (2011) computed the average value of ac as 116.94 mm 

and 172.09 mm for D = 200 mm and 300 mm respectively at ao/D ratio of 0.4 for wedge splitting  
specimen. From the numerical result, in the present study, this value of ac is evaluated as 102.56 
mm and 148.17 mm for D = 200 mm and 300 mm respectively at ao/D ratio for CT specimen 
whereas these are calculated as 103.39 mm and 149.44 mm for D = 200 mm and 300 mm 
respectively for TPBT specimen.  

The critical effective crack length and specimen size can be expressed in non-dimensional 
parameters as (ac-ao)/Lch and D/Lch respectively where the characteristic length Lch = EGF/ft

2
. These 

non-dimensional parameters are plotted in Fig. 8, within the size range considered in the study. 
From the figure, it is observed that (ac-ao)/Lch increases with the increase in D/Lch. Similar pattern 
of the relationship between (ac-ao)/Lch and D/Lch was also presented by Zhang and Xu (2011) based 
on experimental results. 

The computed value of CTODc versus specimen size is shown in Fig. 9. From the figure it is 
seen that the value of CTODc increases with increase in specimen size. It is also observed that the 
CTODc depends on specimen geometry and ao/D ratio.  

The relationship between KIC
un

 and specimen depth is presented in Fig. 10 which shows a 
nonlinear increase in the value of KIC

un
 with increase in specimen size up to of 400 mmm. Beyond 

this value of the specimen size, the value of KIC
un

 is almost independent of specimen geometry and 
the geometrical factor (ao/D ratio). Based on experimental test results on wedge splitting specimen, 
Zhang and Xu (2011) showd that the value of KIC

un
 slightly increases linearly with specimen size.  

From Figs. 11-12 it is observed that as compared with Gauss–Chebyshev integral method, the 
weight function method gives almost the same values of KIC

C
, the simplified equivalent cohesive 

force method yields a little different value of KIC
C
 which may not be distinguished from the plots 

whereas the SGFM yields somewhat different value of KIC
C
. This deviation in results of KIC

C
 

obtained from simplified Green’s function method is more for higher value of ao/D ratio and lower 
value of specimen depth. The maximum absolute difference in the value of cohesive toughness as 
compared with Gauss–Chebyshev integral method is 11.62% and 10.9% for TPBT and CT 
specimen respectively for D = 100 mm at ao/D ratio of 0.4. 

Similarly the relationship between KIC
ini

 obtained using different methods and specimen size for 
TPBT and CT specimen are shown in Figs. 13 and 14 respectively. 

The value of cohesive toughness using four analytical methods: Gauss–Chebyshev 

integral method, simplified Green’s function method, weight function method and simplified 

equivalent cohesive force method for TPBT and CT specimens are obtained as mentioned in the 

previous section 3.5. These values are then plotted with specimen size and shown in Figs. 11 and 

12 for three point bens test and compact tension specimens respectively. The legends in the figures 

GCIM, SGFM, WFM and SECFM represent the values obtained using Gauss–Chebyshev integral 

method, simplified Green’s function method, weight function method and simplified equivalent 

cohesive force method respectively. 

From Figs. 13-14 it can be seen that the initiation toughness obtained using weight function 

method is very close to those obtained using Gauss–Chebyshev integral method. As compared to 

Gauss–Chebyshev integral method, the simplified equivalent cohesive force method yields 

initiation toughness with a maximum absolute error of 1.5%. Further simplified Green’s function  
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Fig. 11 Variation of cohesive toughness with specimen size for TPBT 

 

 
 

Fig. 12 Variation of cohesive toughness with specimen size for CT specimen 
 

 
Fig. 13 Variation of initial cracking toughness with specimen size for TPBT 
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Fig. 14 Variation of initial cracking toughness with specimen size for CT specimen 

 
 
method yields KIC

ini
 with more error as compared to Gauss–Chebyshev integral method and the 

maximum absolute error is 21.20% for TPBT and 18.84% for CT specimen for D = 100 mm at 

ao/D ratio of 0.4. The formulae presented by Zhang and Xu (2011) has been used in calculation of 

KIC
C
 using simplified Green’s function method for linear stress distribution in the fictitious fracture 

zone. However, based on experimental test results, Zhang and Xu (2011) reported the maximum 

variations in these fracture parameters evaluated using these four analytical approaches and the 

bilinear cohesive stress distribution in the fictitious fracture zone are below 5%. 

 

 
6. Conclusions 

 

In the present study, a systematic comparison of double-K fracture parameters determined using 

four analytical methods: Gauss–Chebyshev integral method, simplified Green’s function method, 

weight function method and simplified equivalent cohesive force method was carried out on the 

three point bend test and compact tension test geometries with various specimen sizes (100 – 500 

mm) and geometrical factors 0.25 - 0.40). From the study the following concluding remarks can be 

outlined. 

• All the fracture parameters such as critical effective crack length, critical crack tip opening 

displacement, unstable fracture toughness, cohesive toughness and initial cracking toughness 

depend on specimen size and geometrical factor. The relationship between effective crack length 

and specimen size is almost linear and the value of effective crack length increases with the 

specimen size and is independent of the shape of the specimen. 

• The value of unstable fracture toughness increases nonlinearly with increase in specimen size 

up to of 400 mmm and beyond this value of the specimen size, the value unstable fracture 

toughness is almost independent of specimen geometry and the geometrical factor.  

• The cohesive toughness obtained for linear cohesive stress distribution in the fracture zone 

using Gauss–Chebyshev integral method, weight function method and simplified equivalent 
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cohesive force method is almost the same while as compared with Gauss–Chebyshev integral 

method; the simplified Green’s function method yields the result with a maximum absolute 

difference by 11.62%.  

• Consequently, the initiation toughness obtained using weight function method is very close to 

those obtained using Gauss–Chebyshev integral method whereas as compared to Gauss–

Chebyshev integral method, the simplified equivalent cohesive force method yields crack initiation 

toughness with a maximum absolute error of 1.5%. As compared with Gauss–Chebyshev integral 

method, simplified Green’s function method yields the value of initial cracking toughness by the 

maximum absolute error of 21.20%. 
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